Properties

Label 2028.2.a.m.1.3
Level $2028$
Weight $2$
Character 2028.1
Self dual yes
Analytic conductor $16.194$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2028,2,Mod(1,2028)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2028.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{43})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 23x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.41269\) of defining polynomial
Character \(\chi\) \(=\) 2028.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +2.41269 q^{5} +4.14474 q^{7} +1.00000 q^{9} +3.46410 q^{11} +2.41269 q^{15} +6.17891 q^{17} -3.46410 q^{19} +4.14474 q^{21} +2.00000 q^{23} +0.821092 q^{25} +1.00000 q^{27} -8.17891 q^{29} -7.60885 q^{31} +3.46410 q^{33} +10.0000 q^{35} +1.05141 q^{37} -5.87680 q^{41} +0.821092 q^{43} +2.41269 q^{45} -10.3923 q^{47} +10.1789 q^{49} +6.17891 q^{51} -10.1789 q^{53} +8.35782 q^{55} -3.46410 q^{57} -1.36129 q^{59} +5.00000 q^{61} +4.14474 q^{63} -4.14474 q^{67} +2.00000 q^{69} -3.46410 q^{71} -11.3828 q^{73} +0.821092 q^{75} +14.3578 q^{77} +13.1789 q^{79} +1.00000 q^{81} -11.7536 q^{83} +14.9078 q^{85} -8.17891 q^{87} +6.92820 q^{89} -7.60885 q^{93} -8.35782 q^{95} -2.04193 q^{97} +3.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{9} + 2 q^{17} + 8 q^{23} + 26 q^{25} + 4 q^{27} - 10 q^{29} + 40 q^{35} + 26 q^{43} + 18 q^{49} + 2 q^{51} - 18 q^{53} - 12 q^{55} + 20 q^{61} + 8 q^{69} + 26 q^{75} + 12 q^{77} + 30 q^{79}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 2.41269 1.07899 0.539495 0.841989i \(-0.318615\pi\)
0.539495 + 0.841989i \(0.318615\pi\)
\(6\) 0 0
\(7\) 4.14474 1.56657 0.783283 0.621665i \(-0.213544\pi\)
0.783283 + 0.621665i \(0.213544\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.46410 1.04447 0.522233 0.852803i \(-0.325099\pi\)
0.522233 + 0.852803i \(0.325099\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.41269 0.622955
\(16\) 0 0
\(17\) 6.17891 1.49861 0.749303 0.662228i \(-0.230389\pi\)
0.749303 + 0.662228i \(0.230389\pi\)
\(18\) 0 0
\(19\) −3.46410 −0.794719 −0.397360 0.917663i \(-0.630073\pi\)
−0.397360 + 0.917663i \(0.630073\pi\)
\(20\) 0 0
\(21\) 4.14474 0.904457
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 0 0
\(25\) 0.821092 0.164218
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −8.17891 −1.51879 −0.759393 0.650633i \(-0.774504\pi\)
−0.759393 + 0.650633i \(0.774504\pi\)
\(30\) 0 0
\(31\) −7.60885 −1.36659 −0.683295 0.730143i \(-0.739454\pi\)
−0.683295 + 0.730143i \(0.739454\pi\)
\(32\) 0 0
\(33\) 3.46410 0.603023
\(34\) 0 0
\(35\) 10.0000 1.69031
\(36\) 0 0
\(37\) 1.05141 0.172850 0.0864252 0.996258i \(-0.472456\pi\)
0.0864252 + 0.996258i \(0.472456\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.87680 −0.917801 −0.458901 0.888488i \(-0.651757\pi\)
−0.458901 + 0.888488i \(0.651757\pi\)
\(42\) 0 0
\(43\) 0.821092 0.125215 0.0626077 0.998038i \(-0.480058\pi\)
0.0626077 + 0.998038i \(0.480058\pi\)
\(44\) 0 0
\(45\) 2.41269 0.359663
\(46\) 0 0
\(47\) −10.3923 −1.51587 −0.757937 0.652328i \(-0.773792\pi\)
−0.757937 + 0.652328i \(0.773792\pi\)
\(48\) 0 0
\(49\) 10.1789 1.45413
\(50\) 0 0
\(51\) 6.17891 0.865220
\(52\) 0 0
\(53\) −10.1789 −1.39818 −0.699090 0.715033i \(-0.746411\pi\)
−0.699090 + 0.715033i \(0.746411\pi\)
\(54\) 0 0
\(55\) 8.35782 1.12697
\(56\) 0 0
\(57\) −3.46410 −0.458831
\(58\) 0 0
\(59\) −1.36129 −0.177224 −0.0886122 0.996066i \(-0.528243\pi\)
−0.0886122 + 0.996066i \(0.528243\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 0 0
\(63\) 4.14474 0.522189
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.14474 −0.506361 −0.253181 0.967419i \(-0.581477\pi\)
−0.253181 + 0.967419i \(0.581477\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) 0 0
\(73\) −11.3828 −1.33226 −0.666130 0.745836i \(-0.732050\pi\)
−0.666130 + 0.745836i \(0.732050\pi\)
\(74\) 0 0
\(75\) 0.821092 0.0948115
\(76\) 0 0
\(77\) 14.3578 1.63623
\(78\) 0 0
\(79\) 13.1789 1.48274 0.741372 0.671095i \(-0.234176\pi\)
0.741372 + 0.671095i \(0.234176\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −11.7536 −1.29012 −0.645062 0.764130i \(-0.723169\pi\)
−0.645062 + 0.764130i \(0.723169\pi\)
\(84\) 0 0
