Properties

Label 2016.3.g.a.1135.2
Level 2016
Weight 3
Character 2016.1135
Analytic conductor 54.932
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2016.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(54.9320212950\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-7})\)
Defining polynomial: \(x^{4} + 6 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1135.2
Root \(0.707107 - 1.87083i\) of defining polynomial
Character \(\chi\) \(=\) 2016.1135
Dual form 2016.3.g.a.1135.3

$q$-expansion

\(f(q)\) \(=\) \(q-1.54985i q^{5} -2.64575i q^{7} +O(q^{10})\) \(q-1.54985i q^{5} -2.64575i q^{7} -4.48528 q^{11} -1.54985i q^{13} -23.6569 q^{17} +24.8701 q^{19} +35.2248i q^{23} +22.5980 q^{25} +22.4499i q^{29} +46.7156i q^{31} -4.10051 q^{35} -58.5826i q^{37} +26.9706 q^{41} +17.1716 q^{43} -36.1326i q^{47} -7.00000 q^{49} -97.8149i q^{53} +6.95149i q^{55} +61.5563 q^{59} -37.6825i q^{61} -2.40202 q^{65} +33.3726 q^{67} +102.199i q^{71} +69.3137 q^{73} +11.8669i q^{77} -38.7005i q^{79} +3.61522 q^{83} +36.6645i q^{85} -44.0589 q^{89} -4.10051 q^{91} -38.5447i q^{95} +96.1076 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + O(q^{10}) \) \( 4q + 16q^{11} - 72q^{17} - 8q^{19} - 68q^{25} - 56q^{35} + 40q^{41} + 80q^{43} - 28q^{49} + 184q^{59} - 168q^{65} + 224q^{67} + 232q^{73} + 88q^{83} - 312q^{89} - 56q^{91} - 136q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.54985i − 0.309969i −0.987917 0.154985i \(-0.950467\pi\)
0.987917 0.154985i \(-0.0495328\pi\)
\(6\) 0 0
\(7\) − 2.64575i − 0.377964i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.48528 −0.407753 −0.203876 0.978997i \(-0.565354\pi\)
−0.203876 + 0.978997i \(0.565354\pi\)
\(12\) 0 0
\(13\) − 1.54985i − 0.119219i −0.998222 0.0596094i \(-0.981014\pi\)
0.998222 0.0596094i \(-0.0189855\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −23.6569 −1.39158 −0.695790 0.718245i \(-0.744945\pi\)
−0.695790 + 0.718245i \(0.744945\pi\)
\(18\) 0 0
\(19\) 24.8701 1.30895 0.654475 0.756083i \(-0.272890\pi\)
0.654475 + 0.756083i \(0.272890\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 35.2248i 1.53151i 0.643132 + 0.765756i \(0.277635\pi\)
−0.643132 + 0.765756i \(0.722365\pi\)
\(24\) 0 0
\(25\) 22.5980 0.903919
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 22.4499i 0.774136i 0.922051 + 0.387068i \(0.126512\pi\)
−0.922051 + 0.387068i \(0.873488\pi\)
\(30\) 0 0
\(31\) 46.7156i 1.50696i 0.657473 + 0.753478i \(0.271625\pi\)
−0.657473 + 0.753478i \(0.728375\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.10051 −0.117157
\(36\) 0 0
\(37\) − 58.5826i − 1.58331i −0.610966 0.791657i \(-0.709219\pi\)
0.610966 0.791657i \(-0.290781\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 26.9706 0.657819 0.328909 0.944362i \(-0.393319\pi\)
0.328909 + 0.944362i \(0.393319\pi\)
\(42\) 0 0
\(43\) 17.1716 0.399339 0.199669 0.979863i \(-0.436013\pi\)
0.199669 + 0.979863i \(0.436013\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 36.1326i − 0.768780i −0.923171 0.384390i \(-0.874412\pi\)
0.923171 0.384390i \(-0.125588\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 97.8149i − 1.84556i −0.385322 0.922782i \(-0.625910\pi\)
0.385322 0.922782i \(-0.374090\pi\)
\(54\) 0 0
\(55\) 6.95149i 0.126391i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 61.5563 1.04333 0.521664 0.853151i \(-0.325311\pi\)
0.521664 + 0.853151i \(0.325311\pi\)
\(60\) 0 0
\(61\) − 37.6825i − 0.617746i −0.951103 0.308873i \(-0.900048\pi\)
0.951103 0.308873i \(-0.0999518\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.40202 −0.0369542
\(66\) 0 0
