Properties

Label 2025.2.b.n.649.2
Level $2025$
Weight $2$
Character 2025.649
Analytic conductor $16.170$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2025,2,Mod(649,2025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2025.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2025.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1697064093\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.34810603776.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 12x^{6} + 42x^{4} + 49x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.2
Root \(-1.63372i\) of defining polynomial
Character \(\chi\) \(=\) 2025.649
Dual form 2025.2.b.n.649.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.63372i q^{2} -0.669052 q^{4} -0.505348i q^{7} -2.17440i q^{8} +O(q^{10})\) \(q-1.63372i q^{2} -0.669052 q^{4} -0.505348i q^{7} -2.17440i q^{8} +3.10020 q^{11} -6.23927i q^{13} -0.825599 q^{14} -4.89047 q^{16} +6.10020i q^{17} +5.57022 q^{19} -5.06487i q^{22} -3.82560i q^{23} -10.1932 q^{26} +0.338104i q^{28} -2.45932 q^{29} +4.22858 q^{31} +3.64088i q^{32} +9.96604 q^{34} -6.72677i q^{37} -9.10020i q^{38} -5.44185 q^{41} +1.32741i q^{43} -2.07420 q^{44} -6.24997 q^{46} +3.70792i q^{47} +6.74462 q^{49} +4.17440i q^{52} +2.54205i q^{53} -1.09883 q^{56} +4.01785i q^{58} -2.88232 q^{59} -2.84345 q^{61} -6.90833i q^{62} -3.83276 q^{64} -2.40652i q^{67} -4.08135i q^{68} +5.54205 q^{71} -11.7988i q^{73} -10.9897 q^{74} -3.72677 q^{76} -1.56668i q^{77} -3.40298 q^{79} +8.89047i q^{82} -13.9012i q^{83} +2.16862 q^{86} -6.74108i q^{88} -3.38513 q^{89} -3.15301 q^{91} +2.55953i q^{92} +6.05772 q^{94} -11.0756i q^{97} -11.0188i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{4} - 2 q^{11} - 6 q^{14} + 8 q^{16} - 4 q^{19} - 20 q^{26} - 2 q^{29} - 8 q^{31} - 18 q^{34} - 10 q^{41} - 44 q^{44} + 6 q^{49} - 60 q^{56} - 34 q^{59} - 26 q^{61} - 38 q^{64} - 16 q^{71} - 80 q^{74} + 22 q^{76} + 14 q^{79} - 68 q^{86} + 18 q^{89} - 34 q^{91} - 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2025\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(1702\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.63372i − 1.15522i −0.816314 0.577608i \(-0.803986\pi\)
0.816314 0.577608i \(-0.196014\pi\)
\(3\) 0 0
\(4\) −0.669052 −0.334526
\(5\) 0 0
\(6\) 0 0
\(7\) − 0.505348i − 0.191004i −0.995429 0.0955019i \(-0.969554\pi\)
0.995429 0.0955019i \(-0.0304456\pi\)
\(8\) − 2.17440i − 0.768767i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.10020 0.934746 0.467373 0.884060i \(-0.345200\pi\)
0.467373 + 0.884060i \(0.345200\pi\)
\(12\) 0 0
\(13\) − 6.23927i − 1.73046i −0.501372 0.865232i \(-0.667171\pi\)
0.501372 0.865232i \(-0.332829\pi\)
\(14\) −0.825599 −0.220651
\(15\) 0 0
\(16\) −4.89047 −1.22262
\(17\) 6.10020i 1.47952i 0.672873 + 0.739758i \(0.265060\pi\)
−0.672873 + 0.739758i \(0.734940\pi\)
\(18\) 0 0
\(19\) 5.57022 1.27790 0.638948 0.769250i \(-0.279370\pi\)
0.638948 + 0.769250i \(0.279370\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 5.06487i − 1.07983i
\(23\) − 3.82560i − 0.797693i −0.917018 0.398846i \(-0.869411\pi\)
0.917018 0.398846i \(-0.130589\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −10.1932 −1.99906
\(27\) 0 0
\(28\) 0.338104i 0.0638957i
\(29\) −2.45932 −0.456685 −0.228342 0.973581i \(-0.573331\pi\)
−0.228342 + 0.973581i \(0.573331\pi\)
\(30\) 0 0
\(31\) 4.22858 0.759475 0.379738 0.925094i \(-0.376014\pi\)
0.379738 + 0.925094i \(0.376014\pi\)
\(32\) 3.64088i 0.643623i
\(33\) 0 0
\(34\) 9.96604 1.70916
\(35\) 0 0
\(36\) 0 0
\(37\) − 6.72677i − 1.10587i −0.833223 0.552937i \(-0.813507\pi\)
0.833223 0.552937i \(-0.186493\pi\)
\(38\) − 9.10020i − 1.47625i
\(39\) 0 0
\(40\) 0 0
\(41\) −5.44185 −0.849874 −0.424937 0.905223i \(-0.639704\pi\)
−0.424937 + 0.905223i \(0.639704\pi\)
\(42\) 0 0
\(43\) 1.32741i 0.202428i 0.994865 + 0.101214i \(0.0322726\pi\)
−0.994865 + 0.101214i \(0.967727\pi\)
\(44\) −2.07420 −0.312697
\(45\) 0 0
\(46\) −6.24997 −0.921508
\(47\) 3.70792i 0.540856i 0.962740 + 0.270428i \(0.0871652\pi\)
−0.962740 + 0.270428i \(0.912835\pi\)
\(48\) 0 0
\(49\) 6.74462 0.963518
\(50\) 0 0
\(51\) 0 0
\(52\) 4.17440i 0.578885i
\(53\) 2.54205i 0.349177i 0.984641 + 0.174589i \(0.0558596\pi\)
−0.984641 + 0.174589i \(0.944140\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.09883 −0.146837
\(57\) 0 0
\(58\) 4.01785i 0.527570i
\(59\) −2.88232 −0.375246 −0.187623 0.982241i \(-0.560078\pi\)
−0.187623 + 0.982241i \(0.560078\pi\)
\(60\) 0 0
\(61\) −2.84345 −0.364067 −0.182033 0.983292i \(-0.558268\pi\)
−0.182033 + 0.983292i \(0.558268\pi\)
\(62\) − 6.90833i − 0.877358i
\(63\) 0 0