\(85\) 14.9078 1.61698
\(86\) 0 0
\(87\) −8.17891 −0.876871
\(88\) 0 0
\(89\) 6.92820 0.734388 0.367194 0.930144i \(-0.380318\pi\)
0.367194 + 0.930144i \(0.380318\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −7.60885 −0.789001
\(94\) 0 0
\(95\) −8.35782 −0.857494
\(96\) 0 0
\(97\) −2.04193 −0.207326 −0.103663 0.994612i \(-0.533056\pi\)
−0.103663 + 0.994612i \(0.533056\pi\)
\(98\) 0 0
\(99\) 3.46410 0.348155
\(100\) 0 0
\(101\) −12.1789 −1.21185 −0.605923 0.795523i \(-0.707196\pi\)
−0.605923 + 0.795523i \(0.707196\pi\)
\(102\) 0 0
\(103\) −3.17891 −0.313227 −0.156614 0.987660i \(-0.550058\pi\)
−0.156614 + 0.987660i \(0.550058\pi\)
\(104\) 0 0
\(105\) 10.0000 0.975900
\(106\) 0 0
\(107\) −10.0000 −0.966736 −0.483368 0.875417i \(-0.660587\pi\)
−0.483368 + 0.875417i \(0.660587\pi\)
\(108\) 0 0
\(109\) −7.60885 −0.728795 −0.364398 0.931243i \(-0.618725\pi\)
−0.364398 + 0.931243i \(0.618725\pi\)
\(110\) 0 0
\(111\) 1.05141 0.0997952
\(112\) 0 0
\(113\) 12.1789 1.14570 0.572848 0.819662i \(-0.305839\pi\)
0.572848 + 0.819662i \(0.305839\pi\)
\(114\) 0 0
\(115\) 4.82539 0.449970
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 25.6100 2.34766
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −5.87680 −0.529893
\(124\) 0 0
\(125\) −10.0824 −0.901800
\(126\) 0 0
\(127\) 2.82109 0.250331 0.125166 0.992136i \(-0.460054\pi\)
0.125166 + 0.992136i \(0.460054\pi\)
\(128\) 0 0
\(129\) 0.821092 0.0722931
\(130\) 0 0
\(131\) 6.35782 0.555485 0.277743 0.960656i \(-0.410414\pi\)
0.277743 + 0.960656i \(0.410414\pi\)
\(132\) 0 0
\(133\) −14.3578 −1.24498
\(134\) 0 0
\(135\) 2.41269 0.207652
\(136\) 0 0
\(137\) 12.8050 1.09400 0.547002 0.837131i \(-0.315769\pi\)
0.547002 + 0.837131i \(0.315769\pi\)
\(138\) 0 0
\(139\) 17.1789 1.45710 0.728548 0.684995i \(-0.240196\pi\)
0.728548 + 0.684995i \(0.240196\pi\)
\(140\) 0 0
\(141\) −10.3923 −0.875190
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −19.7332 −1.63875
\(146\) 0 0
\(147\) 10.1789 0.839542
\(148\) 0 0
\(149\) 5.87680 0.481446 0.240723 0.970594i \(-0.422615\pi\)
0.240723 + 0.970594i \(0.422615\pi\)
\(150\) 0 0
\(151\) 20.0431 1.63108 0.815541 0.578699i \(-0.196439\pi\)
0.815541 + 0.578699i \(0.196439\pi\)
\(152\) 0 0
\(153\) 6.17891 0.499535
\(154\) 0 0
\(155\) −18.3578 −1.47454
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) −10.1789 −0.807240
\(160\) 0 0
\(161\) 8.28949 0.653303
\(162\) 0 0
\(163\) 7.60885 0.595971 0.297985 0.954570i \(-0.403685\pi\)
0.297985 + 0.954570i \(0.403685\pi\)
\(164\) 0 0
\(165\) 8.35782 0.650655
\(166\) 0 0
\(167\) 6.92820 0.536120 0.268060 0.963402i \(-0.413617\pi\)
0.268060 + 0.963402i \(0.413617\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −3.46410 −0.264906
\(172\) 0 0
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) 3.40322 0.257259
\(176\) 0 0
\(177\) −1.36129 −0.102321
\(178\) 0 0
\(179\) 8.35782 0.624693 0.312346 0.949968i \(-0.398885\pi\)
0.312346 + 0.949968i \(0.398885\pi\)
\(180\) 0 0
\(181\) 20.5367 1.52648 0.763241 0.646113i \(-0.223607\pi\)
0.763241 + 0.646113i \(0.223607\pi\)
\(182\) 0 0
\(183\) 5.00000 0.369611
\(184\) 0 0
\(185\) 2.53673 0.186504
\(186\) 0 0
\(187\) 21.4044 1.56524
\(188\) 0 0
\(189\) 4.14474 0.301486
\(190\) 0 0
\(191\) −2.35782 −0.170606 −0.0853028 0.996355i \(-0.527186\pi\)
−0.0853028 + 0.996355i \(0.527186\pi\)
\(192\) 0 0
\(193\) −13.4856 −0.970718 −0.485359 0.874315i \(-0.661311\pi\)
−0.485359 + 0.874315i \(0.661311\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.65078 0.687589 0.343795 0.939045i \(-0.388288\pi\)
0.343795 + 0.939045i \(0.388288\pi\)
\(198\) 0 0
\(199\) 21.5367 1.52670 0.763349 0.645986i \(-0.223554\pi\)
0.763349 + 0.645986i \(0.223554\pi\)
\(200\) 0 0
\(201\) −4.14474 −0.292348
\(202\) 0 0
\(203\) −33.8995 −2.37928
\(204\) 0 0
\(205\) −14.1789 −0.990298
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −15.5367 −1.06959 −0.534796 0.844981i \(-0.679612\pi\)
−0.534796 + 0.844981i \(0.679612\pi\)
\(212\) 0 0
\(213\) −3.46410 −0.237356
\(214\) 0 0
\(215\) 1.98104 0.135106
\(216\) 0 0
\(217\) −31.5367 −2.14085
\(218\) 0 0
\(219\) −11.3828 −0.769180
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 15.2177 1.01905 0.509526 0.860455i \(-0.329821\pi\)