\(67\) 33.3726 0.498098 0.249049 0.968491i \(-0.419882\pi\)
0.249049 + 0.968491i \(0.419882\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 102.199i 1.43942i 0.694277 + 0.719708i \(0.255724\pi\)
−0.694277 + 0.719708i \(0.744276\pi\)
\(72\) 0 0
\(73\) 69.3137 0.949503 0.474751 0.880120i \(-0.342538\pi\)
0.474751 + 0.880120i \(0.342538\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11.8669i 0.154116i
\(78\) 0 0
\(79\) − 38.7005i − 0.489880i −0.969538 0.244940i \(-0.921232\pi\)
0.969538 0.244940i \(-0.0787682\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.61522 0.0435569 0.0217785 0.999763i \(-0.493067\pi\)
0.0217785 + 0.999763i \(0.493067\pi\)
\(84\) 0 0
\(85\) 36.6645i 0.431347i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −44.0589 −0.495044 −0.247522 0.968882i \(-0.579616\pi\)
−0.247522 + 0.968882i \(0.579616\pi\)
\(90\) 0 0
\(91\) −4.10051 −0.0450605
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 38.5447i − 0.405734i
\(96\) 0 0
\(97\) 96.1076 0.990800 0.495400 0.868665i \(-0.335021\pi\)
0.495400 + 0.868665i \(0.335021\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 19.6162i − 0.194219i −0.995274 0.0971097i \(-0.969040\pi\)
0.995274 0.0971097i \(-0.0309598\pi\)
\(102\) 0 0
\(103\) − 43.0841i − 0.418293i −0.977884 0.209146i \(-0.932932\pi\)
0.977884 0.209146i \(-0.0670685\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.5980 0.145776 0.0728878 0.997340i \(-0.476779\pi\)
0.0728878 + 0.997340i \(0.476779\pi\)
\(108\) 0 0
\(109\) 3.85180i 0.0353376i 0.999844 + 0.0176688i \(0.00562445\pi\)
−0.999844 + 0.0176688i \(0.994376\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.7746 0.121899 0.0609496 0.998141i \(-0.480587\pi\)
0.0609496 + 0.998141i \(0.480587\pi\)
\(114\) 0 0
\(115\) 54.5929 0.474721
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 62.5902i 0.525968i
\(120\) 0 0
\(121\) −100.882 −0.833738
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 73.7695i − 0.590156i
\(126\) 0 0
\(127\) − 125.025i − 0.984445i −0.870469 0.492223i \(-0.836185\pi\)
0.870469 0.492223i \(-0.163815\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 100.350 0.766033 0.383016 0.923742i \(-0.374885\pi\)
0.383016 + 0.923742i \(0.374885\pi\)
\(132\) 0 0
\(133\) − 65.8000i − 0.494737i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −57.3137 −0.418348 −0.209174 0.977878i \(-0.567078\pi\)
−0.209174 + 0.977878i \(0.567078\pi\)
\(138\) 0 0
\(139\) 183.664 1.32132 0.660662 0.750684i \(-0.270276\pi\)
0.660662 + 0.750684i \(0.270276\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.95149i 0.0486118i
\(144\) 0 0
\(145\) 34.7939 0.239958
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 192.310i − 1.29067i −0.763900 0.645335i \(-0.776718\pi\)
0.763900 0.645335i \(-0.223282\pi\)
\(150\) 0 0
\(151\) 114.753i 0.759954i 0.924996 + 0.379977i \(0.124068\pi\)
−0.924996 + 0.379977i \(0.875932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 72.4020 0.467110
\(156\) 0 0
\(157\) − 212.146i − 1.35125i −0.737245 0.675625i \(-0.763874\pi\)
0.737245 0.675625i \(-0.236126\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 93.1960 0.578857
\(162\) 0 0
\(163\) 240.534 1.47567 0.737835 0.674982i \(-0.235848\pi\)
0.737835 + 0.674982i \(0.235848\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 212.101i − 1.27006i −0.772486 0.635032i \(-0.780987\pi\)
0.772486 0.635032i \(-0.219013\pi\)
\(168\) 0 0
\(169\) 166.598 0.985787
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 182.213i 1.05325i 0.850096 + 0.526627i \(0.176544\pi\)
−0.850096 + 0.526627i \(0.823456\pi\)
\(174\) 0 0
