Properties

Label 2025.2.a.p.1.2
Level $2025$
Weight $2$
Character 2025.1
Self dual yes
Analytic conductor $16.170$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2025,2,Mod(1,2025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2025, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2025.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2025.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.1697064093\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.11661.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 225)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.473255\) of defining polynomial
Character \(\chi\) \(=\) 2025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.47325 q^{2} +0.170479 q^{4} +3.86583 q^{7} +2.69535 q^{8} +O(q^{10})\) \(q-1.47325 q^{2} +0.170479 q^{4} +3.86583 q^{7} +2.69535 q^{8} -0.260278 q^{11} -4.07881 q^{13} -5.69535 q^{14} -4.31189 q^{16} -3.26028 q^{17} +4.24928 q^{19} +0.383456 q^{22} -8.69535 q^{23} +6.00912 q^{26} +0.659042 q^{28} -4.22210 q^{29} +2.65285 q^{31} +0.961818 q^{32} +4.80322 q^{34} -2.27559 q^{37} -6.26028 q^{38} -5.64186 q^{41} -9.07262 q^{43} -0.0443719 q^{44} +12.8105 q^{46} +1.42888 q^{47} +7.94463 q^{49} -0.695350 q^{52} -11.3816 q^{53} +10.4198 q^{56} +6.22022 q^{58} +7.12423 q^{59} +2.52487 q^{61} -3.90833 q^{62} +7.20679 q^{64} +11.2856 q^{67} -0.555809 q^{68} +8.38158 q^{71} +0.403568 q^{73} +3.35252 q^{74} +0.724413 q^{76} -1.00619 q^{77} -3.04250 q^{79} +8.31189 q^{82} -4.58024 q^{83} +13.3663 q^{86} -0.701540 q^{88} -7.17772 q^{89} -15.7680 q^{91} -1.48237 q^{92} -2.10511 q^{94} +3.11511 q^{97} -11.7045 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{4} - q^{7} - 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} + 4 q^{4} - q^{7} - 9 q^{8} + q^{11} + 2 q^{13} - 3 q^{14} + 4 q^{16} - 11 q^{17} + 2 q^{19} + 3 q^{22} - 15 q^{23} + 10 q^{26} - 4 q^{28} - q^{29} - 4 q^{31} - 10 q^{32} + 9 q^{34} - q^{37} - 23 q^{38} + 5 q^{41} - 10 q^{43} - 22 q^{44} - 20 q^{47} - 3 q^{49} + 17 q^{52} - 20 q^{53} + 30 q^{56} - 18 q^{58} - 17 q^{59} - 13 q^{61} + 6 q^{62} + 19 q^{64} + 17 q^{67} - 34 q^{68} + 8 q^{71} + 2 q^{73} - 40 q^{74} + 11 q^{76} - 12 q^{77} - 7 q^{79} + 12 q^{82} - 30 q^{83} + 34 q^{86} + 9 q^{88} + 9 q^{89} - 17 q^{91} + 12 q^{92} + 3 q^{94} - 19 q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.47325 −1.04175 −0.520874 0.853633i \(-0.674394\pi\)
−0.520874 + 0.853633i \(0.674394\pi\)
\(3\) 0 0
\(4\) 0.170479 0.0852394
\(5\) 0 0
\(6\) 0 0
\(7\) 3.86583 1.46115 0.730573 0.682835i \(-0.239253\pi\)
0.730573 + 0.682835i \(0.239253\pi\)
\(8\) 2.69535 0.952950
\(9\) 0 0
\(10\) 0 0
\(11\) −0.260278 −0.0784767 −0.0392384 0.999230i \(-0.512493\pi\)
−0.0392384 + 0.999230i \(0.512493\pi\)
\(12\) 0 0
\(13\) −4.07881 −1.13126 −0.565629 0.824660i \(-0.691366\pi\)
−0.565629 + 0.824660i \(0.691366\pi\)
\(14\) −5.69535 −1.52215
\(15\) 0 0
\(16\) −4.31189 −1.07797
\(17\) −3.26028 −0.790734 −0.395367 0.918523i \(-0.629383\pi\)
−0.395367 + 0.918523i \(0.629383\pi\)
\(18\) 0 0
\(19\) 4.24928 0.974853 0.487426 0.873164i \(-0.337936\pi\)
0.487426 + 0.873164i \(0.337936\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.383456 0.0817530
\(23\) −8.69535 −1.81311 −0.906553 0.422092i \(-0.861296\pi\)
−0.906553 + 0.422092i \(0.861296\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 6.00912 1.17849
\(27\) 0 0
\(28\) 0.659042 0.124547
\(29\) −4.22210 −0.784023 −0.392012 0.919960i \(-0.628221\pi\)
−0.392012 + 0.919960i \(0.628221\pi\)
\(30\) 0 0
\(31\) 2.65285 0.476466 0.238233 0.971208i \(-0.423432\pi\)
0.238233 + 0.971208i \(0.423432\pi\)
\(32\) 0.961818 0.170027
\(33\) 0 0
\(34\) 4.80322 0.823745
\(35\) 0 0
\(36\) 0 0
\(37\) −2.27559 −0.374104 −0.187052 0.982350i \(-0.559893\pi\)
−0.187052 + 0.982350i \(0.559893\pi\)
\(38\) −6.26028 −1.01555
\(39\) 0 0
\(40\) 0 0
\(41\) −5.64186 −0.881110 −0.440555 0.897726i \(-0.645218\pi\)
−0.440555 + 0.897726i \(0.645218\pi\)
\(42\) 0 0
\(43\) −9.07262 −1.38356 −0.691780 0.722108i \(-0.743173\pi\)
−0.691780 + 0.722108i \(0.743173\pi\)
\(44\) −0.0443719 −0.00668931
\(45\) 0 0
\(46\) 12.8105 1.88880
\(47\) 1.42888 0.208424 0.104212 0.994555i \(-0.466768\pi\)
0.104212 + 0.994555i \(0.466768\pi\)
\(48\) 0 0
\(49\) 7.94463 1.13495
\(50\) 0 0
\(51\) 0 0
\(52\) −0.695350 −0.0964277
\(53\) −11.3816 −1.56338 −0.781690 0.623667i \(-0.785642\pi\)
−0.781690 + 0.623667i \(0.785642\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 10.4198 1.39240
\(57\) 0 0
\(58\) 6.22022 0.816755
\(59\) 7.12423 0.927496 0.463748 0.885967i \(-0.346504\pi\)