0.509526 + 0.860455i \(0.329821\pi\)
\(224\) 0 0
\(225\) 0.821092 0.0547394
\(226\) 0 0
\(227\) 9.03102 0.599410 0.299705 0.954032i \(-0.403112\pi\)
0.299705 + 0.954032i \(0.403112\pi\)
\(228\) 0 0
\(229\) 9.65078 0.637741 0.318871 0.947798i \(-0.396696\pi\)
0.318871 + 0.947798i \(0.396696\pi\)
\(230\) 0 0
\(231\) 14.3578 0.944675
\(232\) 0 0
\(233\) −22.7156 −1.48815 −0.744075 0.668096i \(-0.767110\pi\)
−0.744075 + 0.668096i \(0.767110\pi\)
\(234\) 0 0
\(235\) −25.0735 −1.63561
\(236\) 0 0
\(237\) 13.1789 0.856062
\(238\) 0 0
\(239\) 2.10282 0.136020 0.0680099 0.997685i \(-0.478335\pi\)
0.0680099 + 0.997685i \(0.478335\pi\)
\(240\) 0 0
\(241\) −5.87680 −0.378558 −0.189279 0.981923i \(-0.560615\pi\)
−0.189279 + 0.981923i \(0.560615\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 24.5586 1.56899
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −11.7536 −0.744854
\(250\) 0 0
\(251\) 20.7156 1.30756 0.653780 0.756685i \(-0.273182\pi\)
0.653780 + 0.756685i \(0.273182\pi\)
\(252\) 0 0
\(253\) 6.92820 0.435572
\(254\) 0 0
\(255\) 14.9078 0.933564
\(256\) 0 0
\(257\) −22.1789 −1.38348 −0.691741 0.722146i \(-0.743156\pi\)
−0.691741 + 0.722146i \(0.743156\pi\)
\(258\) 0 0
\(259\) 4.35782 0.270782
\(260\) 0 0
\(261\) −8.17891 −0.506262
\(262\) 0 0
\(263\) 32.3578 1.99527 0.997634 0.0687455i \(-0.0218997\pi\)
0.997634 + 0.0687455i \(0.0218997\pi\)
\(264\) 0 0
\(265\) −24.5586 −1.50862
\(266\) 0 0
\(267\) 6.92820 0.423999
\(268\) 0 0
\(269\) −12.3578 −0.753469 −0.376735 0.926321i \(-0.622953\pi\)
−0.376735 + 0.926321i \(0.622953\pi\)
\(270\) 0 0
\(271\) −14.5370 −0.883063 −0.441531 0.897246i \(-0.645565\pi\)
−0.441531 + 0.897246i \(0.645565\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.84434 0.171520
\(276\) 0 0
\(277\) 0.178908 0.0107496 0.00537478 0.999986i \(-0.498289\pi\)
0.00537478 + 0.999986i \(0.498289\pi\)
\(278\) 0 0
\(279\) −7.60885 −0.455530
\(280\) 0 0
\(281\) 11.4437 0.682675 0.341337 0.939941i \(-0.389120\pi\)
0.341337 + 0.939941i \(0.389120\pi\)
\(282\) 0 0
\(283\) 27.1789 1.61562 0.807809 0.589444i \(-0.200653\pi\)
0.807809 + 0.589444i \(0.200653\pi\)
\(284\) 0 0
\(285\) −8.35782 −0.495074
\(286\) 0 0
\(287\) −24.3578 −1.43780
\(288\) 0 0
\(289\) 21.1789 1.24582
\(290\) 0 0
\(291\) −2.04193 −0.119700
\(292\) 0 0
\(293\) −32.8481 −1.91901 −0.959503 0.281700i \(-0.909102\pi\)
−0.959503 + 0.281700i \(0.909102\pi\)
\(294\) 0 0
\(295\) −3.28437 −0.191223
\(296\) 0 0
\(297\) 3.46410 0.201008
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 3.40322 0.196158
\(302\) 0 0
\(303\) −12.1789 −0.699660
\(304\) 0 0
\(305\) 12.0635 0.690752
\(306\) 0 0
\(307\) 11.0729 0.631967 0.315983 0.948765i \(-0.397666\pi\)
0.315983 + 0.948765i \(0.397666\pi\)
\(308\) 0 0
\(309\) −3.17891 −0.180842
\(310\) 0 0
\(311\) −11.6422 −0.660168 −0.330084 0.943952i \(-0.607077\pi\)
−0.330084 + 0.943952i \(0.607077\pi\)
\(312\) 0 0
\(313\) 27.8945 1.57669 0.788346 0.615232i \(-0.210938\pi\)
0.788346 + 0.615232i \(0.210938\pi\)
\(314\) 0 0
\(315\) 10.0000 0.563436
\(316\) 0 0
\(317\) −3.77398 −0.211968 −0.105984 0.994368i \(-0.533799\pi\)
−0.105984 + 0.994368i \(0.533799\pi\)
\(318\) 0 0
\(319\) −28.3326 −1.58632
\(320\) 0 0
\(321\) −10.0000 −0.558146
\(322\) 0 0
\(323\) −21.4044 −1.19097
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −7.60885 −0.420770
\(328\) 0 0
\(329\) −43.0735 −2.37472
\(330\) 0 0
\(331\) −20.1040 −1.10501 −0.552507 0.833508i \(-0.686329\pi\)
−0.552507 + 0.833508i \(0.686329\pi\)
\(332\) 0 0
\(333\) 1.05141 0.0576168
\(334\) 0 0
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) 25.3578 1.38133 0.690664 0.723176i \(-0.257318\pi\)
0.690664 + 0.723176i \(0.257318\pi\)
\(338\) 0 0
\(339\) 12.1789 0.661468
\(340\) 0 0
\(341\) −26.3578 −1.42736
\(342\) 0 0
\(343\) 13.1758 0.711424
\(344\) 0 0
\(345\) 4.82539 0.259790
\(346\) 0 0
\(347\) 20.3578 1.09286 0.546432 0.837503i \(-0.315986\pi\)
0.546432 + 0.837503i \(0.315986\pi\)
\(348\) 0 0
\(349\) 10.3314 0.553028 0.276514 0.961010i \(-0.410821\pi\)
0.276514 + 0.961010i \(0.410821\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.9917 −1.01082 −0.505412 0.862878i \(-0.668660\pi\)