\(64\) −3.83276 −0.479095
\(65\) 0 0
\(66\) 0 0
\(67\) − 2.40652i − 0.294003i −0.989136 0.147002i \(-0.953038\pi\)
0.989136 0.147002i \(-0.0469622\pi\)
\(68\) − 4.08135i − 0.494937i
\(69\) 0 0
\(70\) 0 0
\(71\) 5.54205 0.657720 0.328860 0.944379i \(-0.393336\pi\)
0.328860 + 0.944379i \(0.393336\pi\)
\(72\) 0 0
\(73\) − 11.7988i − 1.38095i −0.723359 0.690473i \(-0.757403\pi\)
0.723359 0.690473i \(-0.242597\pi\)
\(74\) −10.9897 −1.27752
\(75\) 0 0
\(76\) −3.72677 −0.427490
\(77\) − 1.56668i − 0.178540i
\(78\) 0 0
\(79\) −3.40298 −0.382865 −0.191433 0.981506i \(-0.561313\pi\)
−0.191433 + 0.981506i \(0.561313\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 8.89047i 0.981789i
\(83\) − 13.9012i − 1.52585i −0.646486 0.762926i \(-0.723762\pi\)
0.646486 0.762926i \(-0.276238\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.16862 0.233848
\(87\) 0 0
\(88\) − 6.74108i − 0.718602i
\(89\) −3.38513 −0.358823 −0.179411 0.983774i \(-0.557419\pi\)
−0.179411 + 0.983774i \(0.557419\pi\)
\(90\) 0 0
\(91\) −3.15301 −0.330525
\(92\) 2.55953i 0.266849i
\(93\) 0 0
\(94\) 6.05772 0.624806
\(95\) 0 0
\(96\) 0 0
\(97\) − 11.0756i − 1.12455i −0.826949 0.562277i \(-0.809926\pi\)
0.826949 0.562277i \(-0.190074\pi\)
\(98\) − 11.0188i − 1.11307i
\(99\) 0 0
\(100\) 0 0
\(101\) −17.3690 −1.72828 −0.864141 0.503249i \(-0.832138\pi\)
−0.864141 + 0.503249i \(0.832138\pi\)
\(102\) 0 0
\(103\) 0.832756i 0.0820539i 0.999158 + 0.0410269i \(0.0130629\pi\)
−0.999158 + 0.0410269i \(0.986937\pi\)
\(104\) −13.5667 −1.33032
\(105\) 0 0
\(106\) 4.15301 0.403376
\(107\) 11.0684i 1.07002i 0.844844 + 0.535012i \(0.179693\pi\)
−0.844844 + 0.535012i \(0.820307\pi\)
\(108\) 0 0
\(109\) 4.65836 0.446190 0.223095 0.974797i \(-0.428384\pi\)
0.223095 + 0.974797i \(0.428384\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.47139i 0.233525i
\(113\) − 11.9942i − 1.12832i −0.825665 0.564160i \(-0.809200\pi\)
0.825665 0.564160i \(-0.190800\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.64542 0.152773
\(117\) 0 0
\(118\) 4.70892i 0.433491i
\(119\) 3.08273 0.282593
\(120\) 0 0
\(121\) −1.38874 −0.126249
\(122\) 4.64542i 0.420576i
\(123\) 0 0
\(124\) −2.82914 −0.254064
\(125\) 0 0
\(126\) 0 0
\(127\) − 3.22858i − 0.286490i −0.989687 0.143245i \(-0.954246\pi\)
0.989687 0.143245i \(-0.0457537\pi\)
\(128\) 13.5434i 1.19708i
\(129\) 0 0
\(130\) 0 0
\(131\) −9.38513 −0.819982 −0.409991 0.912090i \(-0.634468\pi\)
−0.409991 + 0.912090i \(0.634468\pi\)
\(132\) 0 0
\(133\) − 2.81490i − 0.244083i
\(134\) −3.93159 −0.339637
\(135\) 0 0
\(136\) 13.2643 1.13740
\(137\) 2.30955i 0.197319i 0.995121 + 0.0986593i \(0.0314554\pi\)
−0.995121 + 0.0986593i \(0.968545\pi\)
\(138\) 0 0
\(139\) −10.8940 −0.924018 −0.462009 0.886875i \(-0.652871\pi\)
−0.462009 + 0.886875i \(0.652871\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 9.05418i − 0.759810i
\(143\) − 19.3430i − 1.61754i
\(144\) 0 0
\(145\) 0 0
\(146\) −19.2760 −1.59529
\(147\) 0 0
\(148\) 4.50056i 0.369944i
\(149\) 16.3430 1.33887 0.669436 0.742870i \(-0.266536\pi\)
0.669436 + 0.742870i \(0.266536\pi\)
\(150\) 0 0
\(151\) 22.7827 1.85403 0.927015 0.375025i \(-0.122366\pi\)
0.927015 + 0.375025i \(0.122366\pi\)
\(152\) − 12.1119i − 0.982404i
\(153\) 0 0
\(154\) −2.55953 −0.206252
\(155\) 0 0
\(156\) 0 0
\(157\) 12.4607i 0.994472i 0.867615 + 0.497236i \(0.165652\pi\)
−0.867615 + 0.497236i \(0.834348\pi\)
\(158\) 5.55953i 0.442292i
\(159\) 0 0
\(160\) 0 0
\(161\) −1.93326 −0.152362
\(162\) 0 0
\(163\) 7.57384i 0.593229i 0.954997 + 0.296614i \(0.0958576\pi\)
−0.954997 + 0.296614i \(0.904142\pi\)
\(164\) 3.64088 0.284305
\(165\) 0 0
\(166\) −22.7107 −1.76269
\(167\) − 2.97674i − 0.230347i −0.993345 0.115174i \(-0.963258\pi\)
0.993345 0.115174i \(-0.0367424\pi\)
\(168\) 0 0
\(169\) −25.9285 −1.99450
\(170\) 0 0
\(171\) 0 0
\(172\) − 0.888105i − 0.0677174i
\(173\) 15.8530i 1.20528i 0.798013 + 0.602640i \(0.205884\pi\)
−0.798013 + 0.602640i \(0.794116\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −15.1615 −1.14284
\(177\) 0 0
\(178\) 5.53036i 0.414518i
\(179\) −17.0841 −1.27693 −0.638463 0.769653i \(-0.720429\pi\)
−0.638463 + 0.769653i \(0.720429\pi\)
\(180\) 0 0
\(181\) 13.3690 0.993712 0.496856 0.867833i \(-0.334488\pi\)
0.496856 + 0.867833i \(0.334488\pi\)
\(182\) 5.15114i 0.381828i
\(183\) 0 0
\(184\) −8.31839 −0.613240
\(185\) 0 0
\(186\) 0 0
\(187\) 18.9119i 1.38297i
\(188\) − 2.48079i − 0.180930i
\(189\) 0 0
\(190\) 0 0
\(191\) 25.3372 1.83334 0.916669 0.399647i \(-0.130867\pi\)
0.916669 + 0.399647i \(0.130867\pi\)
\(192\) 0 0
\(193\) 9.55953i 0.688110i 0.938950 + 0.344055i \(0.111801\pi\)
−0.938950 + 0.344055i \(0.888199\pi\)
