Properties

Label 2025.2.b.c
Level $2025$
Weight $2$
Character orbit 2025.b
Analytic conductor $16.170$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2025,2,Mod(649,2025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2025.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2025.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1697064093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + q^{4} - 3 i q^{7} + 3 i q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} + q^{4} - 3 i q^{7} + 3 i q^{8} - 2 q^{11} + 2 i q^{13} + 3 q^{14} - q^{16} + 4 i q^{17} + 8 q^{19} - 2 i q^{22} - 3 i q^{23} - 2 q^{26} - 3 i q^{28} + q^{29} + 5 i q^{32} - 4 q^{34} - 4 i q^{37} + 8 i q^{38} + 5 q^{41} + 8 i q^{43} - 2 q^{44} + 3 q^{46} + 7 i q^{47} - 2 q^{49} + 2 i q^{52} + 2 i q^{53} + 9 q^{56} + i q^{58} + 14 q^{59} + 7 q^{61} - 7 q^{64} - 3 i q^{67} + 4 i q^{68} + 2 q^{71} - 4 i q^{73} + 4 q^{74} + 8 q^{76} + 6 i q^{77} + 6 q^{79} + 5 i q^{82} - 9 i q^{83} - 8 q^{86} - 6 i q^{88} + 15 q^{89} + 6 q^{91} - 3 i q^{92} - 7 q^{94} + 2 i q^{97} - 2 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{4} - 4 q^{11} + 6 q^{14} - 2 q^{16} + 16 q^{19} - 4 q^{26} + 2 q^{29} - 8 q^{34} + 10 q^{41} - 4 q^{44} + 6 q^{46} - 4 q^{49} + 18 q^{56} + 28 q^{59} + 14 q^{61} - 14 q^{64} + 4 q^{71} + 8 q^{74} + 16 q^{76} + 12 q^{79} - 16 q^{86} + 30 q^{89} + 12 q^{91} - 14 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2025\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(1702\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
1.00000i
1.00000i
1.00000i 0 1.00000 0 0 3.00000i 3.00000i 0 0
649.2 1.00000i 0 1.00000 0 0 3.00000i 3.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2025.2.b.c 2
3.b odd 2 1 2025.2.b.d 2
5.b even 2 1 inner 2025.2.b.c 2
5.c odd 4 1 405.2.a.e 1
5.c odd 4 1 2025.2.a.b 1
9.c even 3 2 225.2.k.a 4
9.d odd 6 2 675.2.k.a 4
15.d odd 2 1 2025.2.b.d 2
15.e even 4 1 405.2.a.b 1
15.e even 4 1 2025.2.a.e 1
20.e even 4 1 6480.2.a.k 1
45.h odd 6 2 675.2.k.a 4
45.j even 6 2 225.2.k.a 4
45.k odd 12 2 45.2.e.a 2
45.k odd 12 2 225.2.e.a 2
45.l even 12 2 135.2.e.a 2
45.l even 12 2 675.2.e.a 2
60.l odd 4 1 6480.2.a.x 1
180.v odd 12 2 2160.2.q.a 2
180.x even 12 2 720.2.q.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.2.e.a 2 45.k odd 12 2
135.2.e.a 2 45.l even 12 2
225.2.e.a 2 45.k odd 12 2
225.2.k.a 4 9.c even 3 2
225.2.k.a 4 45.j even 6 2
405.2.a.b 1 15.e even 4 1
405.2.a.e 1 5.c odd 4 1
675.2.e.a 2 45.l even 12 2
675.2.k.a 4 9.d odd 6 2
675.2.k.a 4 45.h odd 6 2
720.2.q.d 2 180.x even 12 2
2025.2.a.b 1 5.c odd 4 1
2025.2.a.e 1 15.e even 4 1
2025.2.b.c 2 1.a even 1 1 trivial
2025.2.b.c 2 5.b even 2 1 inner
2025.2.b.d 2 3.b odd 2 1
2025.2.b.d 2 15.d odd 2 1
2160.2.q.a 2 180.v odd 12 2
6480.2.a.k 1 20.e even 4 1
6480.2.a.x 1 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2025, [\chi])\):

\( T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 9 \) Copy content Toggle raw display
$11$ \( (T + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T - 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 9 \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 16 \) Copy content Toggle raw display
$41$ \( (T - 5)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 49 \) Copy content Toggle raw display
$53$ \( T^{2} + 4 \) Copy content Toggle raw display
$59$ \( (T - 14)^{2} \) Copy content Toggle raw display
$61$ \( (T - 7)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 9 \) Copy content Toggle raw display
$71$ \( (T - 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T - 6)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 81 \) Copy content Toggle raw display
$89$ \( (T - 15)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less