−0.505412 + 0.862878i \(0.668660\pi\)
\(354\) 0 0
\(355\) −8.35782 −0.443587
\(356\) 0 0
\(357\) 25.6100 1.35542
\(358\) 0 0
\(359\) −18.6818 −0.985987 −0.492994 0.870033i \(-0.664097\pi\)
−0.492994 + 0.870033i \(0.664097\pi\)
\(360\) 0 0
\(361\) −7.00000 −0.368421
\(362\) 0 0
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) −27.4633 −1.43749
\(366\) 0 0
\(367\) 12.8211 0.669256 0.334628 0.942350i \(-0.391389\pi\)
0.334628 + 0.942350i \(0.391389\pi\)
\(368\) 0 0
\(369\) −5.87680 −0.305934
\(370\) 0 0
\(371\) −42.1890 −2.19034
\(372\) 0 0
\(373\) −11.3578 −0.588085 −0.294043 0.955792i \(-0.595001\pi\)
−0.294043 + 0.955792i \(0.595001\pi\)
\(374\) 0 0
\(375\) −10.0824 −0.520654
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 6.24756 0.320916 0.160458 0.987043i \(-0.448703\pi\)
0.160458 + 0.987043i \(0.448703\pi\)
\(380\) 0 0
\(381\) 2.82109 0.144529
\(382\) 0 0
\(383\) −19.3016 −0.986263 −0.493132 0.869955i \(-0.664148\pi\)
−0.493132 + 0.869955i \(0.664148\pi\)
\(384\) 0 0
\(385\) 34.6410 1.76547
\(386\) 0 0
\(387\) 0.821092 0.0417384
\(388\) 0 0
\(389\) 6.53673 0.331425 0.165713 0.986174i \(-0.447008\pi\)
0.165713 + 0.986174i \(0.447008\pi\)
\(390\) 0 0
\(391\) 12.3578 0.624962
\(392\) 0 0
\(393\) 6.35782 0.320709
\(394\) 0 0
\(395\) 31.7967 1.59986
\(396\) 0 0
\(397\) −21.4653 −1.07731 −0.538655 0.842526i \(-0.681067\pi\)
−0.538655 + 0.842526i \(0.681067\pi\)
\(398\) 0 0
\(399\) −14.3578 −0.718790
\(400\) 0 0
\(401\) 10.7022 0.534442 0.267221 0.963635i \(-0.413895\pi\)
0.267221 + 0.963635i \(0.413895\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.41269 0.119888
\(406\) 0 0
\(407\) 3.64218 0.180536
\(408\) 0 0
\(409\) −0.990521 −0.0489781 −0.0244891 0.999700i \(-0.507796\pi\)
−0.0244891 + 0.999700i \(0.507796\pi\)
\(410\) 0 0
\(411\) 12.8050 0.631624
\(412\) 0 0
\(413\) −5.64218 −0.277634
\(414\) 0 0
\(415\) −28.3578 −1.39203
\(416\) 0 0
\(417\) 17.1789 0.841255
\(418\) 0 0
\(419\) −12.7156 −0.621199 −0.310600 0.950541i \(-0.600530\pi\)
−0.310600 + 0.950541i \(0.600530\pi\)
\(420\) 0 0
\(421\) 32.1674 1.56774 0.783872 0.620922i \(-0.213242\pi\)
0.783872 + 0.620922i \(0.213242\pi\)
\(422\) 0 0
\(423\) −10.3923 −0.505291
\(424\) 0 0
\(425\) 5.07345 0.246098
\(426\) 0 0
\(427\) 20.7237 1.00289
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.6818 0.899870 0.449935 0.893061i \(-0.351447\pi\)
0.449935 + 0.893061i \(0.351447\pi\)
\(432\) 0 0
\(433\) 2.64218 0.126975 0.0634876 0.997983i \(-0.479778\pi\)
0.0634876 + 0.997983i \(0.479778\pi\)
\(434\) 0 0
\(435\) −19.7332 −0.946135
\(436\) 0 0
\(437\) −6.92820 −0.331421
\(438\) 0 0
\(439\) −23.8945 −1.14042 −0.570212 0.821497i \(-0.693139\pi\)
−0.570212 + 0.821497i \(0.693139\pi\)
\(440\) 0 0
\(441\) 10.1789 0.484710
\(442\) 0 0
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) 0 0
\(445\) 16.7156 0.792397
\(446\) 0 0
\(447\) 5.87680 0.277963
\(448\) 0 0
\(449\) 11.0121 0.519691 0.259846 0.965650i \(-0.416328\pi\)
0.259846 + 0.965650i \(0.416328\pi\)
\(450\) 0 0
\(451\) −20.3578 −0.958612
\(452\) 0 0
\(453\) 20.0431 0.941706
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.29897 −0.341431 −0.170716 0.985320i \(-0.554608\pi\)
−0.170716 + 0.985320i \(0.554608\pi\)
\(458\) 0 0
\(459\) 6.17891 0.288407
\(460\) 0 0
\(461\) −24.5586 −1.14381 −0.571904 0.820321i \(-0.693795\pi\)
−0.571904 + 0.820321i \(0.693795\pi\)
\(462\) 0 0
\(463\) 1.42217 0.0660940 0.0330470 0.999454i \(-0.489479\pi\)
0.0330470 + 0.999454i \(0.489479\pi\)
\(464\) 0 0
\(465\) −18.3578 −0.851323
\(466\) 0 0
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) −17.1789 −0.793248
\(470\) 0 0
\(471\) 7.00000 0.322543
\(472\) 0 0
\(473\) 2.84434 0.130783
\(474\) 0 0
\(475\) −2.84434 −0.130507
\(476\) 0 0
\(477\) −10.1789 −0.466060
\(478\) 0 0
\(479\) −6.92820 −0.316558 −0.158279 0.987394i \(-0.550594\pi\)
−0.158279 + 0.987394i \(0.550594\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 8.28949 0.377185
\(484\) 0 0
\(485\) −4.92655 −0.223703
\(486\) 0 0
\(487\) 24.2487 1.09881 0.549407 0.835555i \(-0.314854\pi\)
0.549407 + 0.835555i \(0.314854\pi\)
\(488\) 0 0
\(489\) 7.60885 0.344084
\(490\) 0 0
