Properties

Label 2028.2.i.e
Level $2028$
Weight $2$
Character orbit 2028.i
Analytic conductor $16.194$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.1936615299\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{3} -4 q^{5} + 2 \zeta_{6} q^{7} -\zeta_{6} q^{9} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{3} -4 q^{5} + 2 \zeta_{6} q^{7} -\zeta_{6} q^{9} + ( 4 - 4 \zeta_{6} ) q^{11} + ( -4 + 4 \zeta_{6} ) q^{15} -2 \zeta_{6} q^{17} + 2 \zeta_{6} q^{19} + 2 q^{21} + 11 q^{25} - q^{27} + ( 6 - 6 \zeta_{6} ) q^{29} -10 q^{31} -4 \zeta_{6} q^{33} -8 \zeta_{6} q^{35} + ( -10 + 10 \zeta_{6} ) q^{37} + ( -8 + 8 \zeta_{6} ) q^{41} -4 \zeta_{6} q^{43} + 4 \zeta_{6} q^{45} -4 q^{47} + ( 3 - 3 \zeta_{6} ) q^{49} -2 q^{51} -10 q^{53} + ( -16 + 16 \zeta_{6} ) q^{55} + 2 q^{57} + 8 \zeta_{6} q^{59} + 14 \zeta_{6} q^{61} + ( 2 - 2 \zeta_{6} ) q^{63} + ( -2 + 2 \zeta_{6} ) q^{67} -16 \zeta_{6} q^{71} -10 q^{73} + ( 11 - 11 \zeta_{6} ) q^{75} + 8 q^{77} -16 q^{79} + ( -1 + \zeta_{6} ) q^{81} + 8 \zeta_{6} q^{85} -6 \zeta_{6} q^{87} + ( 4 - 4 \zeta_{6} ) q^{89} + ( -10 + 10 \zeta_{6} ) q^{93} -8 \zeta_{6} q^{95} + 2 \zeta_{6} q^{97} -4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{3} - 8q^{5} + 2q^{7} - q^{9} + O(q^{10}) \) \( 2q + q^{3} - 8q^{5} + 2q^{7} - q^{9} + 4q^{11} - 4q^{15} - 2q^{17} + 2q^{19} + 4q^{21} + 22q^{25} - 2q^{27} + 6q^{29} - 20q^{31} - 4q^{33} - 8q^{35} - 10q^{37} - 8q^{41} - 4q^{43} + 4q^{45} - 8q^{47} + 3q^{49} - 4q^{51} - 20q^{53} - 16q^{55} + 4q^{57} + 8q^{59} + 14q^{61} + 2q^{63} - 2q^{67} - 16q^{71} - 20q^{73} + 11q^{75} + 16q^{77} - 32q^{79} - q^{81} + 8q^{85} - 6q^{87} + 4q^{89} - 10q^{93} - 8q^{95} + 2q^{97} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
529.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 −4.00000 0 1.00000 + 1.73205i 0 −0.500000 0.866025i 0
2005.1 0 0.500000 + 0.866025i 0 −4.00000 0 1.00000 1.73205i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2028.2.i.e 2
13.b even 2 1 2028.2.i.g 2
13.c even 3 1 156.2.a.a 1
13.c even 3 1 inner 2028.2.i.e 2
13.d odd 4 2 2028.2.q.h 4
13.e even 6 1 2028.2.a.c 1
13.e even 6 1 2028.2.i.g 2
13.f odd 12 2 2028.2.b.a 2
13.f odd 12 2 2028.2.q.h 4
39.h odd 6 1 6084.2.a.b 1
39.i odd 6 1 468.2.a.d 1
39.k even 12 2 6084.2.b.j 2
52.i odd 6 1 8112.2.a.bi 1
52.j odd 6 1 624.2.a.e 1
65.n even 6 1 3900.2.a.m 1
65.q odd 12 2 3900.2.h.b 2
91.n odd 6 1 7644.2.a.k 1
104.n odd 6 1 2496.2.a.o 1
104.r even 6 1 2496.2.a.bc 1
117.f even 3 1 4212.2.i.l 2
117.h even 3 1 4212.2.i.l 2
117.k odd 6 1 4212.2.i.b 2
117.u odd 6 1 4212.2.i.b 2
156.p even 6 1 1872.2.a.s 1
312.bh odd 6 1 7488.2.a.c 1
312.bn even 6 1 7488.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.2.a.a 1 13.c even 3 1
468.2.a.d 1 39.i odd 6 1
624.2.a.e 1 52.j odd 6 1
1872.2.a.s 1 156.p even 6 1
2028.2.a.c 1 13.e even 6 1
2028.2.b.a 2 13.f odd 12 2
2028.2.i.e 2 1.a even 1 1 trivial
2028.2.i.e 2 13.c even 3 1 inner
2028.2.i.g 2 13.b even 2 1
2028.2.i.g 2 13.e even 6 1
2028.2.q.h 4 13.d odd 4 2
2028.2.q.h 4 13.f odd 12 2
2496.2.a.o 1 104.n odd 6 1
2496.2.a.bc 1 104.r even 6 1
3900.2.a.m 1 65.n even 6 1
3900.2.h.b 2 65.q odd 12 2
4212.2.i.b 2 117.k odd 6 1
4212.2.i.b 2 117.u odd 6 1
4212.2.i.l 2 117.f even 3 1
4212.2.i.l 2 117.h even 3 1
6084.2.a.b 1 39.h odd 6 1
6084.2.b.j 2 39.k even 12 2
7488.2.a.c 1 312.bh odd 6 1
7488.2.a.d 1 312.bn even 6 1
7644.2.a.k 1 91.n odd 6 1
8112.2.a.bi 1 52.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2028, [\chi])\):

\( T_{5} + 4 \)
\( T_{7}^{2} - 2 T_{7} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 1 - T + T^{2} \)
$5$ \( ( 4 + T )^{2} \)
$7$ \( 4 - 2 T + T^{2} \)
$11$ \( 16 - 4 T + T^{2} \)
$13$ \( T^{2} \)
$17$ \( 4 + 2 T + T^{2} \)
$19$ \( 4 - 2 T + T^{2} \)
$23$ \( T^{2} \)
$29$ \( 36 - 6 T + T^{2} \)
$31$ \( ( 10 + T )^{2} \)
$37$ \( 100 + 10 T + T^{2} \)
$41$ \( 64 + 8 T + T^{2} \)
$43$ \( 16 + 4 T + T^{2} \)
$47$ \( ( 4 + T )^{2} \)
$53$ \( ( 10 + T )^{2} \)
$59$ \( 64 - 8 T + T^{2} \)
$61$ \( 196 - 14 T + T^{2} \)
$67$ \( 4 + 2 T + T^{2} \)
$71$ \( 256 + 16 T + T^{2} \)
$73$ \( ( 10 + T )^{2} \)
$79$ \( ( 16 + T )^{2} \)
$83$ \( T^{2} \)
$89$ \( 16 - 4 T + T^{2} \)
$97$ \( 4 - 2 T + T^{2} \)
show more
show less