\(194\) −18.0944 −1.29910
\(195\) 0 0
\(196\) −4.51250 −0.322322
\(197\) − 2.06841i − 0.147368i −0.997282 0.0736842i \(-0.976524\pi\)
0.997282 0.0736842i \(-0.0234757\pi\)
\(198\) 0 0
\(199\) −13.0970 −0.928419 −0.464210 0.885725i \(-0.653662\pi\)
−0.464210 + 0.885725i \(0.653662\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 28.3762i 1.99654i
\(203\) 1.24281i 0.0872285i
\(204\) 0 0
\(205\) 0 0
\(206\) 1.36049 0.0947900
\(207\) 0 0
\(208\) 30.5130i 2.11570i
\(209\) 17.2688 1.19451
\(210\) 0 0
\(211\) 11.1119 0.764974 0.382487 0.923961i \(-0.375068\pi\)
0.382487 + 0.923961i \(0.375068\pi\)
\(212\) − 1.70076i − 0.116809i
\(213\) 0 0
\(214\) 18.0827 1.23611
\(215\) 0 0
\(216\) 0 0
\(217\) − 2.13690i − 0.145063i
\(218\) − 7.61046i − 0.515446i
\(219\) 0 0
\(220\) 0 0
\(221\) 38.0608 2.56025
\(222\) 0 0
\(223\) 3.89401i 0.260762i 0.991464 + 0.130381i \(0.0416201\pi\)
−0.991464 + 0.130381i \(0.958380\pi\)
\(224\) 1.83991 0.122934
\(225\) 0 0
\(226\) −19.5952 −1.30346
\(227\) 12.8081i 0.850105i 0.905169 + 0.425053i \(0.139744\pi\)
−0.905169 + 0.425053i \(0.860256\pi\)
\(228\) 0 0
\(229\) −6.65295 −0.439639 −0.219820 0.975541i \(-0.570547\pi\)
−0.219820 + 0.975541i \(0.570547\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.34755i 0.351084i
\(233\) 3.65836i 0.239667i 0.992794 + 0.119833i \(0.0382360\pi\)
−0.992794 + 0.119833i \(0.961764\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.92842 0.125530
\(237\) 0 0
\(238\) − 5.03632i − 0.326456i
\(239\) 15.6915 1.01500 0.507500 0.861652i \(-0.330570\pi\)
0.507500 + 0.861652i \(0.330570\pi\)
\(240\) 0 0
\(241\) 11.2250 0.723063 0.361532 0.932360i \(-0.382254\pi\)
0.361532 + 0.932360i \(0.382254\pi\)
\(242\) 2.26882i 0.145845i
\(243\) 0 0
\(244\) 1.90242 0.121790
\(245\) 0 0
\(246\) 0 0
\(247\) − 34.7541i − 2.21135i
\(248\) − 9.19462i − 0.583859i
\(249\) 0 0
\(250\) 0 0
\(251\) 6.94042 0.438075 0.219038 0.975716i \(-0.429708\pi\)
0.219038 + 0.975716i \(0.429708\pi\)
\(252\) 0 0
\(253\) − 11.8601i − 0.745640i
\(254\) −5.27460 −0.330958
\(255\) 0 0
\(256\) 14.4607 0.903794
\(257\) 18.3327i 1.14356i 0.820406 + 0.571781i \(0.193747\pi\)
−0.820406 + 0.571781i \(0.806253\pi\)
\(258\) 0 0
\(259\) −3.39936 −0.211226
\(260\) 0 0
\(261\) 0 0
\(262\) 15.3327i 0.947257i
\(263\) − 16.0766i − 0.991328i −0.868514 0.495664i \(-0.834925\pi\)
0.868514 0.495664i \(-0.165075\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.59877 −0.281969
\(267\) 0 0
\(268\) 1.61009i 0.0983517i
\(269\) 18.2004 1.10970 0.554849 0.831951i \(-0.312776\pi\)
0.554849 + 0.831951i \(0.312776\pi\)
\(270\) 0 0
\(271\) −2.48571 −0.150996 −0.0754979 0.997146i \(-0.524055\pi\)
−0.0754979 + 0.997146i \(0.524055\pi\)
\(272\) − 29.8329i − 1.80888i
\(273\) 0 0
\(274\) 3.77317 0.227946
\(275\) 0 0
\(276\) 0 0
\(277\) 7.66726i 0.460681i 0.973110 + 0.230341i \(0.0739840\pi\)
−0.973110 + 0.230341i \(0.926016\pi\)
\(278\) 17.7978i 1.06744i
\(279\) 0 0
\(280\) 0 0
\(281\) 0.273230 0.0162996 0.00814978 0.999967i \(-0.497406\pi\)
0.00814978 + 0.999967i \(0.497406\pi\)
\(282\) 0 0
\(283\) − 3.37089i − 0.200379i −0.994968 0.100189i \(-0.968055\pi\)
0.994968 0.100189i \(-0.0319448\pi\)
\(284\) −3.70792 −0.220025
\(285\) 0 0
\(286\) −31.6011 −1.86861
\(287\) 2.75003i 0.162329i
\(288\) 0 0
\(289\) −20.2125 −1.18897
\(290\) 0 0
\(291\) 0 0
\(292\) 7.89401i 0.461962i
\(293\) 5.64404i 0.329728i 0.986316 + 0.164864i \(0.0527186\pi\)
−0.986316 + 0.164864i \(0.947281\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −14.6267 −0.850159
\(297\) 0 0
\(298\) − 26.7000i − 1.54669i
\(299\) −23.8690 −1.38038
\(300\) 0 0
\(301\) 0.670803 0.0386645
\(302\) − 37.2206i − 2.14181i
\(303\) 0 0
\(304\) −27.2410 −1.56238
\(305\) 0 0
\(306\) 0 0
\(307\) 5.44105i 0.310537i 0.987872 + 0.155269i \(0.0496243\pi\)
−0.987872 + 0.155269i \(0.950376\pi\)
\(308\) 1.04819i 0.0597263i
\(309\) 0 0
\(310\) 0 0
\(311\) −19.0797 −1.08191 −0.540955 0.841052i \(-0.681937\pi\)
−0.540955 + 0.841052i \(0.681937\pi\)
\(312\) 0 0
\(313\) 9.14231i 0.516754i 0.966044 + 0.258377i \(0.0831877\pi\)
−0.966044 + 0.258377i \(0.916812\pi\)
\(314\) 20.3573 1.14883
\(315\) 0 0
\(316\) 2.27677 0.128078
\(317\) 14.2367i 0.799614i 0.916599 + 0.399807i \(0.130923\pi\)
−0.916599 + 0.399807i \(0.869077\pi\)
\(318\) 0 0
\(319\) −7.62440 −0.426884
\(320\) 0 0
\(321\) 0 0
\(322\) 3.15841i 0.176011i
\(323\) 33.9795i 1.89067i
\(324\) 0 0
\(325\) 0 0
\(326\) 12.3736 0.685308
\(327\) 0 0
\(328\) 11.8328i 0.653355i
\(329\) 1.87379 0.103305
\(330\) 0 0
\(331\) −12.2000 −0.670574 −0.335287 0.942116i \(-0.608833\pi\)
−0.335287 + 0.942116i \(0.608833\pi\)