\(491\) −18.7156 −0.844625 −0.422312 0.906450i \(-0.638781\pi\)
−0.422312 + 0.906450i \(0.638781\pi\)
\(492\) 0 0
\(493\) −50.5367 −2.27606
\(494\) 0 0
\(495\) 8.35782 0.375656
\(496\) 0 0
\(497\) −14.3578 −0.644036
\(498\) 0 0
\(499\) −1.36129 −0.0609395 −0.0304698 0.999536i \(-0.509700\pi\)
−0.0304698 + 0.999536i \(0.509700\pi\)
\(500\) 0 0
\(501\) 6.92820 0.309529
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) −29.3840 −1.30757
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.1663 0.627910 0.313955 0.949438i \(-0.398346\pi\)
0.313955 + 0.949438i \(0.398346\pi\)
\(510\) 0 0
\(511\) −47.1789 −2.08707
\(512\) 0 0
\(513\) −3.46410 −0.152944
\(514\) 0 0
\(515\) −7.66973 −0.337969
\(516\) 0 0
\(517\) −36.0000 −1.58328
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) −38.8945 −1.70400 −0.852000 0.523541i \(-0.824611\pi\)
−0.852000 + 0.523541i \(0.824611\pi\)
\(522\) 0 0
\(523\) 24.3578 1.06509 0.532546 0.846401i \(-0.321235\pi\)
0.532546 + 0.846401i \(0.321235\pi\)
\(524\) 0 0
\(525\) 3.40322 0.148528
\(526\) 0 0
\(527\) −47.0144 −2.04798
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) −1.36129 −0.0590748
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −24.1269 −1.04310
\(536\) 0 0
\(537\) 8.35782 0.360666
\(538\) 0 0
\(539\) 35.2608 1.51879
\(540\) 0 0
\(541\) −3.09334 −0.132993 −0.0664965 0.997787i \(-0.521182\pi\)
−0.0664965 + 0.997787i \(0.521182\pi\)
\(542\) 0 0
\(543\) 20.5367 0.881315
\(544\) 0 0
\(545\) −18.3578 −0.786362
\(546\) 0 0
\(547\) 13.5367 0.578789 0.289394 0.957210i \(-0.406546\pi\)
0.289394 + 0.957210i \(0.406546\pi\)
\(548\) 0 0
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) 28.3326 1.20701
\(552\) 0 0
\(553\) 54.6232 2.32282
\(554\) 0 0
\(555\) 2.53673 0.107678
\(556\) 0 0
\(557\) −32.1065 −1.36040 −0.680199 0.733027i \(-0.738107\pi\)
−0.680199 + 0.733027i \(0.738107\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 21.4044 0.903693
\(562\) 0 0
\(563\) 18.3578 0.773690 0.386845 0.922145i \(-0.373565\pi\)
0.386845 + 0.922145i \(0.373565\pi\)
\(564\) 0 0
\(565\) 29.3840 1.23619
\(566\) 0 0
\(567\) 4.14474 0.174063
\(568\) 0 0
\(569\) 30.7156 1.28767 0.643833 0.765166i \(-0.277343\pi\)
0.643833 + 0.765166i \(0.277343\pi\)
\(570\) 0 0
\(571\) 7.64218 0.319815 0.159908 0.987132i \(-0.448880\pi\)
0.159908 + 0.987132i \(0.448880\pi\)
\(572\) 0 0
\(573\) −2.35782 −0.0984992
\(574\) 0 0
\(575\) 1.64218 0.0684838
\(576\) 0 0
\(577\) −43.2404 −1.80012 −0.900060 0.435765i \(-0.856478\pi\)
−0.900060 + 0.435765i \(0.856478\pi\)
\(578\) 0 0
\(579\) −13.4856 −0.560444
\(580\) 0 0
\(581\) −48.7156 −2.02107
\(582\) 0 0
\(583\) −35.2608 −1.46035
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.1459 0.914059 0.457029 0.889452i \(-0.348913\pi\)
0.457029 + 0.889452i \(0.348913\pi\)
\(588\) 0 0
\(589\) 26.3578 1.08605
\(590\) 0 0
\(591\) 9.65078 0.396980
\(592\) 0 0
\(593\) 32.8481 1.34891 0.674454 0.738316i \(-0.264379\pi\)
0.674454 + 0.738316i \(0.264379\pi\)
\(594\) 0 0
\(595\) 61.7891 2.53311
\(596\) 0 0
\(597\) 21.5367 0.881439
\(598\) 0 0
\(599\) 9.64218 0.393969 0.196984 0.980407i \(-0.436885\pi\)
0.196984 + 0.980407i \(0.436885\pi\)
\(600\) 0 0
\(601\) −0.178908 −0.00729782 −0.00364891 0.999993i \(-0.501161\pi\)
−0.00364891 + 0.999993i \(0.501161\pi\)
\(602\) 0 0
\(603\) −4.14474 −0.168787
\(604\) 0 0
\(605\) 2.41269 0.0980900
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) 0 0
\(609\) −33.8995 −1.37368
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 2.47358 0.0999070 0.0499535 0.998752i \(-0.484093\pi\)
0.0499535 + 0.998752i \(0.484093\pi\)
\(614\) 0 0
\(615\) −14.1789 −0.571749
\(616\) 0 0
\(617\) 2.41269 0.0971314 0.0485657 0.998820i \(-0.484535\pi\)
0.0485657 + 0.998820i \(0.484535\pi\)
\(618\) 0 0
\(619\) −10.3314 −0.415255 −0.207627 0.978208i \(-0.566574\pi\)
−0.207627 + 0.978208i \(0.566574\pi\)
\(620\) 0 0
\(621\) 2.00000 0.0802572
\(622\) 0 0
\(623\) 28.7156 1.15047
\(624\) 0 0
\(625\) −28.4313 −1.13725
\(626\) 0 0
\(627\) −12.0000 −0.479234
\(628\) 0 0
\(629\) 6.49655 0.259034
\(630\) 0 0
\(631\) −6.24756 −0.248711 −0.124356 0.992238i \(-0.539686\pi\)
−0.124356 + 0.992238i \(0.539686\pi\)
\(632\) 0 0
\(633\) −15.5367 −0.617529
