Properties

Label 2025.1.j.c
Level $2025$
Weight $1$
Character orbit 2025.j
Analytic conductor $1.011$
Analytic rank $0$
Dimension $4$
Projective image $D_{3}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2025,1,Mod(26,2025)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2025, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2025.26");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2025 = 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2025.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.01060665058\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.135.1
Artin image: $S_3\times C_{12}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{24} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12} q^{2} + \zeta_{12}^{3} q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{12} q^{2} + \zeta_{12}^{3} q^{8} - \zeta_{12}^{4} q^{16} + \zeta_{12}^{3} q^{17} + q^{19} + \zeta_{12}^{5} q^{23} + \zeta_{12}^{2} q^{31} - \zeta_{12}^{4} q^{34} - \zeta_{12} q^{38} + q^{46} + 2 \zeta_{12} q^{47} + \zeta_{12}^{2} q^{49} - \zeta_{12}^{3} q^{53} - \zeta_{12}^{4} q^{61} - \zeta_{12}^{3} q^{62} - q^{64} + \zeta_{12}^{4} q^{79} + \zeta_{12} q^{83} - 2 \zeta_{12}^{2} q^{94} - \zeta_{12}^{3} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{16} + 4 q^{19} + 2 q^{31} + 2 q^{34} + 4 q^{46} + 2 q^{49} + 2 q^{61} - 4 q^{64} - 2 q^{79} - 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2025\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(1702\)
\(\chi(n)\) \(\zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i 0 0 0 0 0 1.00000i 0 0
26.2 0.866025 + 0.500000i 0 0 0 0 0 1.00000i 0 0
701.1 −0.866025 + 0.500000i 0 0 0 0 0 1.00000i 0 0
701.2 0.866025 0.500000i 0 0 0 0 0 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner
45.h odd 6 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2025.1.j.c 4
3.b odd 2 1 inner 2025.1.j.c 4
5.b even 2 1 inner 2025.1.j.c 4
5.c odd 4 1 405.1.h.a 2
5.c odd 4 1 405.1.h.b 2
9.c even 3 1 675.1.c.c 2
9.c even 3 1 inner 2025.1.j.c 4
9.d odd 6 1 675.1.c.c 2
9.d odd 6 1 inner 2025.1.j.c 4
15.d odd 2 1 CM 2025.1.j.c 4
15.e even 4 1 405.1.h.a 2
15.e even 4 1 405.1.h.b 2
45.h odd 6 1 675.1.c.c 2
45.h odd 6 1 inner 2025.1.j.c 4
45.j even 6 1 675.1.c.c 2
45.j even 6 1 inner 2025.1.j.c 4
45.k odd 12 1 135.1.d.a 1
45.k odd 12 1 135.1.d.b yes 1
45.k odd 12 1 405.1.h.a 2
45.k odd 12 1 405.1.h.b 2
45.l even 12 1 135.1.d.a 1
45.l even 12 1 135.1.d.b yes 1
45.l even 12 1 405.1.h.a 2
45.l even 12 1 405.1.h.b 2
135.q even 36 6 3645.1.n.d 6
135.q even 36 6 3645.1.n.e 6
135.r odd 36 6 3645.1.n.d 6
135.r odd 36 6 3645.1.n.e 6
180.v odd 12 1 2160.1.c.a 1
180.v odd 12 1 2160.1.c.b 1
180.x even 12 1 2160.1.c.a 1
180.x even 12 1 2160.1.c.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.1.d.a 1 45.k odd 12 1
135.1.d.a 1 45.l even 12 1
135.1.d.b yes 1 45.k odd 12 1
135.1.d.b yes 1 45.l even 12 1
405.1.h.a 2 5.c odd 4 1
405.1.h.a 2 15.e even 4 1
405.1.h.a 2 45.k odd 12 1
405.1.h.a 2 45.l even 12 1
405.1.h.b 2 5.c odd 4 1
405.1.h.b 2 15.e even 4 1
405.1.h.b 2 45.k odd 12 1
405.1.h.b 2 45.l even 12 1
675.1.c.c 2 9.c even 3 1
675.1.c.c 2 9.d odd 6 1
675.1.c.c 2 45.h odd 6 1
675.1.c.c 2 45.j even 6 1
2025.1.j.c 4 1.a even 1 1 trivial
2025.1.j.c 4 3.b odd 2 1 inner
2025.1.j.c 4 5.b even 2 1 inner
2025.1.j.c 4 9.c even 3 1 inner
2025.1.j.c 4 9.d odd 6 1 inner
2025.1.j.c 4 15.d odd 2 1 CM
2025.1.j.c 4 45.h odd 6 1 inner
2025.1.j.c 4 45.j even 6 1 inner
2160.1.c.a 1 180.v odd 12 1
2160.1.c.a 1 180.x even 12 1
2160.1.c.b 1 180.v odd 12 1
2160.1.c.b 1 180.x even 12 1
3645.1.n.d 6 135.q even 36 6
3645.1.n.d 6 135.r odd 36 6
3645.1.n.e 6 135.q even 36 6
3645.1.n.e 6 135.r odd 36 6

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2025, [\chi])\):

\( T_{2}^{4} - T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T - 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$53$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less