\(332\) 9.30061i 0.510437i
\(333\) 0 0
\(334\) −4.86317 −0.266101
\(335\) 0 0
\(336\) 0 0
\(337\) 4.58986i 0.250026i 0.992155 + 0.125013i \(0.0398972\pi\)
−0.992155 + 0.125013i \(0.960103\pi\)
\(338\) 42.3601i 2.30408i
\(339\) 0 0
\(340\) 0 0
\(341\) 13.1094 0.709917
\(342\) 0 0
\(343\) − 6.94582i − 0.375039i
\(344\) 2.88632 0.155620
\(345\) 0 0
\(346\) 25.8994 1.39236
\(347\) 33.4603i 1.79624i 0.439748 + 0.898121i \(0.355068\pi\)
−0.439748 + 0.898121i \(0.644932\pi\)
\(348\) 0 0
\(349\) 28.0816 1.50317 0.751586 0.659636i \(-0.229289\pi\)
0.751586 + 0.659636i \(0.229289\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 11.2875i 0.601624i
\(353\) 1.84170i 0.0980239i 0.998798 + 0.0490119i \(0.0156072\pi\)
−0.998798 + 0.0490119i \(0.984393\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2.26483 0.120036
\(357\) 0 0
\(358\) 27.9107i 1.47513i
\(359\) 12.1119 0.639241 0.319621 0.947546i \(-0.396445\pi\)
0.319621 + 0.947546i \(0.396445\pi\)
\(360\) 0 0
\(361\) 12.0274 0.633020
\(362\) − 21.8413i − 1.14795i
\(363\) 0 0
\(364\) 2.10953 0.110569
\(365\) 0 0
\(366\) 0 0
\(367\) − 14.5738i − 0.760744i −0.924834 0.380372i \(-0.875796\pi\)
0.924834 0.380372i \(-0.124204\pi\)
\(368\) 18.7090i 0.975274i
\(369\) 0 0
\(370\) 0 0
\(371\) 1.28462 0.0666942
\(372\) 0 0
\(373\) 9.44646i 0.489119i 0.969634 + 0.244560i \(0.0786434\pi\)
−0.969634 + 0.244560i \(0.921357\pi\)
\(374\) 30.8968 1.59763
\(375\) 0 0
\(376\) 8.06251 0.415792
\(377\) 15.3444i 0.790276i
\(378\) 0 0
\(379\) 28.5541 1.46673 0.733363 0.679837i \(-0.237949\pi\)
0.733363 + 0.679837i \(0.237949\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 41.3940i − 2.11790i
\(383\) − 1.46541i − 0.0748788i −0.999299 0.0374394i \(-0.988080\pi\)
0.999299 0.0374394i \(-0.0119201\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 15.6176 0.794916
\(387\) 0 0
\(388\) 7.41014i 0.376193i
\(389\) 12.9101 0.654569 0.327284 0.944926i \(-0.393866\pi\)
0.327284 + 0.944926i \(0.393866\pi\)
\(390\) 0 0
\(391\) 23.3369 1.18020
\(392\) − 14.6655i − 0.740720i
\(393\) 0 0
\(394\) −3.37922 −0.170242
\(395\) 0 0
\(396\) 0 0
\(397\) − 0.868386i − 0.0435831i −0.999763 0.0217915i \(-0.993063\pi\)
0.999763 0.0217915i \(-0.00693701\pi\)
\(398\) 21.3968i 1.07253i
\(399\) 0 0
\(400\) 0 0
\(401\) 33.4125 1.66854 0.834270 0.551356i \(-0.185889\pi\)
0.834270 + 0.551356i \(0.185889\pi\)
\(402\) 0 0
\(403\) − 26.3833i − 1.31424i
\(404\) 11.6208 0.578156
\(405\) 0 0
\(406\) 2.03042 0.100768
\(407\) − 20.8544i − 1.03371i
\(408\) 0 0
\(409\) −5.05535 −0.249971 −0.124985 0.992159i \(-0.539888\pi\)
−0.124985 + 0.992159i \(0.539888\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 0.557157i − 0.0274492i
\(413\) 1.45658i 0.0716734i
\(414\) 0 0
\(415\) 0 0
\(416\) 22.7165 1.11377
\(417\) 0 0
\(418\) − 28.2125i − 1.37992i
\(419\) −10.9576 −0.535313 −0.267657 0.963514i \(-0.586249\pi\)
−0.267657 + 0.963514i \(0.586249\pi\)
\(420\) 0 0
\(421\) −10.6386 −0.518495 −0.259248 0.965811i \(-0.583475\pi\)
−0.259248 + 0.965811i \(0.583475\pi\)
\(422\) − 18.1538i − 0.883711i
\(423\) 0 0
\(424\) 5.52744 0.268436
\(425\) 0 0
\(426\) 0 0
\(427\) 1.43693i 0.0695381i
\(428\) − 7.40535i − 0.357951i
\(429\) 0 0
\(430\) 0 0
\(431\) −37.3529 −1.79923 −0.899613 0.436687i \(-0.856152\pi\)
−0.899613 + 0.436687i \(0.856152\pi\)
\(432\) 0 0
\(433\) 17.2125i 0.827179i 0.910464 + 0.413589i \(0.135725\pi\)
−0.910464 + 0.413589i \(0.864275\pi\)
\(434\) −3.49111 −0.167579
\(435\) 0 0
\(436\) −3.11668 −0.149262
\(437\) − 21.3094i − 1.01937i
\(438\) 0 0
\(439\) 31.7487 1.51528 0.757642 0.652670i \(-0.226351\pi\)
0.757642 + 0.652670i \(0.226351\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 62.1809i − 2.95764i
\(443\) 0.355958i 0.0169121i 0.999964 + 0.00845603i \(0.00269167\pi\)
−0.999964 + 0.00845603i \(0.997308\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6.36174 0.301237
\(447\) 0 0
\(448\) 1.93688i 0.0915088i
\(449\) 7.85632 0.370762 0.185381 0.982667i \(-0.440648\pi\)
0.185381 + 0.982667i \(0.440648\pi\)
\(450\) 0 0
\(451\) −16.8708 −0.794416
\(452\) 8.02476i 0.377453i
\(453\) 0 0
\(454\) 20.9249 0.982056
\(455\) 0 0
\(456\) 0 0
\(457\) 21.4910i 1.00531i 0.864488 + 0.502654i \(0.167643\pi\)
−0.864488 + 0.502654i \(0.832357\pi\)
\(458\) 10.8691i 0.507879i
\(459\) 0 0
\(460\) 0 0
\(461\) 40.9927 1.90922 0.954611 0.297856i \(-0.0962715\pi\)
0.954611 + 0.297856i \(0.0962715\pi\)
\(462\) 0 0
\(463\) − 42.1339i − 1.95813i −0.203555 0.979063i \(-0.565250\pi\)
0.203555 0.979063i \(-0.434750\pi\)
\(464\) 12.0273 0.558351
\(465\) 0 0
\(466\) 5.97674 0.276867
\(467\) − 22.5376i − 1.04292i −0.853276 0.521459i \(-0.825388\pi\)