\(634\) 0 0
\(635\) 6.80643 0.270105
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −3.46410 −0.137038
\(640\) 0 0
\(641\) 0.536725 0.0211994 0.0105997 0.999944i \(-0.496626\pi\)
0.0105997 + 0.999944i \(0.496626\pi\)
\(642\) 0 0
\(643\) −15.8983 −0.626969 −0.313485 0.949593i \(-0.601496\pi\)
−0.313485 + 0.949593i \(0.601496\pi\)
\(644\) 0 0
\(645\) 1.98104 0.0780035
\(646\) 0 0
\(647\) −13.6422 −0.536330 −0.268165 0.963373i \(-0.586417\pi\)
−0.268165 + 0.963373i \(0.586417\pi\)
\(648\) 0 0
\(649\) −4.71563 −0.185105
\(650\) 0 0
\(651\) −31.5367 −1.23602
\(652\) 0 0
\(653\) 0.357817 0.0140024 0.00700122 0.999975i \(-0.497771\pi\)
0.00700122 + 0.999975i \(0.497771\pi\)
\(654\) 0 0
\(655\) 15.3395 0.599363
\(656\) 0 0
\(657\) −11.3828 −0.444086
\(658\) 0 0
\(659\) −8.71563 −0.339513 −0.169756 0.985486i \(-0.554298\pi\)
−0.169756 + 0.985486i \(0.554298\pi\)
\(660\) 0 0
\(661\) 12.8659 0.500425 0.250212 0.968191i \(-0.419500\pi\)
0.250212 + 0.968191i \(0.419500\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −34.6410 −1.34332
\(666\) 0 0
\(667\) −16.3578 −0.633377
\(668\) 0 0
\(669\) 15.2177 0.588350
\(670\) 0 0
\(671\) 17.3205 0.668651
\(672\) 0 0
\(673\) 5.35782 0.206529 0.103264 0.994654i \(-0.467071\pi\)
0.103264 + 0.994654i \(0.467071\pi\)
\(674\) 0 0
\(675\) 0.821092 0.0316038
\(676\) 0 0
\(677\) −3.64218 −0.139980 −0.0699902 0.997548i \(-0.522297\pi\)
−0.0699902 + 0.997548i \(0.522297\pi\)
\(678\) 0 0
\(679\) −8.46327 −0.324791
\(680\) 0 0
\(681\) 9.03102 0.346069
\(682\) 0 0
\(683\) 17.9403 0.686465 0.343233 0.939250i \(-0.388478\pi\)
0.343233 + 0.939250i \(0.388478\pi\)
\(684\) 0 0
\(685\) 30.8945 1.18042
\(686\) 0 0
\(687\) 9.65078 0.368200
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 8.22860 0.313031 0.156515 0.987676i \(-0.449974\pi\)
0.156515 + 0.987676i \(0.449974\pi\)
\(692\) 0 0
\(693\) 14.3578 0.545408
\(694\) 0 0
\(695\) 41.4474 1.57219
\(696\) 0 0
\(697\) −36.3122 −1.37542
\(698\) 0 0
\(699\) −22.7156 −0.859184
\(700\) 0 0
\(701\) −48.3578 −1.82645 −0.913225 0.407456i \(-0.866416\pi\)
−0.913225 + 0.407456i \(0.866416\pi\)
\(702\) 0 0
\(703\) −3.64218 −0.137368
\(704\) 0 0
\(705\) −25.0735 −0.944321
\(706\) 0 0
\(707\) −50.4785 −1.89844
\(708\) 0 0
\(709\) −29.4449 −1.10583 −0.552913 0.833239i \(-0.686484\pi\)
−0.552913 + 0.833239i \(0.686484\pi\)
\(710\) 0 0
\(711\) 13.1789 0.494248
\(712\) 0 0
\(713\) −15.2177 −0.569907
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.10282 0.0785311
\(718\) 0 0
\(719\) 30.3578 1.13216 0.566078 0.824352i \(-0.308460\pi\)
0.566078 + 0.824352i \(0.308460\pi\)
\(720\) 0 0
\(721\) −13.1758 −0.490691
\(722\) 0 0
\(723\) −5.87680 −0.218560
\(724\) 0 0
\(725\) −6.71563 −0.249412
\(726\) 0 0
\(727\) −17.5367 −0.650401 −0.325201 0.945645i \(-0.605432\pi\)
−0.325201 + 0.945645i \(0.605432\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 5.07345 0.187648
\(732\) 0 0
\(733\) 10.6413 0.393045 0.196523 0.980499i \(-0.437035\pi\)
0.196523 + 0.980499i \(0.437035\pi\)
\(734\) 0 0
\(735\) 24.5586 0.905857
\(736\) 0 0
\(737\) −14.3578 −0.528877
\(738\) 0 0
\(739\) −15.2177 −0.559792 −0.279896 0.960030i \(-0.590300\pi\)
−0.279896 + 0.960030i \(0.590300\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.36129 0.0499407 0.0249704 0.999688i \(-0.492051\pi\)
0.0249704 + 0.999688i \(0.492051\pi\)
\(744\) 0 0
\(745\) 14.1789 0.519475
\(746\) 0 0
\(747\) −11.7536 −0.430041
\(748\) 0 0
\(749\) −41.4474 −1.51446
\(750\) 0 0
\(751\) 19.6422 0.716753 0.358377 0.933577i \(-0.383330\pi\)
0.358377 + 0.933577i \(0.383330\pi\)
\(752\) 0 0
\(753\) 20.7156 0.754920
\(754\) 0 0
\(755\) 48.3578 1.75992
\(756\) 0 0
\(757\) −38.7156 −1.40714 −0.703572 0.710624i \(-0.748413\pi\)
−0.703572 + 0.710624i \(0.748413\pi\)
\(758\) 0 0
\(759\) 6.92820 0.251478
\(760\) 0 0
\(761\) 48.4974 1.75803 0.879015 0.476794i \(-0.158201\pi\)
0.879015 + 0.476794i \(0.158201\pi\)
\(762\) 0 0
\(763\) −31.5367 −1.14171
\(764\) 0 0
\(765\) 14.9078 0.538993
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 6.92820 0.249837 0.124919 0.992167i \(-0.460133\pi\)
0.124919 + 0.992167i \(0.460133\pi\)
\(770\) 0 0
\(771\) −22.1789 −0.798754
\(772\) 0 0