0.463748 + 0.885967i \(0.346504\pi\)
\(60\) 0 0
\(61\) 2.52487 0.323277 0.161638 0.986850i \(-0.448322\pi\)
0.161638 + 0.986850i \(0.448322\pi\)
\(62\) −3.90833 −0.496358
\(63\) 0 0
\(64\) 7.20679 0.900848
\(65\) 0 0
\(66\) 0 0
\(67\) 11.2856 1.37875 0.689377 0.724402i \(-0.257884\pi\)
0.689377 + 0.724402i \(0.257884\pi\)
\(68\) −0.555809 −0.0674017
\(69\) 0 0
\(70\) 0 0
\(71\) 8.38158 0.994711 0.497355 0.867547i \(-0.334305\pi\)
0.497355 + 0.867547i \(0.334305\pi\)
\(72\) 0 0
\(73\) 0.403568 0.0472340 0.0236170 0.999721i \(-0.492482\pi\)
0.0236170 + 0.999721i \(0.492482\pi\)
\(74\) 3.35252 0.389722
\(75\) 0 0
\(76\) 0.724413 0.0830959
\(77\) −1.00619 −0.114666
\(78\) 0 0
\(79\) −3.04250 −0.342308 −0.171154 0.985244i \(-0.554750\pi\)
−0.171154 + 0.985244i \(0.554750\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 8.31189 0.917895
\(83\) −4.58024 −0.502746 −0.251373 0.967890i \(-0.580882\pi\)
−0.251373 + 0.967890i \(0.580882\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 13.3663 1.44132
\(87\) 0 0
\(88\) −0.701540 −0.0747844
\(89\) −7.17772 −0.760837 −0.380419 0.924814i \(-0.624220\pi\)
−0.380419 + 0.924814i \(0.624220\pi\)
\(90\) 0 0
\(91\) −15.7680 −1.65293
\(92\) −1.48237 −0.154548
\(93\) 0 0
\(94\) −2.10511 −0.217125
\(95\) 0 0
\(96\) 0 0
\(97\) 3.11511 0.316292 0.158146 0.987416i \(-0.449448\pi\)
0.158146 + 0.987416i \(0.449448\pi\)
\(98\) −11.7045 −1.18233
\(99\) 0 0
\(100\) 0 0
\(101\) −3.84572 −0.382663 −0.191332 0.981525i \(-0.561281\pi\)
−0.191332 + 0.981525i \(0.561281\pi\)
\(102\) 0 0
\(103\) −4.20679 −0.414507 −0.207254 0.978287i \(-0.566452\pi\)
−0.207254 + 0.978287i \(0.566452\pi\)
\(104\) −10.9938 −1.07803
\(105\) 0 0
\(106\) 16.7680 1.62865
\(107\) 1.62655 0.157245 0.0786223 0.996904i \(-0.474948\pi\)
0.0786223 + 0.996904i \(0.474948\pi\)
\(108\) 0 0
\(109\) −12.9021 −1.23580 −0.617900 0.786256i \(-0.712016\pi\)
−0.617900 + 0.786256i \(0.712016\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −16.6690 −1.57508
\(113\) −1.32908 −0.125029 −0.0625146 0.998044i \(-0.519912\pi\)
−0.0625146 + 0.998044i \(0.519912\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.719778 −0.0668297
\(117\) 0 0
\(118\) −10.4958 −0.966217
\(119\) −12.6037 −1.15538
\(120\) 0 0
\(121\) −10.9323 −0.993841
\(122\) −3.71978 −0.336773
\(123\) 0 0
\(124\) 0.452255 0.0406137
\(125\) 0 0
\(126\) 0 0
\(127\) −1.65285 −0.146667 −0.0733335 0.997307i \(-0.523364\pi\)
−0.0733335 + 0.997307i \(0.523364\pi\)
\(128\) −12.5411 −1.10848
\(129\) 0 0
\(130\) 0 0
\(131\) 13.1777 1.15134 0.575672 0.817681i \(-0.304741\pi\)
0.575672 + 0.817681i \(0.304741\pi\)
\(132\) 0 0
\(133\) 16.4270 1.42440
\(134\) −16.6266 −1.43632
\(135\) 0 0
\(136\) −8.78759 −0.753530
\(137\) −20.2928 −1.73373 −0.866867 0.498539i \(-0.833870\pi\)
−0.866867 + 0.498539i \(0.833870\pi\)
\(138\) 0 0
\(139\) 3.06880 0.260292 0.130146 0.991495i \(-0.458455\pi\)
0.130146 + 0.991495i \(0.458455\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.3482 −1.03624
\(143\) 1.06162 0.0887774
\(144\) 0 0
\(145\) 0 0
\(146\) −0.594558 −0.0492060
\(147\) 0 0
\(148\) −0.387939 −0.0318884
\(149\) −4.06162 −0.332741 −0.166371 0.986063i \(-0.553205\pi\)
−0.166371 + 0.986063i \(0.553205\pi\)
\(150\) 0 0
\(151\) −13.6199 −1.10837 −0.554185 0.832394i \(-0.686970\pi\)
−0.554185 + 0.832394i \(0.686970\pi\)
\(152\) 11.4533 0.928986
\(153\) 0 0
\(154\) 1.48237 0.119453
\(155\) 0 0
\(156\) 0 0
\(157\) 2.06261 0.164614 0.0823071 0.996607i \(-0.473771\pi\)
0.0823071 + 0.996607i \(0.473771\pi\)
\(158\) 4.48237 0.356598
\(159\) 0 0
\(160\) 0 0
\(161\) −33.6147 −2.64921
\(162\) 0 0
\(163\) −3.50525 −0.274552 −0.137276 0.990533i \(-0.543835\pi\)
−0.137276 + 0.990533i \(0.543835\pi\)
\(164\) −0.961818 −0.0751054
\(165\) 0 0
\(166\) 6.74785 0.523735
\(167\) −20.5349 −1.58904 −0.794518 0.607240i \(-0.792277\pi\)
−0.794518 + 0.607240i \(0.792277\pi\)
\(168\) 0 0
\(169\) 3.63666 0.279743
\(170\) 0 0
\(171\) 0 0
\(172\) −1.54669 −0.117934
\(173\) 7.75177 0.589356 0.294678 0.955597i \(-0.404788\pi\)
0.294678 + 0.955597i \(0.404788\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.12229 0.0845958
\(177\) 0 0
\(178\) 10.5746 0.792601
\(179\) 10.7632 0.804477 0.402238 0.915535i \(-0.368232\pi\)
0.402238 + 0.915535i \(0.368232\pi\)
\(180\) 0 0
\(181\) −7.84572 −0.583168 −0.291584 0.956545i \(-0.594182\pi\)
−0.291584 + 0.956545i \(0.594182\pi\)
\(182\) 23.2302 1.72194
\(183\) 0 0
\(184\) −23.4370 −1.72780
\(185\) 0 0
\(186\) 0 0
\(187\) 0.848578 0.0620542
\(188\) 0.243594 0.0177659
\(189\) 0 0
\(190\) 0 0