0.853276 0.521459i \(-0.174612\pi\)
\(468\) 0 0
\(469\) −1.21613 −0.0561557
\(470\) 0 0
\(471\) 0 0
\(472\) 6.26732i 0.288477i
\(473\) 4.11523i 0.189219i
\(474\) 0 0
\(475\) 0 0
\(476\) −2.06251 −0.0945348
\(477\) 0 0
\(478\) − 25.6356i − 1.17255i
\(479\) 33.2880 1.52097 0.760483 0.649358i \(-0.224962\pi\)
0.760483 + 0.649358i \(0.224962\pi\)
\(480\) 0 0
\(481\) −41.9702 −1.91367
\(482\) − 18.3385i − 0.835295i
\(483\) 0 0
\(484\) 0.929141 0.0422337
\(485\) 0 0
\(486\) 0 0
\(487\) 23.7703i 1.07713i 0.842583 + 0.538566i \(0.181034\pi\)
−0.842583 + 0.538566i \(0.818966\pi\)
\(488\) 6.18281i 0.279882i
\(489\) 0 0
\(490\) 0 0
\(491\) −4.60563 −0.207849 −0.103925 0.994585i \(-0.533140\pi\)
−0.103925 + 0.994585i \(0.533140\pi\)
\(492\) 0 0
\(493\) − 15.0024i − 0.675673i
\(494\) −56.7787 −2.55459
\(495\) 0 0
\(496\) −20.6797 −0.928548
\(497\) − 2.80067i − 0.125627i
\(498\) 0 0
\(499\) 18.8976 0.845971 0.422985 0.906137i \(-0.360982\pi\)
0.422985 + 0.906137i \(0.360982\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 11.3387i − 0.506072i
\(503\) − 35.7581i − 1.59438i −0.603731 0.797188i \(-0.706320\pi\)
0.603731 0.797188i \(-0.293680\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −19.3762 −0.861376
\(507\) 0 0
\(508\) 2.16009i 0.0958384i
\(509\) −24.4067 −1.08181 −0.540904 0.841084i \(-0.681918\pi\)
−0.540904 + 0.841084i \(0.681918\pi\)
\(510\) 0 0
\(511\) −5.96250 −0.263766
\(512\) 3.46207i 0.153003i
\(513\) 0 0
\(514\) 29.9506 1.32106
\(515\) 0 0
\(516\) 0 0
\(517\) 11.4953i 0.505563i
\(518\) 5.55362i 0.244012i
\(519\) 0 0
\(520\) 0 0
\(521\) 33.3968 1.46314 0.731571 0.681766i \(-0.238788\pi\)
0.731571 + 0.681766i \(0.238788\pi\)
\(522\) 0 0
\(523\) 37.3654i 1.63388i 0.576726 + 0.816938i \(0.304330\pi\)
−0.576726 + 0.816938i \(0.695670\pi\)
\(524\) 6.27914 0.274305
\(525\) 0 0
\(526\) −26.2648 −1.14520
\(527\) 25.7952i 1.12366i
\(528\) 0 0
\(529\) 8.36479 0.363686
\(530\) 0 0
\(531\) 0 0
\(532\) 1.88332i 0.0816521i
\(533\) 33.9532i 1.47068i
\(534\) 0 0
\(535\) 0 0
\(536\) −5.23274 −0.226020
\(537\) 0 0
\(538\) − 29.7344i − 1.28194i
\(539\) 20.9097 0.900645
\(540\) 0 0
\(541\) 28.2560 1.21482 0.607409 0.794389i \(-0.292209\pi\)
0.607409 + 0.794389i \(0.292209\pi\)
\(542\) 4.06096i 0.174433i
\(543\) 0 0
\(544\) −22.2101 −0.952250
\(545\) 0 0
\(546\) 0 0
\(547\) − 38.5452i − 1.64807i −0.566537 0.824036i \(-0.691717\pi\)
0.566537 0.824036i \(-0.308283\pi\)
\(548\) − 1.54521i − 0.0660082i
\(549\) 0 0
\(550\) 0 0
\(551\) −13.6990 −0.583596
\(552\) 0 0
\(553\) 1.71969i 0.0731286i
\(554\) 12.5262 0.532187
\(555\) 0 0
\(556\) 7.28866 0.309108
\(557\) − 27.4125i − 1.16151i −0.814080 0.580753i \(-0.802758\pi\)
0.814080 0.580753i \(-0.197242\pi\)
\(558\) 0 0
\(559\) 8.28206 0.350294
\(560\) 0 0
\(561\) 0 0
\(562\) − 0.446383i − 0.0188295i
\(563\) 27.6392i 1.16485i 0.812883 + 0.582427i \(0.197897\pi\)
−0.812883 + 0.582427i \(0.802103\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −5.50710 −0.231481
\(567\) 0 0
\(568\) − 12.0506i − 0.505634i
\(569\) 14.7161 0.616933 0.308467 0.951235i \(-0.400184\pi\)
0.308467 + 0.951235i \(0.400184\pi\)
\(570\) 0 0
\(571\) −28.3006 −1.18434 −0.592172 0.805812i \(-0.701729\pi\)
−0.592172 + 0.805812i \(0.701729\pi\)
\(572\) 12.9415i 0.541111i
\(573\) 0 0
\(574\) 4.49279 0.187525
\(575\) 0 0
\(576\) 0 0
\(577\) − 40.7976i − 1.69843i −0.528049 0.849214i \(-0.677076\pi\)
0.528049 0.849214i \(-0.322924\pi\)
\(578\) 33.0216i 1.37352i
\(579\) 0 0
\(580\) 0 0
\(581\) −7.02493 −0.291443
\(582\) 0 0
\(583\) 7.88087i 0.326392i
\(584\) −25.6553 −1.06162
\(585\) 0 0
\(586\) 9.22080 0.380908
\(587\) 2.78033i 0.114756i 0.998353 + 0.0573782i \(0.0182741\pi\)
−0.998353 + 0.0573782i \(0.981726\pi\)
\(588\) 0 0
\(589\) 23.5541 0.970531
\(590\) 0 0
\(591\) 0 0
\(592\) 32.8971i 1.35206i
\(593\) 14.8084i 0.608109i 0.952655 + 0.304055i \(0.0983405\pi\)
−0.952655 + 0.304055i \(0.901659\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −10.9343 −0.447888
\(597\) 0 0
\(598\) 38.9953i 1.59464i
\(599\) 16.3430 0.667758 0.333879 0.942616i \(-0.391642\pi\)
0.333879 + 0.942616i \(0.391642\pi\)
\(600\) 0 0
\(601\) −6.62371 −0.270187 −0.135093 0.990833i \(-0.543133\pi\)
−0.135093 + 0.990833i \(0.543133\pi\)
\(602\) − 1.09591i − 0.0446658i
\(603\) 0 0
\(604\) −15.2428 −0.620221
\(605\) 0 0
\(606\) 0 0
\(607\) 30.3094i 1.23022i 0.788442 + 0.615110i \(0.210888\pi\)
−0.788442 + 0.615110i \(0.789112\pi\)
\(608\) 20.2805i 0.822483i
\(609\) 0 0
\(610\) 0 0
\(611\) 23.1347 0.935931
\(612\) 0 0
\(613\) − 14.7803i − 0.596969i −0.954415 0.298484i \(-0.903519\pi\)
0.954415 0.298484i \(-0.0964811\pi\)