\(773\) −31.7967 −1.14365 −0.571823 0.820377i \(-0.693764\pi\)
−0.571823 + 0.820377i \(0.693764\pi\)
\(774\) 0 0
\(775\) −6.24756 −0.224419
\(776\) 0 0
\(777\) 4.35782 0.156336
\(778\) 0 0
\(779\) 20.3578 0.729394
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) −8.17891 −0.292290
\(784\) 0 0
\(785\) 16.8889 0.602789
\(786\) 0 0
\(787\) 33.9604 1.21056 0.605278 0.796014i \(-0.293062\pi\)
0.605278 + 0.796014i \(0.293062\pi\)
\(788\) 0 0
\(789\) 32.3578 1.15197
\(790\) 0 0
\(791\) 50.4785 1.79481
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −24.5586 −0.871003
\(796\) 0 0
\(797\) −17.0735 −0.604773 −0.302386 0.953185i \(-0.597783\pi\)
−0.302386 + 0.953185i \(0.597783\pi\)
\(798\) 0 0
\(799\) −64.2131 −2.27170
\(800\) 0 0
\(801\) 6.92820 0.244796
\(802\) 0 0
\(803\) −39.4313 −1.39150
\(804\) 0 0
\(805\) 20.0000 0.704907
\(806\) 0 0
\(807\) −12.3578 −0.435016
\(808\) 0 0
\(809\) 46.5367 1.63614 0.818072 0.575116i \(-0.195043\pi\)
0.818072 + 0.575116i \(0.195043\pi\)
\(810\) 0 0
\(811\) −0.680643 −0.0239006 −0.0119503 0.999929i \(-0.503804\pi\)
−0.0119503 + 0.999929i \(0.503804\pi\)
\(812\) 0 0
\(813\) −14.5370 −0.509837
\(814\) 0 0
\(815\) 18.3578 0.643046
\(816\) 0 0
\(817\) −2.84434 −0.0995110
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −31.7967 −1.10971 −0.554856 0.831947i \(-0.687227\pi\)
−0.554856 + 0.831947i \(0.687227\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 0 0
\(825\) 2.84434 0.0990274
\(826\) 0 0
\(827\) 35.8805 1.24769 0.623844 0.781549i \(-0.285570\pi\)
0.623844 + 0.781549i \(0.285570\pi\)
\(828\) 0 0
\(829\) −23.3578 −0.811251 −0.405625 0.914039i \(-0.632946\pi\)
−0.405625 + 0.914039i \(0.632946\pi\)
\(830\) 0 0
\(831\) 0.178908 0.00620626
\(832\) 0 0
\(833\) 62.8945 2.17917
\(834\) 0 0
\(835\) 16.7156 0.578468
\(836\) 0 0
\(837\) −7.60885 −0.263000
\(838\) 0 0
\(839\) 15.2177 0.525373 0.262687 0.964881i \(-0.415391\pi\)
0.262687 + 0.964881i \(0.415391\pi\)
\(840\) 0 0
\(841\) 37.8945 1.30671
\(842\) 0 0
\(843\) 11.4437 0.394142
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.14474 0.142415
\(848\) 0 0
\(849\) 27.1789 0.932778
\(850\) 0 0
\(851\) 2.10282 0.0720836
\(852\) 0 0
\(853\) −24.6195 −0.842955 −0.421477 0.906839i \(-0.638488\pi\)
−0.421477 + 0.906839i \(0.638488\pi\)
\(854\) 0 0
\(855\) −8.35782 −0.285831
\(856\) 0 0
\(857\) 20.1789 0.689298 0.344649 0.938732i \(-0.387998\pi\)
0.344649 + 0.938732i \(0.387998\pi\)
\(858\) 0 0
\(859\) 54.2524 1.85107 0.925533 0.378666i \(-0.123617\pi\)
0.925533 + 0.378666i \(0.123617\pi\)
\(860\) 0 0
\(861\) −24.3578 −0.830112
\(862\) 0 0
\(863\) −20.0431 −0.682274 −0.341137 0.940014i \(-0.610812\pi\)
−0.341137 + 0.940014i \(0.610812\pi\)
\(864\) 0 0
\(865\) −43.4285 −1.47661
\(866\) 0 0
\(867\) 21.1789 0.719273
\(868\) 0 0
\(869\) 45.6531 1.54867
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −2.04193 −0.0691088
\(874\) 0 0
\(875\) −41.7891 −1.41273
\(876\) 0 0
\(877\) 12.8050 0.432394 0.216197 0.976350i \(-0.430635\pi\)
0.216197 + 0.976350i \(0.430635\pi\)
\(878\) 0 0
\(879\) −32.8481 −1.10794
\(880\) 0 0
\(881\) 37.8211 1.27422 0.637112 0.770771i \(-0.280129\pi\)
0.637112 + 0.770771i \(0.280129\pi\)
\(882\) 0 0
\(883\) 17.8945 0.602199 0.301100 0.953593i \(-0.402646\pi\)
0.301100 + 0.953593i \(0.402646\pi\)
\(884\) 0 0
\(885\) −3.28437 −0.110403
\(886\) 0 0
\(887\) 21.6422 0.726673 0.363337 0.931658i \(-0.381637\pi\)
0.363337 + 0.931658i \(0.381637\pi\)
\(888\) 0 0
\(889\) 11.6927 0.392161
\(890\) 0 0
\(891\) 3.46410 0.116052
\(892\) 0 0
\(893\) 36.0000 1.20469
\(894\) 0 0
\(895\) 20.1649 0.674037
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 62.2321 2.07556
\(900\) 0 0
\(901\) −62.8945 −2.09532
\(902\) 0 0
\(903\) 3.40322 0.113252
\(904\) 0 0
\(905\) 49.5488 1.64706
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 0 0
\(909\) −12.1789 −0.403949
\(910\) 0 0
\(911\) 4.71563 0.156236 0.0781180 0.996944i \(-0.475109\pi\)
0.0781180 + 0.996944i \(0.475109\pi\)
\(912\) 0 0
\(913\) −40.7156 −1.34749
\(914\) 0 0
\(915\) 12.0635 0.398806
\(916\) 0 0
\(917\) 26.3515 0.870204
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) 11.0729 0.364866
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.863302 0.0283852