\(191\) 5.73255 0.414792 0.207396 0.978257i \(-0.433501\pi\)
0.207396 + 0.978257i \(0.433501\pi\)
\(192\) 0 0
\(193\) −8.48237 −0.610575 −0.305287 0.952260i \(-0.598752\pi\)
−0.305287 + 0.952260i \(0.598752\pi\)
\(194\) −4.58936 −0.329497
\(195\) 0 0
\(196\) 1.35439 0.0967423
\(197\) −10.6266 −0.757110 −0.378555 0.925579i \(-0.623579\pi\)
−0.378555 + 0.925579i \(0.623579\pi\)
\(198\) 0 0
\(199\) −18.5784 −1.31699 −0.658495 0.752585i \(-0.728807\pi\)
−0.658495 + 0.752585i \(0.728807\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 5.66572 0.398639
\(203\) −16.3219 −1.14557
\(204\) 0 0
\(205\) 0 0
\(206\) 6.19767 0.431812
\(207\) 0 0
\(208\) 17.5874 1.21947
\(209\) −1.10599 −0.0765033
\(210\) 0 0
\(211\) 10.4533 0.719636 0.359818 0.933023i \(-0.382839\pi\)
0.359818 + 0.933023i \(0.382839\pi\)
\(212\) −1.94032 −0.133262
\(213\) 0 0
\(214\) −2.39632 −0.163809
\(215\) 0 0
\(216\) 0 0
\(217\) 10.2555 0.696187
\(218\) 19.0081 1.28739
\(219\) 0 0
\(220\) 0 0
\(221\) 13.2980 0.894523
\(222\) 0 0
\(223\) 3.93120 0.263253 0.131626 0.991299i \(-0.457980\pi\)
0.131626 + 0.991299i \(0.457980\pi\)
\(224\) 3.71822 0.248434
\(225\) 0 0
\(226\) 1.95807 0.130249
\(227\) −4.83140 −0.320671 −0.160335 0.987063i \(-0.551258\pi\)
−0.160335 + 0.987063i \(0.551258\pi\)
\(228\) 0 0
\(229\) −18.8530 −1.24584 −0.622919 0.782286i \(-0.714054\pi\)
−0.622919 + 0.782286i \(0.714054\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −11.3800 −0.747135
\(233\) 11.9021 0.779735 0.389867 0.920871i \(-0.372521\pi\)
0.389867 + 0.920871i \(0.372521\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.21453 0.0790593
\(237\) 0 0
\(238\) 18.5684 1.20361
\(239\) 21.6295 1.39909 0.699547 0.714586i \(-0.253385\pi\)
0.699547 + 0.714586i \(0.253385\pi\)
\(240\) 0 0
\(241\) 3.89832 0.251113 0.125556 0.992086i \(-0.459928\pi\)
0.125556 + 0.992086i \(0.459928\pi\)
\(242\) 16.1060 1.03533
\(243\) 0 0
\(244\) 0.430437 0.0275559
\(245\) 0 0
\(246\) 0 0
\(247\) −17.3320 −1.10281
\(248\) 7.15037 0.454049
\(249\) 0 0
\(250\) 0 0
\(251\) 30.1033 1.90010 0.950052 0.312092i \(-0.101030\pi\)
0.950052 + 0.312092i \(0.101030\pi\)
\(252\) 0 0
\(253\) 2.26321 0.142287
\(254\) 2.43507 0.152790
\(255\) 0 0
\(256\) 4.06261 0.253913
\(257\) 16.4141 1.02389 0.511943 0.859019i \(-0.328926\pi\)
0.511943 + 0.859019i \(0.328926\pi\)
\(258\) 0 0
\(259\) −8.79703 −0.546621
\(260\) 0 0
\(261\) 0 0
\(262\) −19.4141 −1.19941
\(263\) −25.8072 −1.59134 −0.795670 0.605730i \(-0.792881\pi\)
−0.795670 + 0.605730i \(0.792881\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −24.2012 −1.48387
\(267\) 0 0
\(268\) 1.92396 0.117524
\(269\) 12.5206 0.763392 0.381696 0.924288i \(-0.375340\pi\)
0.381696 + 0.924288i \(0.375340\pi\)
\(270\) 0 0
\(271\) 19.6462 1.19342 0.596710 0.802457i \(-0.296474\pi\)
0.596710 + 0.802457i \(0.296474\pi\)
\(272\) 14.0580 0.852390
\(273\) 0 0
\(274\) 29.8965 1.80611
\(275\) 0 0
\(276\) 0 0
\(277\) −20.8301 −1.25156 −0.625779 0.780000i \(-0.715219\pi\)
−0.625779 + 0.780000i \(0.715219\pi\)
\(278\) −4.52112 −0.271159
\(279\) 0 0
\(280\) 0 0
\(281\) −4.72441 −0.281835 −0.140917 0.990021i \(-0.545005\pi\)
−0.140917 + 0.990021i \(0.545005\pi\)
\(282\) 0 0
\(283\) 23.1525 1.37627 0.688136 0.725582i \(-0.258429\pi\)
0.688136 + 0.725582i \(0.258429\pi\)
\(284\) 1.42888 0.0847886
\(285\) 0 0
\(286\) −1.56404 −0.0924837
\(287\) −21.8105 −1.28743
\(288\) 0 0
\(289\) −6.37059 −0.374740
\(290\) 0 0
\(291\) 0 0
\(292\) 0.0687998 0.00402620
\(293\) 16.8793 0.986097 0.493049 0.870002i \(-0.335882\pi\)
0.493049 + 0.870002i \(0.335882\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6.13350 −0.356503
\(297\) 0 0
\(298\) 5.98380 0.346632
\(299\) 35.4666 2.05109
\(300\) 0 0
\(301\) −35.0732 −2.02158
\(302\) 20.0655 1.15464
\(303\) 0 0
\(304\) −18.3225 −1.05087
\(305\) 0 0
\(306\) 0 0
\(307\) −22.7177 −1.29657 −0.648285 0.761398i \(-0.724513\pi\)
−0.648285 + 0.761398i \(0.724513\pi\)
\(308\) −0.171534 −0.00977406
\(309\) 0 0
\(310\) 0 0
\(311\) −31.5936 −1.79151 −0.895754 0.444551i \(-0.853363\pi\)
−0.895754 + 0.444551i \(0.853363\pi\)
\(312\) 0 0
\(313\) −30.4996 −1.72394 −0.861970 0.506959i \(-0.830770\pi\)
−0.861970 + 0.506959i \(0.830770\pi\)
\(314\) −3.03875 −0.171487
\(315\) 0 0
\(316\) −0.518682 −0.0291781
\(317\) −22.0890 −1.24064 −0.620320 0.784349i \(-0.712997\pi\)
−0.620320 + 0.784349i \(0.712997\pi\)
\(318\) 0 0
\(319\) 1.09892 0.0615276
\(320\) 0 0
\(321\) 0 0
\(322\) 49.5231 2.75981
\(323\) −13.8538 −0.770849
\(324\) 0 0
\(325\) 0 0
\(326\) 5.16412 0.286014
\(327\) 0 0
\(328\) −15.2068 −0.839654