\(614\) 8.88918 0.358738
\(615\) 0 0
\(616\) −3.40660 −0.137256
\(617\) − 33.8512i − 1.36280i −0.731912 0.681399i \(-0.761372\pi\)
0.731912 0.681399i \(-0.238628\pi\)
\(618\) 0 0
\(619\) −11.6887 −0.469807 −0.234903 0.972019i \(-0.575477\pi\)
−0.234903 + 0.972019i \(0.575477\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 31.1709i 1.24984i
\(623\) 1.71067i 0.0685364i
\(624\) 0 0
\(625\) 0 0
\(626\) 14.9360 0.596963
\(627\) 0 0
\(628\) − 8.33686i − 0.332677i
\(629\) 41.0347 1.63616
\(630\) 0 0
\(631\) −38.1357 −1.51816 −0.759078 0.650999i \(-0.774350\pi\)
−0.759078 + 0.650999i \(0.774350\pi\)
\(632\) 7.39944i 0.294334i
\(633\) 0 0
\(634\) 23.2589 0.923728
\(635\) 0 0
\(636\) 0 0
\(637\) − 42.0816i − 1.66733i
\(638\) 12.4562i 0.493144i
\(639\) 0 0
\(640\) 0 0
\(641\) −34.7654 −1.37315 −0.686576 0.727058i \(-0.740887\pi\)
−0.686576 + 0.727058i \(0.740887\pi\)
\(642\) 0 0
\(643\) − 2.68515i − 0.105892i −0.998597 0.0529461i \(-0.983139\pi\)
0.998597 0.0529461i \(-0.0168611\pi\)
\(644\) 1.29345 0.0509692
\(645\) 0 0
\(646\) 55.5131 2.18413
\(647\) 40.5103i 1.59262i 0.604887 + 0.796311i \(0.293218\pi\)
−0.604887 + 0.796311i \(0.706782\pi\)
\(648\) 0 0
\(649\) −8.93578 −0.350760
\(650\) 0 0
\(651\) 0 0
\(652\) − 5.06729i − 0.198451i
\(653\) − 13.3354i − 0.521856i −0.965358 0.260928i \(-0.915971\pi\)
0.965358 0.260928i \(-0.0840286\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 26.6132 1.03907
\(657\) 0 0
\(658\) − 3.06126i − 0.119340i
\(659\) −31.1543 −1.21360 −0.606800 0.794855i \(-0.707547\pi\)
−0.606800 + 0.794855i \(0.707547\pi\)
\(660\) 0 0
\(661\) 6.31788 0.245737 0.122869 0.992423i \(-0.460791\pi\)
0.122869 + 0.992423i \(0.460791\pi\)
\(662\) 19.9315i 0.774659i
\(663\) 0 0
\(664\) −30.2267 −1.17302
\(665\) 0 0
\(666\) 0 0
\(667\) 9.40838i 0.364294i
\(668\) 1.99160i 0.0770571i
\(669\) 0 0
\(670\) 0 0
\(671\) −8.81528 −0.340310
\(672\) 0 0
\(673\) 6.59220i 0.254110i 0.991896 + 0.127055i \(0.0405525\pi\)
−0.991896 + 0.127055i \(0.959447\pi\)
\(674\) 7.49857 0.288834
\(675\) 0 0
\(676\) 17.3476 0.667214
\(677\) 34.8947i 1.34111i 0.741859 + 0.670556i \(0.233944\pi\)
−0.741859 + 0.670556i \(0.766056\pi\)
\(678\) 0 0
\(679\) −5.59702 −0.214794
\(680\) 0 0
\(681\) 0 0
\(682\) − 21.4172i − 0.820108i
\(683\) − 26.0958i − 0.998528i −0.866450 0.499264i \(-0.833604\pi\)
0.866450 0.499264i \(-0.166396\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −11.3476 −0.433252
\(687\) 0 0
\(688\) − 6.49165i − 0.247492i
\(689\) 15.8606 0.604239
\(690\) 0 0
\(691\) −29.3058 −1.11485 −0.557423 0.830229i \(-0.688210\pi\)
−0.557423 + 0.830229i \(0.688210\pi\)
\(692\) − 10.6065i − 0.403197i
\(693\) 0 0
\(694\) 54.6648 2.07505
\(695\) 0 0
\(696\) 0 0
\(697\) − 33.1964i − 1.25740i
\(698\) − 45.8775i − 1.73649i
\(699\) 0 0
\(700\) 0 0
\(701\) 15.3891 0.581239 0.290620 0.956839i \(-0.406139\pi\)
0.290620 + 0.956839i \(0.406139\pi\)
\(702\) 0 0
\(703\) − 37.4696i − 1.41319i
\(704\) −11.8823 −0.447832
\(705\) 0 0
\(706\) 3.00883 0.113239
\(707\) 8.77741i 0.330108i
\(708\) 0 0
\(709\) 7.73991 0.290678 0.145339 0.989382i \(-0.453573\pi\)
0.145339 + 0.989382i \(0.453573\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 7.36062i 0.275851i
\(713\) − 16.1768i − 0.605828i
\(714\) 0 0
\(715\) 0 0
\(716\) 11.4302 0.427165
\(717\) 0 0
\(718\) − 19.7875i − 0.738462i
\(719\) 15.1316 0.564313 0.282156 0.959368i \(-0.408950\pi\)
0.282156 + 0.959368i \(0.408950\pi\)
\(720\) 0 0
\(721\) 0.420832 0.0156726
\(722\) − 19.6494i − 0.731275i
\(723\) 0 0
\(724\) −8.94457 −0.332422
\(725\) 0 0
\(726\) 0 0
\(727\) 0.161876i 0.00600366i 0.999995 + 0.00300183i \(0.000955513\pi\)
−0.999995 + 0.00300183i \(0.999044\pi\)
\(728\) 6.85590i 0.254097i
\(729\) 0 0
\(730\) 0 0
\(731\) −8.09746 −0.299495
\(732\) 0 0
\(733\) 50.0332i 1.84802i 0.382371 + 0.924009i \(0.375107\pi\)
−0.382371 + 0.924009i \(0.624893\pi\)
\(734\) −23.8095 −0.878825
\(735\) 0 0
\(736\) 13.9285 0.513413
\(737\) − 7.46070i − 0.274818i
\(738\) 0 0
\(739\) −30.5505 −1.12382 −0.561909 0.827199i \(-0.689933\pi\)
−0.561909 + 0.827199i \(0.689933\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 2.09872i − 0.0770463i
\(743\) − 5.96684i − 0.218902i −0.993992 0.109451i \(-0.965091\pi\)
0.993992 0.109451i \(-0.0349093\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 15.4329 0.565039
\(747\) 0 0
\(748\) − 12.6530i − 0.462640i
\(749\) 5.59340 0.204379
\(750\) 0 0
\(751\) 34.3976 1.25519 0.627593 0.778542i \(-0.284040\pi\)
0.627593 + 0.778542i \(0.284040\pi\)
\(752\) − 18.1335i − 0.661260i
\(753\) 0 0
\(754\) 25.0685 0.912941
\(755\) 0 0
\(756\) 0 0
\(757\) 40.6873i 1.47881i 0.673263 + 0.739403i \(0.264892\pi\)