\(926\) 0 0
\(927\) −3.17891 −0.104409
\(928\) 0 0
\(929\) −31.4868 −1.03305 −0.516524 0.856273i \(-0.672774\pi\)
−0.516524 + 0.856273i \(0.672774\pi\)
\(930\) 0 0
\(931\) −35.2608 −1.15563
\(932\) 0 0
\(933\) −11.6422 −0.381148
\(934\) 0 0
\(935\) 51.6422 1.68888
\(936\) 0 0
\(937\) 48.8945 1.59732 0.798658 0.601786i \(-0.205544\pi\)
0.798658 + 0.601786i \(0.205544\pi\)
\(938\) 0 0
\(939\) 27.8945 0.910304
\(940\) 0 0
\(941\) −37.2418 −1.21405 −0.607024 0.794683i \(-0.707637\pi\)
−0.607024 + 0.794683i \(0.707637\pi\)
\(942\) 0 0
\(943\) −11.7536 −0.382750
\(944\) 0 0
\(945\) 10.0000 0.325300
\(946\) 0 0
\(947\) −30.4354 −0.989017 −0.494509 0.869173i \(-0.664652\pi\)
−0.494509 + 0.869173i \(0.664652\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −3.77398 −0.122380
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) −5.68869 −0.184082
\(956\) 0 0
\(957\) −28.3326 −0.915862
\(958\) 0 0
\(959\) 53.0735 1.71383
\(960\) 0 0
\(961\) 26.8945 0.867566
\(962\) 0 0
\(963\) −10.0000 −0.322245
\(964\) 0 0
\(965\) −32.5367 −1.04739
\(966\) 0 0
\(967\) −35.3825 −1.13783 −0.568913 0.822398i \(-0.692636\pi\)
−0.568913 + 0.822398i \(0.692636\pi\)
\(968\) 0 0
\(969\) −21.4044 −0.687607
\(970\) 0 0
\(971\) 4.71563 0.151332 0.0756659 0.997133i \(-0.475892\pi\)
0.0756659 + 0.997133i \(0.475892\pi\)
\(972\) 0 0
\(973\) 71.2022 2.28264
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −17.0106 −0.544218 −0.272109 0.962266i \(-0.587721\pi\)
−0.272109 + 0.962266i \(0.587721\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) −7.60885 −0.242932
\(982\) 0 0
\(983\) 24.8685 0.793181 0.396590 0.917996i \(-0.370193\pi\)
0.396590 + 0.917996i \(0.370193\pi\)
\(984\) 0 0
\(985\) 23.2844 0.741902
\(986\) 0 0
\(987\) −43.0735 −1.37104
\(988\) 0 0
\(989\) 1.64218 0.0522184
\(990\) 0 0
\(991\) −45.0735 −1.43181 −0.715903 0.698200i \(-0.753985\pi\)
−0.715903 + 0.698200i \(0.753985\pi\)
\(992\) 0 0
\(993\) −20.1040 −0.637980
\(994\) 0 0
\(995\) 51.9615 1.64729
\(996\) 0 0
\(997\) 35.3578 1.11979 0.559897 0.828562i \(-0.310841\pi\)
0.559897 + 0.828562i \(0.310841\pi\)
\(998\) 0 0
\(999\) 1.05141 0.0332651
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.2.a.m.1.3 4
3.2 odd 2 6084.2.a.bd.1.2 4
4.3 odd 2 8112.2.a.cr.1.3 4
13.2 odd 12 2028.2.q.f.1837.1 4
13.3 even 3 2028.2.i.n.529.3 8
13.4 even 6 2028.2.i.n.2005.2 8
13.5 odd 4 2028.2.b.e.337.2 4
13.6 odd 12 156.2.q.b.49.1 4
13.7 odd 12 2028.2.q.f.361.2 4
13.8 odd 4 2028.2.b.e.337.3 4
13.9 even 3 2028.2.i.n.2005.3 8
13.10 even 6 2028.2.i.n.529.2 8
13.11 odd 12 156.2.q.b.121.2 yes 4
13.12 even 2 inner 2028.2.a.m.1.2 4
39.5 even 4 6084.2.b.o.4393.3 4
39.8 even 4 6084.2.b.o.4393.2 4
39.11 even 12 468.2.t.d.433.1 4
39.32 even 12 468.2.t.d.361.2 4
39.38 odd 2 6084.2.a.bd.1.3 4
52.11 even 12 624.2.bv.f.433.2 4
52.19 even 12 624.2.bv.f.49.1 4
52.51 odd 2 8112.2.a.cr.1.2 4
65.19 odd 12 3900.2.cd.i.2701.2 4
65.24 odd 12 3900.2.cd.i.901.2 4
65.32 even 12 3900.2.bw.j.49.2 8
65.37 even 12 3900.2.bw.j.2149.3 8
65.58 even 12 3900.2.bw.j.49.3 8
65.63 even 12 3900.2.bw.j.2149.2 8
156.11 odd 12 1872.2.by.j.433.1 4
156.71 odd 12 1872.2.by.j.1297.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.q.b.49.1 4 13.6 odd 12
156.2.q.b.121.2 yes 4 13.11 odd 12
468.2.t.d.361.2 4 39.32 even 12
468.2.t.d.433.1 4 39.11 even 12
624.2.bv.f.49.1 4 52.19 even 12
624.2.bv.f.433.2 4 52.11 even 12
1872.2.by.j.433.1 4 156.11 odd 12
1872.2.by.j.1297.2 4 156.71 odd 12
2028.2.a.m.1.2 4 13.12 even 2 inner
2028.2.a.m.1.3 4 1.1 even 1 trivial
2028.2.b.e.337.2 4 13.5 odd 4
2028.2.b.e.337.3 4 13.8 odd 4
2028.2.i.n.529.2 8 13.10 even 6
2028.2.i.n.529.3 8 13.3 even 3
2028.2.i.n.2005.2 8 13.4 even 6
2028.2.i.n.2005.3 8 13.9 even 3
2028.2.q.f.361.2 4 13.7 odd 12
2028.2.q.f.1837.1 4 13.2 odd 12
3900.2.bw.j.49.2 8 65.32 even 12
3900.2.bw.j.49.3 8 65.58 even 12
3900.2.bw.j.2149.2 8 65.63 even 12
3900.2.bw.j.2149.3 8 65.37 even 12
3900.2.cd.i.901.2 4 65.24 odd 12
3900.2.cd.i.2701.2 4 65.19 odd 12
6084.2.a.bd.1.2 4 3.2 odd 2
6084.2.a.bd.1.3 4 39.38 odd 2
6084.2.b.o.4393.2 4 39.8 even 4
6084.2.b.o.4393.3 4 39.5 even 4
8112.2.a.cr.1.2 4 52.51 odd 2
8112.2.a.cr.1.3 4 4.3 odd 2