\(175\) − 59.7886i − 0.341649i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 57.2061 0.319587 0.159793 0.987150i \(-0.448917\pi\)
0.159793 + 0.987150i \(0.448917\pi\)
\(180\) 0 0
\(181\) 326.212i 1.80228i 0.433533 + 0.901138i \(0.357267\pi\)
−0.433533 + 0.901138i \(0.642733\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −90.7939 −0.490778
\(186\) 0 0
\(187\) 106.108 0.567421
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 97.0628i 0.508182i 0.967180 + 0.254091i \(0.0817763\pi\)
−0.967180 + 0.254091i \(0.918224\pi\)
\(192\) 0 0
\(193\) 157.304 0.815045 0.407522 0.913195i \(-0.366393\pi\)
0.407522 + 0.913195i \(0.366393\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 124.117i 0.630034i 0.949086 + 0.315017i \(0.102010\pi\)
−0.949086 + 0.315017i \(0.897990\pi\)
\(198\) 0 0
\(199\) − 180.975i − 0.909421i −0.890639 0.454710i \(-0.849743\pi\)
0.890639 0.454710i \(-0.150257\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 59.3970 0.292596
\(204\) 0 0
\(205\) − 41.8002i − 0.203903i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −111.549 −0.533728
\(210\) 0 0
\(211\) −164.049 −0.777482 −0.388741 0.921347i \(-0.627090\pi\)
−0.388741 + 0.921347i \(0.627090\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 26.6133i − 0.123783i
\(216\) 0 0
\(217\) 123.598 0.569576
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 36.6645i 0.165903i
\(222\) 0 0
\(223\) − 10.5830i − 0.0474574i −0.999718 0.0237287i \(-0.992446\pi\)
0.999718 0.0237287i \(-0.00755379\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 105.806 0.466106 0.233053 0.972464i \(-0.425128\pi\)
0.233053 + 0.972464i \(0.425128\pi\)
\(228\) 0 0
\(229\) 74.8788i 0.326982i 0.986545 + 0.163491i \(0.0522754\pi\)
−0.986545 + 0.163491i \(0.947725\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 419.137 1.79887 0.899436 0.437053i \(-0.143978\pi\)
0.899436 + 0.437053i \(0.143978\pi\)
\(234\) 0 0
\(235\) −56.0000 −0.238298
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 148.318i − 0.620577i −0.950642 0.310288i \(-0.899574\pi\)
0.950642 0.310288i \(-0.100426\pi\)
\(240\) 0 0
\(241\) −459.872 −1.90818 −0.954092 0.299515i \(-0.903175\pi\)
−0.954092 + 0.299515i \(0.903175\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.8489i 0.0442813i
\(246\) 0 0
\(247\) − 38.5447i − 0.156052i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 124.919 0.497685 0.248842 0.968544i \(-0.419950\pi\)
0.248842 + 0.968544i \(0.419950\pi\)
\(252\) 0 0
\(253\) − 157.993i − 0.624478i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 427.352 1.66285 0.831425 0.555637i \(-0.187526\pi\)
0.831425 + 0.555637i \(0.187526\pi\)
\(258\) 0 0
\(259\) −154.995 −0.598436
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 257.624i − 0.979558i −0.871847 0.489779i \(-0.837078\pi\)
0.871847 0.489779i \(-0.162922\pi\)
\(264\) 0 0
\(265\) −151.598 −0.572068
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 215.246i − 0.800171i −0.916478 0.400085i \(-0.868980\pi\)
0.916478 0.400085i \(-0.131020\pi\)
\(270\) 0 0
\(271\) 378.549i 1.39686i 0.715678 + 0.698431i \(0.246118\pi\)
−0.715678 + 0.698431i \(0.753882\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −101.358 −0.368576
\(276\) 0 0
\(277\) 166.449i 0.600898i 0.953798 + 0.300449i \(0.0971365\pi\)
−0.953798 + 0.300449i \(0.902864\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 421.765 1.50094 0.750471 0.660904i \(-0.229827\pi\)
0.750471 + 0.660904i \(0.229827\pi\)
\(282\) 0 0
\(283\) 345.439 1.22063 0.610316 0.792158i \(-0.291043\pi\)