−0.673263 + 0.739403i \(0.735108\pi\)
\(758\) − 46.6495i − 1.69439i
\(759\) 0 0
\(760\) 0 0
\(761\) 28.2596 1.02441 0.512204 0.858864i \(-0.328829\pi\)
0.512204 + 0.858864i \(0.328829\pi\)
\(762\) 0 0
\(763\) − 2.35409i − 0.0852239i
\(764\) −16.9519 −0.613299
\(765\) 0 0
\(766\) −2.39407 −0.0865013
\(767\) 17.9836i 0.649350i
\(768\) 0 0
\(769\) 46.9036 1.69139 0.845694 0.533668i \(-0.179187\pi\)
0.845694 + 0.533668i \(0.179187\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 6.39582i − 0.230191i
\(773\) − 9.19641i − 0.330772i −0.986229 0.165386i \(-0.947113\pi\)
0.986229 0.165386i \(-0.0528870\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −24.0827 −0.864520
\(777\) 0 0
\(778\) − 21.0916i − 0.756169i
\(779\) −30.3123 −1.08605
\(780\) 0 0
\(781\) 17.1815 0.614802
\(782\) − 38.1261i − 1.36339i
\(783\) 0 0
\(784\) −32.9844 −1.17801
\(785\) 0 0
\(786\) 0 0
\(787\) 5.74637i 0.204836i 0.994741 + 0.102418i \(0.0326579\pi\)
−0.994741 + 0.102418i \(0.967342\pi\)
\(788\) 1.38388i 0.0492986i
\(789\) 0 0
\(790\) 0 0
\(791\) −6.06126 −0.215514
\(792\) 0 0
\(793\) 17.7411i 0.630004i
\(794\) −1.41870 −0.0503479
\(795\) 0 0
\(796\) 8.76255 0.310580
\(797\) − 7.07450i − 0.250592i −0.992119 0.125296i \(-0.960012\pi\)
0.992119 0.125296i \(-0.0399880\pi\)
\(798\) 0 0
\(799\) −22.6191 −0.800205
\(800\) 0 0
\(801\) 0 0
\(802\) − 54.5868i − 1.92753i
\(803\) − 36.5787i − 1.29083i
\(804\) 0 0
\(805\) 0 0
\(806\) −43.1029 −1.51824
\(807\) 0 0
\(808\) 37.7672i 1.32865i
\(809\) −38.1075 −1.33979 −0.669894 0.742457i \(-0.733660\pi\)
−0.669894 + 0.742457i \(0.733660\pi\)
\(810\) 0 0
\(811\) −1.44105 −0.0506022 −0.0253011 0.999680i \(-0.508054\pi\)
−0.0253011 + 0.999680i \(0.508054\pi\)
\(812\) − 0.831508i − 0.0291802i
\(813\) 0 0
\(814\) −34.0702 −1.19416
\(815\) 0 0
\(816\) 0 0
\(817\) 7.39396i 0.258682i
\(818\) 8.25904i 0.288771i
\(819\) 0 0
\(820\) 0 0
\(821\) 22.5143 0.785753 0.392876 0.919591i \(-0.371480\pi\)
0.392876 + 0.919591i \(0.371480\pi\)
\(822\) 0 0
\(823\) 41.4589i 1.44517i 0.691284 + 0.722583i \(0.257045\pi\)
−0.691284 + 0.722583i \(0.742955\pi\)
\(824\) 1.81075 0.0630803
\(825\) 0 0
\(826\) 2.37964 0.0827984
\(827\) 27.8133i 0.967164i 0.875299 + 0.483582i \(0.160664\pi\)
−0.875299 + 0.483582i \(0.839336\pi\)
\(828\) 0 0
\(829\) −20.7232 −0.719745 −0.359872 0.933002i \(-0.617180\pi\)
−0.359872 + 0.933002i \(0.617180\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 23.9136i 0.829056i
\(833\) 41.1436i 1.42554i
\(834\) 0 0
\(835\) 0 0
\(836\) −11.5537 −0.399595
\(837\) 0 0
\(838\) 17.9017i 0.618403i
\(839\) −18.1451 −0.626437 −0.313218 0.949681i \(-0.601407\pi\)
−0.313218 + 0.949681i \(0.601407\pi\)
\(840\) 0 0
\(841\) −22.9517 −0.791439
\(842\) 17.3806i 0.598975i
\(843\) 0 0
\(844\) −7.43444 −0.255904
\(845\) 0 0
\(846\) 0 0
\(847\) 0.701798i 0.0241141i
\(848\) − 12.4318i − 0.426911i
\(849\) 0 0
\(850\) 0 0
\(851\) −25.7339 −0.882148
\(852\) 0 0
\(853\) 4.00708i 0.137200i 0.997644 + 0.0685999i \(0.0218532\pi\)
−0.997644 + 0.0685999i \(0.978147\pi\)
\(854\) 2.34755 0.0803316
\(855\) 0 0
\(856\) 24.0672 0.822599
\(857\) − 9.08971i − 0.310499i −0.987875 0.155249i \(-0.950382\pi\)
0.987875 0.155249i \(-0.0496181\pi\)
\(858\) 0 0
\(859\) −16.3870 −0.559116 −0.279558 0.960129i \(-0.590188\pi\)
−0.279558 + 0.960129i \(0.590188\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 61.0243i 2.07850i
\(863\) − 23.7967i − 0.810050i −0.914306 0.405025i \(-0.867263\pi\)
0.914306 0.405025i \(-0.132737\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 28.1204 0.955571
\(867\) 0 0
\(868\) 1.42970i 0.0485272i
\(869\) −10.5499 −0.357882
\(870\) 0 0
\(871\) −15.0149 −0.508762
\(872\) − 10.1291i − 0.343016i
\(873\) 0 0
\(874\) −34.8137 −1.17759
\(875\) 0 0
\(876\) 0 0
\(877\) 36.0744i 1.21815i 0.793114 + 0.609073i \(0.208458\pi\)
−0.793114 + 0.609073i \(0.791542\pi\)
\(878\) − 51.8687i − 1.75048i
\(879\) 0 0
\(880\) 0 0
\(881\) −35.4575 −1.19459 −0.597297 0.802020i \(-0.703759\pi\)
−0.597297 + 0.802020i \(0.703759\pi\)
\(882\) 0 0
\(883\) 39.1320i 1.31690i 0.752626 + 0.658448i \(0.228787\pi\)
−0.752626 + 0.658448i \(0.771213\pi\)
\(884\) −25.4647 −0.856470
\(885\) 0 0
\(886\) 0.581537 0.0195371
\(887\) 51.2833i 1.72192i 0.508670 + 0.860962i \(0.330137\pi\)
−0.508670 + 0.860962i \(0.669863\pi\)
\(888\) 0 0
\(889\) −1.63156 −0.0547207
\(890\) 0 0
\(891\) 0 0
\(892\) − 2.60530i − 0.0872318i
\(893\) 20.6539i 0.691158i
\(894\) 0 0
\(895\) 0 0
\(896\) 6.84415 0.228647
\(897\) 0 0
\(898\) − 12.8350i − 0.428311i
\(899\) −10.3994 −0.346841
\(900\) 0 0
\(901\) −15.5070 −0.516614
\(902\) 27.5623i 0.917723i
