Properties

Label 2028.2.i.m
Level $2028$
Weight $2$
Character orbit 2028.i
Analytic conductor $16.194$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2028,2,Mod(529,2028)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2028.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,3,0,4,0,6,0,-3,0,5,0,0,0,2,0,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{3} + ( - \beta_{2} + 1) q^{5} + ( - \beta_{5} + 2 \beta_{4} + \beta_1 + 1) q^{7} + (\beta_{5} - 1) q^{9} + (3 \beta_{5} + \beta_{4} + \cdots + 3 \beta_1) q^{11} + (\beta_{5} - \beta_{2} + \beta_1) q^{15}+ \cdots + ( - \beta_{3} + 3 \beta_{2} - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} + 4 q^{5} + 6 q^{7} - 3 q^{9} + 5 q^{11} + 2 q^{15} - 13 q^{17} - q^{19} + 12 q^{21} - 18 q^{25} - 6 q^{27} + 4 q^{29} - 4 q^{31} - 5 q^{33} + 4 q^{35} - 2 q^{37} + 11 q^{41} + 9 q^{43} - 2 q^{45}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 3\nu^{4} - 9\nu^{3} + 5\nu^{2} - 2\nu + 6 ) / 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{5} + 9\nu^{4} - 14\nu^{3} + 15\nu^{2} - 6\nu + 18 ) / 13 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{5} - \nu^{4} - 10\nu^{3} - 6\nu^{2} - 34\nu - 2 ) / 13 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -6\nu^{5} + 5\nu^{4} - 15\nu^{3} - 9\nu^{2} - 25\nu + 10 ) / 13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} - 3\beta_{4} - 4\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{4} - 4\beta_{3} + 9\beta_{2} - 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(-1 + \beta_{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
529.1
0.900969 + 1.56052i
0.222521 + 0.385418i
−0.623490 1.07992i
0.900969 1.56052i
0.222521 0.385418i
−0.623490 + 1.07992i
0 0.500000 0.866025i 0 −0.801938 0 1.84601 + 3.19738i 0 −0.500000 0.866025i 0
529.2 0 0.500000 0.866025i 0 0.554958 0 −0.524459 0.908389i 0 −0.500000 0.866025i 0
529.3 0 0.500000 0.866025i 0 2.24698 0 1.67845 + 2.90716i 0 −0.500000 0.866025i 0
2005.1 0 0.500000 + 0.866025i 0 −0.801938 0 1.84601 3.19738i 0 −0.500000 + 0.866025i 0
2005.2 0 0.500000 + 0.866025i 0 0.554958 0 −0.524459 + 0.908389i 0 −0.500000 + 0.866025i 0
2005.3 0 0.500000 + 0.866025i 0 2.24698 0 1.67845 2.90716i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 529.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2028.2.i.m 6
13.b even 2 1 2028.2.i.l 6
13.c even 3 1 2028.2.a.j yes 3
13.c even 3 1 inner 2028.2.i.m 6
13.d odd 4 2 2028.2.q.j 12
13.e even 6 1 2028.2.a.i 3
13.e even 6 1 2028.2.i.l 6
13.f odd 12 2 2028.2.b.f 6
13.f odd 12 2 2028.2.q.j 12
39.h odd 6 1 6084.2.a.bb 3
39.i odd 6 1 6084.2.a.y 3
39.k even 12 2 6084.2.b.r 6
52.i odd 6 1 8112.2.a.ch 3
52.j odd 6 1 8112.2.a.co 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2028.2.a.i 3 13.e even 6 1
2028.2.a.j yes 3 13.c even 3 1
2028.2.b.f 6 13.f odd 12 2
2028.2.i.l 6 13.b even 2 1
2028.2.i.l 6 13.e even 6 1
2028.2.i.m 6 1.a even 1 1 trivial
2028.2.i.m 6 13.c even 3 1 inner
2028.2.q.j 12 13.d odd 4 2
2028.2.q.j 12 13.f odd 12 2
6084.2.a.y 3 39.i odd 6 1
6084.2.a.bb 3 39.h odd 6 1
6084.2.b.r 6 39.k even 12 2
8112.2.a.ch 3 52.i odd 6 1
8112.2.a.co 3 52.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2028, [\chi])\):

\( T_{5}^{3} - 2T_{5}^{2} - T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{6} - 6T_{7}^{5} + 31T_{7}^{4} - 56T_{7}^{3} + 103T_{7}^{2} + 65T_{7} + 169 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T^{3} - 2 T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{6} - 6 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$11$ \( T^{6} - 5 T^{5} + \cdots + 1681 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 13 T^{5} + \cdots + 5041 \) Copy content Toggle raw display
$19$ \( T^{6} + T^{5} + \cdots + 6889 \) Copy content Toggle raw display
$23$ \( T^{6} + 49 T^{4} + \cdots + 8281 \) Copy content Toggle raw display
$29$ \( T^{6} - 4 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( (T^{3} + 2 T^{2} - 29 T + 13)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 2 T^{5} + \cdots + 169 \) Copy content Toggle raw display
$41$ \( T^{6} - 11 T^{5} + \cdots + 44521 \) Copy content Toggle raw display
$43$ \( T^{6} - 9 T^{5} + \cdots + 573049 \) Copy content Toggle raw display
$47$ \( (T^{3} + 19 T^{2} + \cdots - 601)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} - 5 T^{2} + \cdots + 419)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} - 10 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$61$ \( T^{6} + 7 T^{5} + \cdots + 2798929 \) Copy content Toggle raw display
$67$ \( T^{6} - 15 T^{5} + \cdots + 9409 \) Copy content Toggle raw display
$71$ \( T^{6} - 36 T^{5} + \cdots + 2679769 \) Copy content Toggle raw display
$73$ \( (T^{3} + 2 T^{2} + \cdots - 281)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - T^{2} - 156 T - 503)^{2} \) Copy content Toggle raw display
$83$ \( (T^{3} + 28 T^{2} + \cdots + 287)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} - 19 T^{5} + \cdots + 1515361 \) Copy content Toggle raw display
$97$ \( T^{6} - 13 T^{5} + \cdots + 169 \) Copy content Toggle raw display
show more
show less