0.610316 + 0.792158i \(0.291043\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 71.3574i − 0.248632i
\(288\) 0 0
\(289\) 270.647 0.936494
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 511.038i 1.74416i 0.489365 + 0.872079i \(0.337229\pi\)
−0.489365 + 0.872079i \(0.662771\pi\)
\(294\) 0 0
\(295\) − 95.4028i − 0.323399i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 54.5929 0.182585
\(300\) 0 0
\(301\) − 45.4317i − 0.150936i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −58.4020 −0.191482
\(306\) 0 0
\(307\) −223.331 −0.727462 −0.363731 0.931504i \(-0.618497\pi\)
−0.363731 + 0.931504i \(0.618497\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.3988i 0.0398674i 0.999801 + 0.0199337i \(0.00634551\pi\)
−0.999801 + 0.0199337i \(0.993654\pi\)
\(312\) 0 0
\(313\) 410.049 1.31006 0.655030 0.755603i \(-0.272656\pi\)
0.655030 + 0.755603i \(0.272656\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 130.316i − 0.411092i −0.978647 0.205546i \(-0.934103\pi\)
0.978647 0.205546i \(-0.0658970\pi\)
\(318\) 0 0
\(319\) − 100.694i − 0.315656i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −588.347 −1.82151
\(324\) 0 0
\(325\) − 35.0234i − 0.107764i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −95.5980 −0.290571
\(330\) 0 0
\(331\) −214.260 −0.647311 −0.323655 0.946175i \(-0.604912\pi\)
−0.323655 + 0.946175i \(0.604912\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 51.7223i − 0.154395i
\(336\) 0 0
\(337\) 164.049 0.486792 0.243396 0.969927i \(-0.421739\pi\)
0.243396 + 0.969927i \(0.421739\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 209.533i − 0.614466i
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −109.691 −0.316113 −0.158057 0.987430i \(-0.550523\pi\)
−0.158057 + 0.987430i \(0.550523\pi\)
\(348\) 0 0
\(349\) − 463.479i − 1.32802i −0.747723 0.664010i \(-0.768853\pi\)
0.747723 0.664010i \(-0.231147\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −78.0975 −0.221240 −0.110620 0.993863i \(-0.535284\pi\)
−0.110620 + 0.993863i \(0.535284\pi\)
\(354\) 0 0
\(355\) 158.392 0.446174
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 365.114i 1.01703i 0.861053 + 0.508515i \(0.169805\pi\)
−0.861053 + 0.508515i \(0.830195\pi\)
\(360\) 0 0
\(361\) 257.520 0.713351
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 107.426i − 0.294316i
\(366\) 0 0
\(367\) 220.739i 0.601468i 0.953708 + 0.300734i \(0.0972317\pi\)
−0.953708 + 0.300734i \(0.902768\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −258.794 −0.697558
\(372\) 0 0
\(373\) − 251.553i − 0.674406i −0.941432 0.337203i \(-0.890519\pi\)
0.941432 0.337203i \(-0.109481\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 34.7939 0.0922916
\(378\) 0 0
\(379\) −286.024 −0.754682 −0.377341 0.926074i \(-0.623161\pi\)
−0.377341 + 0.926074i \(0.623161\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 106.894i 0.279096i 0.990215 + 0.139548i \(0.0445649\pi\)
−0.990215 + 0.139548i \(0.955435\pi\)
\(384\) 0 0
\(385\) 18.3919 0.0477712
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 77.1807i 0.198408i 0.995067 + 0.0992040i \(0.0316296\pi\)
−0.995067 + 0.0992040i \(0.968370\pi\)
\(390\) 0 0
\(391\) − 833.307i − 2.13122i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −59.9798 −0.151848
\(396\) 0 0
\(397\) 657.514i 1.65621i 0.560576 + 0.828103i \(0.310580\pi\)
−0.560576 + 0.828103i \(0.689420\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −318.794 −0.794997 −0.397499 0.917603i \(-0.630122\pi\)
−0.397499 + 0.917603i \(0.630122\pi\)
\(402\) 0 0
\(403\) 72.4020 0.179658
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 262.759i 0.645600i