\(903\) 0 0
\(904\) −26.0802 −0.867416
\(905\) 0 0
\(906\) 0 0
\(907\) 47.8588i 1.58913i 0.607181 + 0.794563i \(0.292300\pi\)
−0.607181 + 0.794563i \(0.707700\pi\)
\(908\) − 8.56930i − 0.284382i
\(909\) 0 0
\(910\) 0 0
\(911\) 18.0431 0.597793 0.298897 0.954285i \(-0.403381\pi\)
0.298897 + 0.954285i \(0.403381\pi\)
\(912\) 0 0
\(913\) − 43.0964i − 1.42628i
\(914\) 35.1104 1.16135
\(915\) 0 0
\(916\) 4.45117 0.147071
\(917\) 4.74276i 0.156620i
\(918\) 0 0
\(919\) −10.3976 −0.342984 −0.171492 0.985185i \(-0.554859\pi\)
−0.171492 + 0.985185i \(0.554859\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 66.9708i − 2.20557i
\(923\) − 34.5784i − 1.13816i
\(924\) 0 0
\(925\) 0 0
\(926\) −68.8351 −2.26206
\(927\) 0 0
\(928\) − 8.95410i − 0.293933i
\(929\) 36.0216 1.18183 0.590915 0.806734i \(-0.298767\pi\)
0.590915 + 0.806734i \(0.298767\pi\)
\(930\) 0 0
\(931\) 37.5691 1.23128
\(932\) − 2.44763i − 0.0801748i
\(933\) 0 0
\(934\) −36.8203 −1.20480
\(935\) 0 0
\(936\) 0 0
\(937\) 24.0326i 0.785111i 0.919728 + 0.392555i \(0.128409\pi\)
−0.919728 + 0.392555i \(0.871591\pi\)
\(938\) 1.98682i 0.0648720i
\(939\) 0 0
\(940\) 0 0
\(941\) 16.6676 0.543348 0.271674 0.962389i \(-0.412423\pi\)
0.271674 + 0.962389i \(0.412423\pi\)
\(942\) 0 0
\(943\) 20.8183i 0.677938i
\(944\) 14.0959 0.458783
\(945\) 0 0
\(946\) 6.72315 0.218589
\(947\) − 27.5400i − 0.894928i −0.894302 0.447464i \(-0.852327\pi\)
0.894302 0.447464i \(-0.147673\pi\)
\(948\) 0 0
\(949\) −73.6160 −2.38968
\(950\) 0 0
\(951\) 0 0
\(952\) − 6.70308i − 0.217248i
\(953\) 18.1344i 0.587432i 0.955893 + 0.293716i \(0.0948920\pi\)
−0.955893 + 0.293716i \(0.905108\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −10.4984 −0.339544
\(957\) 0 0
\(958\) − 54.3833i − 1.75705i
\(959\) 1.16713 0.0376886
\(960\) 0 0
\(961\) −13.1191 −0.423198
\(962\) 68.5676i 2.21071i
\(963\) 0 0
\(964\) −7.51009 −0.241884
\(965\) 0 0
\(966\) 0 0
\(967\) 36.1875i 1.16371i 0.813292 + 0.581855i \(0.197673\pi\)
−0.813292 + 0.581855i \(0.802327\pi\)
\(968\) 3.01968i 0.0970562i
\(969\) 0 0
\(970\) 0 0
\(971\) −34.6173 −1.11092 −0.555461 0.831542i \(-0.687458\pi\)
−0.555461 + 0.831542i \(0.687458\pi\)
\(972\) 0 0
\(973\) 5.50527i 0.176491i
\(974\) 38.8340 1.24432
\(975\) 0 0
\(976\) 13.9058 0.445115
\(977\) − 29.4331i − 0.941650i −0.882227 0.470825i \(-0.843956\pi\)
0.882227 0.470825i \(-0.156044\pi\)
\(978\) 0 0
\(979\) −10.4946 −0.335408
\(980\) 0 0
\(981\) 0 0
\(982\) 7.52432i 0.240111i
\(983\) − 24.4911i − 0.781145i −0.920572 0.390573i \(-0.872277\pi\)
0.920572 0.390573i \(-0.127723\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −24.5097 −0.780549
\(987\) 0 0
\(988\) 23.2523i 0.739755i
\(989\) 5.07813 0.161475
\(990\) 0 0
\(991\) −13.2821 −0.421919 −0.210959 0.977495i \(-0.567659\pi\)
−0.210959 + 0.977495i \(0.567659\pi\)
\(992\) 15.3957i 0.488815i
\(993\) 0 0
\(994\) −4.57551 −0.145126
\(995\) 0 0
\(996\) 0 0
\(997\) 39.1530i 1.23999i 0.784606 + 0.619994i \(0.212865\pi\)
−0.784606 + 0.619994i \(0.787135\pi\)
\(998\) − 30.8734i − 0.977280i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.2.b.n.649.2 8
3.2 odd 2 2025.2.b.o.649.7 8
5.2 odd 4 2025.2.a.q.1.4 4
5.3 odd 4 2025.2.a.y.1.1 4
5.4 even 2 inner 2025.2.b.n.649.7 8
9.2 odd 6 675.2.k.c.199.7 16
9.4 even 3 225.2.k.c.124.7 16
9.5 odd 6 675.2.k.c.424.2 16
9.7 even 3 225.2.k.c.49.2 16
15.2 even 4 2025.2.a.z.1.1 4
15.8 even 4 2025.2.a.p.1.4 4
15.14 odd 2 2025.2.b.o.649.2 8
45.2 even 12 675.2.e.c.226.4 8
45.4 even 6 225.2.k.c.124.2 16
45.7 odd 12 225.2.e.e.76.1 yes 8
45.13 odd 12 225.2.e.c.151.4 yes 8
45.14 odd 6 675.2.k.c.424.7 16
45.22 odd 12 225.2.e.e.151.1 yes 8
45.23 even 12 675.2.e.e.451.1 8
45.29 odd 6 675.2.k.c.199.2 16
45.32 even 12 675.2.e.c.451.4 8
45.34 even 6 225.2.k.c.49.7 16
45.38 even 12 675.2.e.e.226.1 8
45.43 odd 12 225.2.e.c.76.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.e.c.76.4 8 45.43 odd 12
225.2.e.c.151.4 yes 8 45.13 odd 12
225.2.e.e.76.1 yes 8 45.7 odd 12
225.2.e.e.151.1 yes 8 45.22 odd 12
225.2.k.c.49.2 16 9.7 even 3
225.2.k.c.49.7 16 45.34 even 6
225.2.k.c.124.2 16 45.4 even 6
225.2.k.c.124.7 16 9.4 even 3
675.2.e.c.226.4 8 45.2 even 12
675.2.e.c.451.4 8 45.32 even 12
675.2.e.e.226.1 8 45.38 even 12
675.2.e.e.451.1 8 45.23 even 12
675.2.k.c.199.2 16 45.29 odd 6
675.2.k.c.199.7 16 9.2 odd 6
675.2.k.c.424.2 16 9.5 odd 6
675.2.k.c.424.7 16 45.14 odd 6
2025.2.a.p.1.4 4 15.8 even 4
2025.2.a.q.1.4 4 5.2 odd 4
2025.2.a.y.1.1 4 5.3 odd 4
2025.2.a.z.1.1 4 15.2 even 4
2025.2.b.n.649.2 8 1.1 even 1 trivial
2025.2.b.n.649.7 8 5.4 even 2 inner
2025.2.b.o.649.2 8 15.14 odd 2
2025.2.b.o.649.7 8 3.2 odd 2