\(329\) 5.52382 0.304538
\(330\) 0 0
\(331\) −29.6047 −1.62722 −0.813612 0.581409i \(-0.802502\pi\)
−0.813612 + 0.581409i \(0.802502\pi\)
\(332\) −0.780834 −0.0428538
\(333\) 0 0
\(334\) 30.2531 1.65538
\(335\) 0 0
\(336\) 0 0
\(337\) 12.5311 0.682610 0.341305 0.939953i \(-0.389131\pi\)
0.341305 + 0.939953i \(0.389131\pi\)
\(338\) −5.35772 −0.291422
\(339\) 0 0
\(340\) 0 0
\(341\) −0.690479 −0.0373915
\(342\) 0 0
\(343\) 3.65180 0.197179
\(344\) −24.4539 −1.31846
\(345\) 0 0
\(346\) −11.4203 −0.613961
\(347\) 17.0974 0.917839 0.458919 0.888478i \(-0.348237\pi\)
0.458919 + 0.888478i \(0.348237\pi\)
\(348\) 0 0
\(349\) −18.4046 −0.985177 −0.492588 0.870262i \(-0.663949\pi\)
−0.492588 + 0.870262i \(0.663949\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.250340 −0.0133432
\(353\) 31.7188 1.68822 0.844110 0.536169i \(-0.180129\pi\)
0.844110 + 0.536169i \(0.180129\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.22365 −0.0648533
\(357\) 0 0
\(358\) −15.8569 −0.838062
\(359\) 11.4533 0.604483 0.302241 0.953231i \(-0.402265\pi\)
0.302241 + 0.953231i \(0.402265\pi\)
\(360\) 0 0
\(361\) −0.943580 −0.0496621
\(362\) 11.5587 0.607514
\(363\) 0 0
\(364\) −2.68811 −0.140895
\(365\) 0 0
\(366\) 0 0
\(367\) 2.49238 0.130101 0.0650506 0.997882i \(-0.479279\pi\)
0.0650506 + 0.997882i \(0.479279\pi\)
\(368\) 37.4934 1.95448
\(369\) 0 0
\(370\) 0 0
\(371\) −43.9992 −2.28433
\(372\) 0 0
\(373\) −15.0374 −0.778605 −0.389303 0.921110i \(-0.627284\pi\)
−0.389303 + 0.921110i \(0.627284\pi\)
\(374\) −1.25017 −0.0646448
\(375\) 0 0
\(376\) 3.85134 0.198618
\(377\) 17.2211 0.886932
\(378\) 0 0
\(379\) 6.27273 0.322208 0.161104 0.986937i \(-0.448495\pi\)
0.161104 + 0.986937i \(0.448495\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −8.44550 −0.432109
\(383\) 22.1888 1.13379 0.566897 0.823789i \(-0.308144\pi\)
0.566897 + 0.823789i \(0.308144\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 12.4967 0.636065
\(387\) 0 0
\(388\) 0.531061 0.0269605
\(389\) 30.0922 1.52574 0.762869 0.646554i \(-0.223790\pi\)
0.762869 + 0.646554i \(0.223790\pi\)
\(390\) 0 0
\(391\) 28.3493 1.43368
\(392\) 21.4136 1.08155
\(393\) 0 0
\(394\) 15.6556 0.788718
\(395\) 0 0
\(396\) 0 0
\(397\) 29.2313 1.46708 0.733538 0.679648i \(-0.237868\pi\)
0.733538 + 0.679648i \(0.237868\pi\)
\(398\) 27.3708 1.37197
\(399\) 0 0
\(400\) 0 0
\(401\) −24.2341 −1.21020 −0.605098 0.796151i \(-0.706866\pi\)
−0.605098 + 0.796151i \(0.706866\pi\)
\(402\) 0 0
\(403\) −10.8205 −0.539006
\(404\) −0.655614 −0.0326180
\(405\) 0 0
\(406\) 24.0463 1.19340
\(407\) 0.592285 0.0293585
\(408\) 0 0
\(409\) 2.33990 0.115701 0.0578504 0.998325i \(-0.481575\pi\)
0.0578504 + 0.998325i \(0.481575\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.717168 −0.0353323
\(413\) 27.5411 1.35521
\(414\) 0 0
\(415\) 0 0
\(416\) −3.92307 −0.192344
\(417\) 0 0
\(418\) 1.62941 0.0796971
\(419\) −22.8425 −1.11593 −0.557964 0.829865i \(-0.688417\pi\)
−0.557964 + 0.829865i \(0.688417\pi\)
\(420\) 0 0
\(421\) 11.8758 0.578793 0.289396 0.957209i \(-0.406545\pi\)
0.289396 + 0.957209i \(0.406545\pi\)
\(422\) −15.4004 −0.749679
\(423\) 0 0
\(424\) −30.6773 −1.48982
\(425\) 0 0
\(426\) 0 0
\(427\) 9.76072 0.472354
\(428\) 0.277293 0.0134034
\(429\) 0 0
\(430\) 0 0
\(431\) −8.86916 −0.427212 −0.213606 0.976920i \(-0.568521\pi\)
−0.213606 + 0.976920i \(0.568521\pi\)
\(432\) 0 0
\(433\) 9.37059 0.450322 0.225161 0.974322i \(-0.427709\pi\)
0.225161 + 0.974322i \(0.427709\pi\)
\(434\) −15.1089 −0.725252
\(435\) 0 0
\(436\) −2.19954 −0.105339
\(437\) −36.9490 −1.76751
\(438\) 0 0
\(439\) 19.4231 0.927014 0.463507 0.886093i \(-0.346591\pi\)
0.463507 + 0.886093i \(0.346591\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −19.5914 −0.931868
\(443\) −10.8793 −0.516889 −0.258445 0.966026i \(-0.583210\pi\)
−0.258445 + 0.966026i \(0.583210\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −5.79166 −0.274243
\(447\) 0 0
\(448\) 27.8602 1.31627
\(449\) −1.34014 −0.0632451 −0.0316225 0.999500i \(-0.510067\pi\)
−0.0316225 + 0.999500i \(0.510067\pi\)
\(450\) 0 0
\(451\) 1.46845 0.0691467
\(452\) −0.226580 −0.0106574
\(453\) 0 0
\(454\) 7.11787 0.334058
\(455\) 0 0
\(456\) 0 0
\(457\) 20.1113 0.940767 0.470383 0.882462i \(-0.344116\pi\)
0.470383 + 0.882462i \(0.344116\pi\)
\(458\) 27.7752 1.29785
\(459\) 0 0
\(460\) 0 0
\(461\) 33.7533 1.57205 0.786024 0.618196i \(-0.212136\pi\)
0.786024 + 0.618196i \(0.212136\pi\)
\(462\) 0 0
\(463\) −5.24537 −0.243773 −0.121886 0.992544i \(-0.538894\pi\)
−0.121886 + 0.992544i \(0.538894\pi\)
