Properties

Label 2025.4.a.a
Level $2025$
Weight $4$
Character orbit 2025.a
Self dual yes
Analytic conductor $119.479$
Analytic rank $2$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2025,4,Mod(1,2025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2025.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.478867762\)
Analytic rank: \(2\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 405)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 5 q^{2} + 17 q^{4} - 9 q^{7} - 45 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 5 q^{2} + 17 q^{4} - 9 q^{7} - 45 q^{8} + 8 q^{11} - 43 q^{13} + 45 q^{14} + 89 q^{16} - 122 q^{17} - 59 q^{19} - 40 q^{22} - 213 q^{23} + 215 q^{26} - 153 q^{28} - 224 q^{29} - 36 q^{31} - 85 q^{32} + 610 q^{34} - 206 q^{37} + 295 q^{38} - 413 q^{41} + 392 q^{43} + 136 q^{44} + 1065 q^{46} - 311 q^{47} - 262 q^{49} - 731 q^{52} - 377 q^{53} + 405 q^{56} + 1120 q^{58} - 337 q^{59} + 40 q^{61} + 180 q^{62} - 287 q^{64} - 348 q^{67} - 2074 q^{68} - 62 q^{71} + 1214 q^{73} + 1030 q^{74} - 1003 q^{76} - 72 q^{77} - 294 q^{79} + 2065 q^{82} + 534 q^{83} - 1960 q^{86} - 360 q^{88} + 810 q^{89} + 387 q^{91} - 3621 q^{92} + 1555 q^{94} + 928 q^{97} + 1310 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−5.00000 0 17.0000 0 0 −9.00000 −45.0000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2025.4.a.a 1
3.b odd 2 1 2025.4.a.f 1
5.b even 2 1 405.4.a.b yes 1
15.d odd 2 1 405.4.a.a 1
45.h odd 6 2 405.4.e.m 2
45.j even 6 2 405.4.e.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
405.4.a.a 1 15.d odd 2 1
405.4.a.b yes 1 5.b even 2 1
405.4.e.a 2 45.j even 6 2
405.4.e.m 2 45.h odd 6 2
2025.4.a.a 1 1.a even 1 1 trivial
2025.4.a.f 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2025))\):

\( T_{2} + 5 \) Copy content Toggle raw display
\( T_{7} + 9 \) Copy content Toggle raw display
\( T_{11} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 5 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 9 \) Copy content Toggle raw display
$11$ \( T - 8 \) Copy content Toggle raw display
$13$ \( T + 43 \) Copy content Toggle raw display
$17$ \( T + 122 \) Copy content Toggle raw display
$19$ \( T + 59 \) Copy content Toggle raw display
$23$ \( T + 213 \) Copy content Toggle raw display
$29$ \( T + 224 \) Copy content Toggle raw display
$31$ \( T + 36 \) Copy content Toggle raw display
$37$ \( T + 206 \) Copy content Toggle raw display
$41$ \( T + 413 \) Copy content Toggle raw display
$43$ \( T - 392 \) Copy content Toggle raw display
$47$ \( T + 311 \) Copy content Toggle raw display
$53$ \( T + 377 \) Copy content Toggle raw display
$59$ \( T + 337 \) Copy content Toggle raw display
$61$ \( T - 40 \) Copy content Toggle raw display
$67$ \( T + 348 \) Copy content Toggle raw display
$71$ \( T + 62 \) Copy content Toggle raw display
$73$ \( T - 1214 \) Copy content Toggle raw display
$79$ \( T + 294 \) Copy content Toggle raw display
$83$ \( T - 534 \) Copy content Toggle raw display
$89$ \( T - 810 \) Copy content Toggle raw display
$97$ \( T - 928 \) Copy content Toggle raw display
show more
show less