\(408\) 0 0
\(409\) 145.265 0.355171 0.177585 0.984105i \(-0.443171\pi\)
0.177585 + 0.984105i \(0.443171\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 162.863i − 0.394341i
\(414\) 0 0
\(415\) − 5.60304i − 0.0135013i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 707.012 1.68738 0.843690 0.536831i \(-0.180379\pi\)
0.843690 + 0.536831i \(0.180379\pi\)
\(420\) 0 0
\(421\) 121.989i 0.289761i 0.989449 + 0.144880i \(0.0462798\pi\)
−0.989449 + 0.144880i \(0.953720\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −534.597 −1.25788
\(426\) 0 0
\(427\) −99.6985 −0.233486
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 588.861i − 1.36627i −0.730294 0.683133i \(-0.760617\pi\)
0.730294 0.683133i \(-0.239383\pi\)
\(432\) 0 0
\(433\) 137.696 0.318004 0.159002 0.987278i \(-0.449172\pi\)
0.159002 + 0.987278i \(0.449172\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 876.042i 2.00467i
\(438\) 0 0
\(439\) 440.543i 1.00352i 0.865008 + 0.501758i \(0.167313\pi\)
−0.865008 + 0.501758i \(0.832687\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −487.058 −1.09945 −0.549727 0.835344i \(-0.685268\pi\)
−0.549727 + 0.835344i \(0.685268\pi\)
\(444\) 0 0
\(445\) 68.2844i 0.153448i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −264.039 −0.588059 −0.294030 0.955796i \(-0.594996\pi\)
−0.294030 + 0.955796i \(0.594996\pi\)
\(450\) 0 0
\(451\) −120.971 −0.268227
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.35515i 0.0139674i
\(456\) 0 0
\(457\) −514.323 −1.12543 −0.562717 0.826650i \(-0.690244\pi\)
−0.562717 + 0.826650i \(0.690244\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 202.224i 0.438664i 0.975650 + 0.219332i \(0.0703878\pi\)
−0.975650 + 0.219332i \(0.929612\pi\)
\(462\) 0 0
\(463\) 722.653i 1.56081i 0.625277 + 0.780403i \(0.284986\pi\)
−0.625277 + 0.780403i \(0.715014\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −347.282 −0.743645 −0.371822 0.928304i \(-0.621267\pi\)
−0.371822 + 0.928304i \(0.621267\pi\)
\(468\) 0 0
\(469\) − 88.2956i − 0.188263i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −77.0193 −0.162832
\(474\) 0 0
\(475\) 562.013 1.18319
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 29.1811i 0.0609210i 0.999536 + 0.0304605i \(0.00969737\pi\)
−0.999536 + 0.0304605i \(0.990303\pi\)
\(480\) 0 0
\(481\) −90.7939 −0.188761
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 148.952i − 0.307117i
\(486\) 0 0
\(487\) − 701.643i − 1.44074i −0.693588 0.720372i \(-0.743971\pi\)
0.693588 0.720372i \(-0.256029\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −59.9512 −0.122100 −0.0610501 0.998135i \(-0.519445\pi\)
−0.0610501 + 0.998135i \(0.519445\pi\)
\(492\) 0 0
\(493\) − 531.095i − 1.07727i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 270.392 0.544048
\(498\) 0 0
\(499\) 84.2843 0.168906 0.0844532 0.996427i \(-0.473086\pi\)
0.0844532 + 0.996427i \(0.473086\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 409.987i 0.815083i 0.913187 + 0.407542i \(0.133614\pi\)
−0.913187 + 0.407542i \(0.866386\pi\)
\(504\) 0 0
\(505\) −30.4020 −0.0602020
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 477.033i − 0.937196i −0.883411 0.468598i \(-0.844759\pi\)
0.883411 0.468598i \(-0.155241\pi\)
\(510\) 0 0
\(511\) − 183.387i − 0.358878i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −66.7737 −0.129658
\(516\) 0 0
\(517\) 162.065i 0.313472i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −210.873 −0.404747 −0.202373 0.979308i \(-0.564865\pi\)
−0.202373 + 0.979308i \(0.564865\pi\)
\(522\) 0 0
\(523\) −511.566 −0.978139 −0.489069 0.872245i \(-0.662663\pi\)