\(464\) 18.2052 0.845157
\(465\) 0 0
\(466\) −17.5349 −0.812288
\(467\) −14.2120 −0.657652 −0.328826 0.944390i \(-0.606653\pi\)
−0.328826 + 0.944390i \(0.606653\pi\)
\(468\) 0 0
\(469\) 43.6282 2.01456
\(470\) 0 0
\(471\) 0 0
\(472\) 19.2023 0.883858
\(473\) 2.36140 0.108577
\(474\) 0 0
\(475\) 0 0
\(476\) −2.14866 −0.0984837
\(477\) 0 0
\(478\) −31.8657 −1.45750
\(479\) −20.4833 −0.935907 −0.467954 0.883753i \(-0.655009\pi\)
−0.467954 + 0.883753i \(0.655009\pi\)
\(480\) 0 0
\(481\) 9.28168 0.423208
\(482\) −5.74322 −0.261596
\(483\) 0 0
\(484\) −1.86372 −0.0847145
\(485\) 0 0
\(486\) 0 0
\(487\) 31.3554 1.42085 0.710425 0.703772i \(-0.248503\pi\)
0.710425 + 0.703772i \(0.248503\pi\)
\(488\) 6.80541 0.308067
\(489\) 0 0
\(490\) 0 0
\(491\) 10.3921 0.468988 0.234494 0.972118i \(-0.424657\pi\)
0.234494 + 0.972118i \(0.424657\pi\)
\(492\) 0 0
\(493\) 13.7652 0.619954
\(494\) 25.5345 1.14885
\(495\) 0 0
\(496\) −11.4388 −0.513618
\(497\) 32.4018 1.45342
\(498\) 0 0
\(499\) −3.82570 −0.171262 −0.0856310 0.996327i \(-0.527291\pi\)
−0.0856310 + 0.996327i \(0.527291\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −44.3498 −1.97943
\(503\) −1.00236 −0.0446931 −0.0223466 0.999750i \(-0.507114\pi\)
−0.0223466 + 0.999750i \(0.507114\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3.33428 −0.148227
\(507\) 0 0
\(508\) −0.281776 −0.0125018
\(509\) −4.56322 −0.202261 −0.101131 0.994873i \(-0.532246\pi\)
−0.101131 + 0.994873i \(0.532246\pi\)
\(510\) 0 0
\(511\) 1.56012 0.0690158
\(512\) 19.0969 0.843971
\(513\) 0 0
\(514\) −24.1822 −1.06663
\(515\) 0 0
\(516\) 0 0
\(517\) −0.371907 −0.0163564
\(518\) 12.9603 0.569441
\(519\) 0 0
\(520\) 0 0
\(521\) −39.3708 −1.72486 −0.862432 0.506173i \(-0.831060\pi\)
−0.862432 + 0.506173i \(0.831060\pi\)
\(522\) 0 0
\(523\) −10.3998 −0.454749 −0.227375 0.973807i \(-0.573014\pi\)
−0.227375 + 0.973807i \(0.573014\pi\)
\(524\) 2.24652 0.0981398
\(525\) 0 0
\(526\) 38.0206 1.65778
\(527\) −8.64904 −0.376758
\(528\) 0 0
\(529\) 52.6091 2.28735
\(530\) 0 0
\(531\) 0 0
\(532\) 2.80046 0.121415
\(533\) 23.0120 0.996762
\(534\) 0 0
\(535\) 0 0
\(536\) 30.4186 1.31388
\(537\) 0 0
\(538\) −18.4460 −0.795262
\(539\) −2.06781 −0.0890670
\(540\) 0 0
\(541\) 13.7093 0.589408 0.294704 0.955589i \(-0.404779\pi\)
0.294704 + 0.955589i \(0.404779\pi\)
\(542\) −28.9438 −1.24324
\(543\) 0 0
\(544\) −3.13579 −0.134446
\(545\) 0 0
\(546\) 0 0
\(547\) 22.7847 0.974205 0.487102 0.873345i \(-0.338054\pi\)
0.487102 + 0.873345i \(0.338054\pi\)
\(548\) −3.45950 −0.147783
\(549\) 0 0
\(550\) 0 0
\(551\) −17.9409 −0.764307
\(552\) 0 0
\(553\) −11.7618 −0.500162
\(554\) 30.6880 1.30381
\(555\) 0 0
\(556\) 0.523166 0.0221872
\(557\) 18.2341 0.772605 0.386303 0.922372i \(-0.373752\pi\)
0.386303 + 0.922372i \(0.373752\pi\)
\(558\) 0 0
\(559\) 37.0054 1.56516
\(560\) 0 0
\(561\) 0 0
\(562\) 6.96026 0.293601
\(563\) −24.1112 −1.01617 −0.508083 0.861308i \(-0.669646\pi\)
−0.508083 + 0.861308i \(0.669646\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −34.1095 −1.43373
\(567\) 0 0
\(568\) 22.5913 0.947910
\(569\) 32.0049 1.34171 0.670857 0.741587i \(-0.265926\pi\)
0.670857 + 0.741587i \(0.265926\pi\)
\(570\) 0 0
\(571\) −19.7808 −0.827802 −0.413901 0.910322i \(-0.635834\pi\)
−0.413901 + 0.910322i \(0.635834\pi\)
\(572\) 0.180984 0.00756733
\(573\) 0 0
\(574\) 32.1324 1.34118
\(575\) 0 0
\(576\) 0 0
\(577\) −35.4119 −1.47422 −0.737108 0.675775i \(-0.763809\pi\)
−0.737108 + 0.675775i \(0.763809\pi\)
\(578\) 9.38550 0.390385
\(579\) 0 0
\(580\) 0 0
\(581\) −17.7064 −0.734586
\(582\) 0 0
\(583\) 2.96237 0.122689
\(584\) 1.08776 0.0450117
\(585\) 0 0
\(586\) −24.8675 −1.02726
\(587\) 32.3851 1.33668 0.668338 0.743858i \(-0.267006\pi\)
0.668338 + 0.743858i \(0.267006\pi\)
\(588\) 0 0
\(589\) 11.2727 0.464485
\(590\) 0 0
\(591\) 0 0
\(592\) 9.81209 0.403274
\(593\) −29.2504 −1.20117 −0.600585 0.799561i \(-0.705066\pi\)
−0.600585 + 0.799561i \(0.705066\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.692421 −0.0283627
\(597\) 0 0
\(598\) −52.2514 −2.13672
\(599\) −4.06162 −0.165953 −0.0829767 0.996551i \(-0.526443\pi\)
−0.0829767 + 0.996551i \(0.526443\pi\)
\(600\) 0 0
\(601\) 46.9076 1.91340 0.956700 0.291076i \(-0.0940132\pi\)
0.956700 + 0.291076i \(0.0940132\pi\)
\(602\) 51.6717 2.10598
\(603\) 0 0
\(604\) −2.32190 −0.0944768
\(605\) 0 0
\(606\) 0 0
\(607\) −40.9466 −1.66197 −0.830987 0.556293i \(-0.812223\pi\)
−0.830987 + 0.556293i \(0.812223\pi\)
\(608\) 4.08704 0.165751
\(609\) 0 0
\(610\) 0 0
\(611\) −5.82813 −0.235781
\(612\) 0 0
\(613\) −33.3827 −1.34831 −0.674157 0.738588i \(-0.735493\pi\)
−0.674157 + 0.738588i \(0.735493\pi\)
\(614\) 33.4690 1.35070
\(615\) 0 0
\(616\) −2.71203 −0.109271
\(617\) −2.24880 −0.0905332 −0.0452666 0.998975i \(-0.514414\pi\)
−0.0452666 + 0.998975i \(0.514414\pi\)
\(618\) 0 0
\(619\) −34.2934 −1.37837 −0.689184 0.724586i \(-0.742031\pi\)
−0.689184 + 0.724586i \(0.742031\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 46.5454 1.86630
\(623\) −27.7479 −1.11169
\(624\) 0 0
\(625\) 0 0
\(626\) 44.9337 1.79591
\(627\) 0 0
\(628\) 0.351631 0.0140316
\(629\) 7.41904 0.295817
\(630\) 0 0
\(631\) −18.7552 −0.746633 −0.373316 0.927704i \(-0.621779\pi\)
−0.373316 + 0.927704i \(0.621779\pi\)
\(632\) −8.20060 −0.326202
\(633\) 0 0
\(634\) 32.5427 1.29244
\(635\) 0 0
\(636\) 0 0
\(637\) −32.4046 −1.28392
\(638\) −1.61899 −0.0640963
\(639\) 0 0
\(640\) 0 0
\(641\) −20.6350 −0.815034 −0.407517 0.913198i \(-0.633605\pi\)
−0.407517 + 0.913198i \(0.633605\pi\)
\(642\) 0 0
\(643\) 27.1939 1.07242 0.536212 0.844084i \(-0.319855\pi\)
0.536212 + 0.844084i \(0.319855\pi\)
\(644\) −5.73060 −0.225817
\(645\) 0 0
\(646\) 20.4102 0.803030
\(647\) −16.7316 −0.657787 −0.328893 0.944367i \(-0.606676\pi\)
−0.328893 + 0.944367i \(0.606676\pi\)
\(648\) 0 0
\(649\) −1.85428 −0.0727869
\(650\) 0 0
\(651\) 0 0
\(652\) −0.597571 −0.0234027
\(653\) 45.7331 1.78967 0.894837 0.446392i \(-0.147291\pi\)
0.894837 + 0.446392i \(0.147291\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 24.3271 0.949814
\(657\) 0 0
\(658\) −8.13799 −0.317252
\(659\) −18.6109 −0.724976 −0.362488 0.931988i \(-0.618073\pi\)
−0.362488 + 0.931988i \(0.618073\pi\)
\(660\) 0 0
\(661\) 16.7960 0.653288 0.326644 0.945148i \(-0.394082\pi\)
0.326644 + 0.945148i \(0.394082\pi\)
\(662\) 43.6153 1.69516
\(663\) 0 0
\(664\) −12.3453 −0.479092
\(665\) 0 0
\(666\) 0 0
\(667\) 36.7126 1.42152
\(668\) −3.50076 −0.135449
\(669\) 0 0
\(670\) 0 0
\(671\) −0.657168 −0.0253697
\(672\) 0 0
\(673\) 49.9480 1.92535 0.962676 0.270656i \(-0.0872405\pi\)
0.962676 + 0.270656i \(0.0872405\pi\)
\(674\) −18.4614 −0.711108
\(675\) 0 0
\(676\) 0.619973 0.0238451
\(677\) −10.8311 −0.416272 −0.208136 0.978100i \(-0.566740\pi\)
−0.208136 + 0.978100i \(0.566740\pi\)
\(678\) 0 0
\(679\) 12.0425 0.462149
\(680\) 0 0
\(681\) 0 0
\(682\) 1.01725 0.0389526
\(683\) −0.429870 −0.0164485 −0.00822426 0.999966i \(-0.502618\pi\)
−0.00822426 + 0.999966i \(0.502618\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −5.38003 −0.205410
\(687\) 0 0
\(688\) 39.1202 1.49144
\(689\) 46.4233 1.76859
\(690\) 0 0
\(691\) 34.7036 1.32019 0.660093 0.751184i \(-0.270517\pi\)
0.660093 + 0.751184i \(0.270517\pi\)
\(692\) 1.32151 0.0502364
\(693\) 0 0
\(694\) −25.1889 −0.956157
\(695\) 0 0
\(696\) 0 0
\(697\) 18.3940 0.696724
\(698\) 27.1147 1.02631
\(699\) 0 0
\(700\) 0 0
\(701\) −1.84808 −0.0698010 −0.0349005 0.999391i \(-0.511111\pi\)
−0.0349005 + 0.999391i \(0.511111\pi\)
\(702\) 0 0
\(703\) −9.66962 −0.364696
\(704\) −1.87577 −0.0706956
\(705\) 0 0
\(706\) −46.7299 −1.75870
\(707\) −14.8669 −0.559127
\(708\) 0 0
\(709\) −6.30676 −0.236855 −0.118428 0.992963i \(-0.537785\pi\)
−0.118428 + 0.992963i \(0.537785\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −19.3465 −0.725040
\(713\) −23.0675 −0.863884
\(714\) 0 0
\(715\) 0 0
\(716\) 1.83489 0.0685731
\(717\) 0 0
\(718\) −16.8736 −0.629719
\(719\) −18.0129 −0.671770 −0.335885 0.941903i \(-0.609035\pi\)
−0.335885 + 0.941903i \(0.609035\pi\)
\(720\) 0 0
\(721\) −16.2627 −0.605655
\(722\) 1.39013 0.0517354
\(723\) 0 0
\(724\) −1.33753 −0.0497089
\(725\) 0 0
\(726\) 0 0
\(727\) 26.2823 0.974758 0.487379 0.873190i \(-0.337953\pi\)
0.487379 + 0.873190i \(0.337953\pi\)
\(728\) −42.5002 −1.57516
\(729\) 0 0
\(730\) 0 0
\(731\) 29.5792 1.09403
\(732\) 0 0
\(733\) 47.6633 1.76049 0.880243 0.474524i \(-0.157380\pi\)
0.880243 + 0.474524i \(0.157380\pi\)
\(734\) −3.67191 −0.135533
\(735\) 0 0
\(736\) −8.36334 −0.308277
\(737\) −2.93739 −0.108200
\(738\) 0 0
\(739\) −10.0273 −0.368859 −0.184429 0.982846i \(-0.559044\pi\)
−0.184429 + 0.982846i \(0.559044\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 64.8221 2.37969
\(743\) −8.27266 −0.303494 −0.151747 0.988419i \(-0.548490\pi\)
−0.151747 + 0.988419i \(0.548490\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 22.1539 0.811111
\(747\) 0 0
\(748\) 0.144665 0.00528946
\(749\) 6.28797 0.229757
\(750\) 0 0
\(751\) −5.79760 −0.211557 −0.105779 0.994390i \(-0.533734\pi\)
−0.105779 + 0.994390i \(0.533734\pi\)
\(752\) −6.16119 −0.224676
\(753\) 0 0
\(754\) −25.3711 −0.923960
\(755\) 0 0
\(756\) 0 0
\(757\) −25.2804 −0.918830 −0.459415 0.888222i \(-0.651941\pi\)
−0.459415 + 0.888222i \(0.651941\pi\)
\(758\) −9.24132 −0.335660
\(759\) 0 0
\(760\) 0 0
\(761\) −19.4638 −0.705562 −0.352781 0.935706i \(-0.614764\pi\)
−0.352781 + 0.935706i \(0.614764\pi\)
\(762\) 0 0
\(763\) −49.8775 −1.80569
\(764\) 0.977278 0.0353567
\(765\) 0 0
\(766\) −32.6897 −1.18113
\(767\) −29.0584 −1.04924
\(768\) 0 0
\(769\) −49.3431 −1.77936 −0.889678 0.456588i \(-0.849071\pi\)
−0.889678 + 0.456588i \(0.849071\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.44607 −0.0520450
\(773\) −20.8502 −0.749930 −0.374965 0.927039i \(-0.622345\pi\)
−0.374965 + 0.927039i \(0.622345\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 8.39632 0.301410
\(777\) 0 0
\(778\) −44.3335 −1.58943
\(779\) −23.9739 −0.858953
\(780\) 0 0
\(781\) −2.18154 −0.0780616
\(782\) −41.7657 −1.49354
\(783\) 0 0
\(784\) −34.2564 −1.22344
\(785\) 0 0
\(786\) 0 0
\(787\) −44.1883 −1.57514 −0.787571 0.616223i \(-0.788662\pi\)
−0.787571 + 0.616223i \(0.788662\pi\)
\(788\) −1.81160 −0.0645357
\(789\) 0 0
\(790\) 0 0
\(791\) −5.13799 −0.182686
\(792\) 0 0
\(793\) −10.2985 −0.365709
\(794\) −43.0651 −1.52832
\(795\) 0 0
\(796\) −3.16723 −0.112259
\(797\) −31.0374 −1.09940 −0.549701 0.835361i \(-0.685258\pi\)
−0.549701 + 0.835361i \(0.685258\pi\)
\(798\) 0 0
\(799\) −4.65855 −0.164808
\(800\) 0 0
\(801\) 0 0
\(802\) 35.7031 1.26072
\(803\) −0.105040 −0.00370677
\(804\) 0 0
\(805\) 0 0
\(806\) 15.9413 0.561509
\(807\) 0 0
\(808\) −10.3656 −0.364659
\(809\) −14.6229 −0.514114 −0.257057 0.966396i \(-0.582753\pi\)
−0.257057 + 0.966396i \(0.582753\pi\)
\(810\) 0 0
\(811\) 26.7177 0.938187 0.469093 0.883149i \(-0.344581\pi\)
0.469093 + 0.883149i \(0.344581\pi\)
\(812\) −2.78254 −0.0976480
\(813\) 0 0
\(814\) −0.872586 −0.0305841
\(815\) 0 0
\(816\) 0 0
\(817\) −38.5521 −1.34877
\(818\) −3.44727 −0.120531
\(819\) 0 0
\(820\) 0 0
\(821\) 18.5981 0.649077 0.324538 0.945873i \(-0.394791\pi\)
0.324538 + 0.945873i \(0.394791\pi\)
\(822\) 0 0
\(823\) −3.06204 −0.106736 −0.0533680 0.998575i \(-0.516996\pi\)
−0.0533680 + 0.998575i \(0.516996\pi\)
\(824\) −11.3388 −0.395005
\(825\) 0 0
\(826\) −40.5750 −1.41178
\(827\) −7.27526 −0.252985 −0.126493 0.991968i \(-0.540372\pi\)
−0.126493 + 0.991968i \(0.540372\pi\)
\(828\) 0 0
\(829\) 10.5211 0.365411 0.182706 0.983168i \(-0.441514\pi\)
0.182706 + 0.983168i \(0.441514\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −29.3951 −1.01909
\(833\) −25.9017 −0.897441
\(834\) 0 0
\(835\) 0 0
\(836\) −0.188549 −0.00652109
\(837\) 0 0
\(838\) 33.6528 1.16252
\(839\) −15.1807 −0.524094 −0.262047 0.965055i \(-0.584398\pi\)
−0.262047 + 0.965055i \(0.584398\pi\)
\(840\) 0 0
\(841\) −11.1739 −0.385307
\(842\) −17.4961 −0.602956
\(843\) 0 0
\(844\) 1.78207 0.0613413
\(845\) 0 0
\(846\) 0 0
\(847\) −42.2622 −1.45215
\(848\) 49.0762 1.68528
\(849\) 0 0
\(850\) 0 0
\(851\) 19.7870 0.678290
\(852\) 0 0
\(853\) 10.4862 0.359040 0.179520 0.983754i \(-0.442545\pi\)
0.179520 + 0.983754i \(0.442545\pi\)
\(854\) −14.3800 −0.492074
\(855\) 0 0
\(856\) 4.38412 0.149846
\(857\) 8.84075 0.301994 0.150997 0.988534i \(-0.451752\pi\)
0.150997 + 0.988534i \(0.451752\pi\)
\(858\) 0 0
\(859\) −2.06831 −0.0705699 −0.0352849 0.999377i \(-0.511234\pi\)
−0.0352849 + 0.999377i \(0.511234\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 13.0665 0.445048
\(863\) 22.4434 0.763984 0.381992 0.924166i \(-0.375238\pi\)
0.381992 + 0.924166i \(0.375238\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −13.8053 −0.469122
\(867\) 0 0
\(868\) 1.74834 0.0593426
\(869\) 0.791895 0.0268632
\(870\) 0 0
\(871\) −46.0317 −1.55973
\(872\) −34.7758 −1.17766
\(873\) 0 0
\(874\) 54.4353 1.84130
\(875\) 0 0
\(876\) 0 0
\(877\) 27.8932 0.941886 0.470943 0.882164i \(-0.343914\pi\)
0.470943 + 0.882164i \(0.343914\pi\)
\(878\) −28.6152 −0.965715
\(879\) 0 0
\(880\) 0 0
\(881\) 9.22153 0.310681 0.155341 0.987861i \(-0.450353\pi\)
0.155341 + 0.987861i \(0.450353\pi\)
\(882\) 0 0
\(883\) 49.2436 1.65718 0.828589 0.559858i \(-0.189144\pi\)
0.828589 + 0.559858i \(0.189144\pi\)
\(884\) 2.26704 0.0762486
\(885\) 0 0
\(886\) 16.0279 0.538469
\(887\) −10.7681 −0.361556 −0.180778 0.983524i \(-0.557862\pi\)
−0.180778 + 0.983524i \(0.557862\pi\)
\(888\) 0 0
\(889\) −6.38965 −0.214302
\(890\) 0 0
\(891\) 0 0
\(892\) 0.670187 0.0224395
\(893\) 6.07173 0.203183
\(894\) 0 0
\(895\) 0 0
\(896\) −48.4816 −1.61966
\(897\) 0 0
\(898\) 1.97437 0.0658854
\(899\) −11.2006 −0.373561
\(900\) 0 0
\(901\) 37.1071 1.23622
\(902\) −2.16340 −0.0720334
\(903\) 0 0
\(904\) −3.58233 −0.119147
\(905\) 0 0
\(906\) 0 0
\(907\) −31.9703 −1.06156 −0.530779 0.847510i \(-0.678101\pi\)
−0.530779 + 0.847510i \(0.678101\pi\)
\(908\) −0.823651 −0.0273338
\(909\) 0 0
\(910\) 0 0
\(911\) 10.0802 0.333972 0.166986 0.985959i \(-0.446597\pi\)
0.166986 + 0.985959i \(0.446597\pi\)
\(912\) 0 0
\(913\) 1.19213 0.0394539
\(914\) −29.6291 −0.980042
\(915\) 0 0
\(916\) −3.21403 −0.106195
\(917\) 50.9428 1.68228
\(918\) 0 0
\(919\) −29.7976 −0.982932 −0.491466 0.870897i \(-0.663539\pi\)
−0.491466 + 0.870897i \(0.663539\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −49.7272 −1.63768
\(923\) −34.1868 −1.12527
\(924\) 0 0
\(925\) 0 0
\(926\) 7.72776 0.253950
\(927\) 0 0
\(928\) −4.06089 −0.133305
\(929\) 12.3855 0.406355 0.203178 0.979142i \(-0.434873\pi\)
0.203178 + 0.979142i \(0.434873\pi\)
\(930\) 0 0
\(931\) 33.7590 1.10641
\(932\) 2.02906 0.0664642
\(933\) 0 0
\(934\) 20.9379 0.685108
\(935\) 0 0
\(936\) 0 0
\(937\) −44.4280 −1.45140 −0.725699 0.688012i \(-0.758484\pi\)
−0.725699 + 0.688012i \(0.758484\pi\)
\(938\) −64.2754 −2.09867
\(939\) 0 0
\(940\) 0 0
\(941\) −15.3323 −0.499820 −0.249910 0.968269i \(-0.580401\pi\)
−0.249910 + 0.968269i \(0.580401\pi\)
\(942\) 0 0
\(943\) 49.0579 1.59755
\(944\) −30.7189 −0.999816
\(945\) 0 0
\(946\) −3.47894 −0.113110
\(947\) 21.6997 0.705144 0.352572 0.935785i \(-0.385307\pi\)
0.352572 + 0.935785i \(0.385307\pi\)
\(948\) 0 0
\(949\) −1.64607 −0.0534338
\(950\) 0 0
\(951\) 0 0
\(952\) −33.9713 −1.10102
\(953\) 36.9099 1.19563 0.597815 0.801634i \(-0.296036\pi\)
0.597815 + 0.801634i \(0.296036\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 3.68737 0.119258
\(957\) 0 0
\(958\) 30.1772 0.974980
\(959\) −78.4486 −2.53324
\(960\) 0 0
\(961\) −23.9624 −0.772980
\(962\) −13.6743 −0.440876
\(963\) 0 0
\(964\) 0.664581 0.0214047
\(965\) 0 0
\(966\) 0 0
\(967\) 21.3382 0.686190 0.343095 0.939301i \(-0.388525\pi\)
0.343095 + 0.939301i \(0.388525\pi\)
\(968\) −29.4663 −0.947081
\(969\) 0 0
\(970\) 0 0
\(971\) 42.5851 1.36662 0.683311 0.730128i \(-0.260540\pi\)
0.683311 + 0.730128i \(0.260540\pi\)
\(972\) 0 0
\(973\) 11.8635 0.380325
\(974\) −46.1946 −1.48017
\(975\) 0 0
\(976\) −10.8870 −0.348484
\(977\) 48.9392 1.56570 0.782852 0.622209i \(-0.213764\pi\)
0.782852 + 0.622209i \(0.213764\pi\)
\(978\) 0 0
\(979\) 1.86820 0.0597080
\(980\) 0 0
\(981\) 0 0
\(982\) −15.3102 −0.488567
\(983\) −36.1089 −1.15170 −0.575848 0.817557i \(-0.695328\pi\)
−0.575848 + 0.817557i \(0.695328\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −20.2797 −0.645836
\(987\) 0 0
\(988\) −2.95474 −0.0940028
\(989\) 78.8896 2.50854
\(990\) 0 0
\(991\) 32.0054 1.01669 0.508343 0.861155i \(-0.330258\pi\)
0.508343 + 0.861155i \(0.330258\pi\)
\(992\) 2.55156 0.0810121
\(993\) 0 0
\(994\) −47.7360 −1.51410
\(995\) 0 0
\(996\) 0 0
\(997\) 51.7680 1.63951 0.819754 0.572716i \(-0.194110\pi\)
0.819754 + 0.572716i \(0.194110\pi\)
\(998\) 5.63624 0.178412
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2025.2.a.p.1.2 4
3.2 odd 2 2025.2.a.y.1.3 4
5.2 odd 4 2025.2.b.o.649.3 8
5.3 odd 4 2025.2.b.o.649.6 8
5.4 even 2 2025.2.a.z.1.3 4
9.2 odd 6 225.2.e.c.76.2 8
9.4 even 3 675.2.e.e.451.3 8
9.5 odd 6 225.2.e.c.151.2 yes 8
9.7 even 3 675.2.e.e.226.3 8
15.2 even 4 2025.2.b.n.649.6 8
15.8 even 4 2025.2.b.n.649.3 8
15.14 odd 2 2025.2.a.q.1.2 4
45.2 even 12 225.2.k.c.49.6 16
45.4 even 6 675.2.e.c.451.2 8
45.7 odd 12 675.2.k.c.199.3 16
45.13 odd 12 675.2.k.c.424.3 16
45.14 odd 6 225.2.e.e.151.3 yes 8
45.22 odd 12 675.2.k.c.424.6 16
45.23 even 12 225.2.k.c.124.6 16
45.29 odd 6 225.2.e.e.76.3 yes 8
45.32 even 12 225.2.k.c.124.3 16
45.34 even 6 675.2.e.c.226.2 8
45.38 even 12 225.2.k.c.49.3 16
45.43 odd 12 675.2.k.c.199.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.e.c.76.2 8 9.2 odd 6
225.2.e.c.151.2 yes 8 9.5 odd 6
225.2.e.e.76.3 yes 8 45.29 odd 6
225.2.e.e.151.3 yes 8 45.14 odd 6
225.2.k.c.49.3 16 45.38 even 12
225.2.k.c.49.6 16 45.2 even 12
225.2.k.c.124.3 16 45.32 even 12
225.2.k.c.124.6 16 45.23 even 12
675.2.e.c.226.2 8 45.34 even 6
675.2.e.c.451.2 8 45.4 even 6
675.2.e.e.226.3 8 9.7 even 3
675.2.e.e.451.3 8 9.4 even 3
675.2.k.c.199.3 16 45.7 odd 12
675.2.k.c.199.6 16 45.43 odd 12
675.2.k.c.424.3 16 45.13 odd 12
675.2.k.c.424.6 16 45.22 odd 12
2025.2.a.p.1.2 4 1.1 even 1 trivial
2025.2.a.q.1.2 4 15.14 odd 2
2025.2.a.y.1.3 4 3.2 odd 2
2025.2.a.z.1.3 4 5.4 even 2
2025.2.b.n.649.3 8 15.8 even 4
2025.2.b.n.649.6 8 15.2 even 4
2025.2.b.o.649.3 8 5.2 odd 4
2025.2.b.o.649.6 8 5.3 odd 4