−0.489069 + 0.872245i \(0.662663\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1105.15i − 2.09705i
\(528\) 0 0
\(529\) −711.784 −1.34553
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 41.8002i − 0.0784244i
\(534\) 0 0
\(535\) − 24.1745i − 0.0451859i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 31.3970 0.0582504
\(540\) 0 0
\(541\) 342.417i 0.632933i 0.948604 + 0.316466i \(0.102496\pi\)
−0.948604 + 0.316466i \(0.897504\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.96970 0.0109536
\(546\) 0 0
\(547\) 441.976 0.807999 0.404000 0.914759i \(-0.367620\pi\)
0.404000 + 0.914759i \(0.367620\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 558.331i 1.01331i
\(552\) 0 0
\(553\) −102.392 −0.185157
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 365.710i − 0.656571i −0.944579 0.328285i \(-0.893529\pi\)
0.944579 0.328285i \(-0.106471\pi\)
\(558\) 0 0
\(559\) − 26.6133i − 0.0476087i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 806.389 1.43231 0.716154 0.697943i \(-0.245901\pi\)
0.716154 + 0.697943i \(0.245901\pi\)
\(564\) 0 0
\(565\) − 21.3485i − 0.0377850i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −222.891 −0.391725 −0.195862 0.980631i \(-0.562751\pi\)
−0.195862 + 0.980631i \(0.562751\pi\)
\(570\) 0 0
\(571\) −573.082 −1.00365 −0.501823 0.864970i \(-0.667337\pi\)
−0.501823 + 0.864970i \(0.667337\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 796.008i 1.38436i
\(576\) 0 0
\(577\) −723.901 −1.25459 −0.627297 0.778780i \(-0.715839\pi\)
−0.627297 + 0.778780i \(0.715839\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 9.56498i − 0.0164630i
\(582\) 0 0
\(583\) 438.727i 0.752534i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21.1198 0.0359793 0.0179896 0.999838i \(-0.494273\pi\)
0.0179896 + 0.999838i \(0.494273\pi\)
\(588\) 0 0
\(589\) 1161.82i 1.97253i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 128.745 0.217108 0.108554 0.994091i \(-0.465378\pi\)
0.108554 + 0.994091i \(0.465378\pi\)
\(594\) 0 0
\(595\) 97.0051 0.163034
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 324.130i − 0.541119i −0.962703 0.270559i \(-0.912791\pi\)
0.962703 0.270559i \(-0.0872086\pi\)
\(600\) 0 0
\(601\) −721.862 −1.20110 −0.600551 0.799587i \(-0.705052\pi\)
−0.600551 + 0.799587i \(0.705052\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 156.352i 0.258433i
\(606\) 0 0
\(607\) 705.999i 1.16310i 0.813512 + 0.581548i \(0.197553\pi\)
−0.813512 + 0.581548i \(0.802447\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −56.0000 −0.0916530
\(612\) 0 0
\(613\) − 21.8269i − 0.0356066i −0.999842 0.0178033i \(-0.994333\pi\)
0.999842 0.0178033i \(-0.00566727\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 699.578 1.13384 0.566919 0.823774i \(-0.308135\pi\)
0.566919 + 0.823774i \(0.308135\pi\)
\(618\) 0 0
\(619\) −96.1981 −0.155409 −0.0777044 0.996976i \(-0.524759\pi\)
−0.0777044 + 0.996976i \(0.524759\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 116.569i 0.187109i
\(624\) 0 0
\(625\) 450.618 0.720989
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1385.88i 2.20331i
\(630\) 0 0
\(631\) 269.399i 0.426940i 0.976950 + 0.213470i \(0.0684766\pi\)
−0.976950 + 0.213470i \(0.931523\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −193.769 −0.305148
\(636\) 0 0
\(637\) 10.8489i 0.0170313i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −635.813 −0.991908 −0.495954 0.868349i \(-0.665182\pi\)
−0.495954 + 0.868349i \(0.665182\pi\)
\(642\) 0 0
\(643\) −1281.70 −1.99332 −0.996658 0.0816828i \(-0.973971\pi\)
−0.996658 + 0.0816828i \(0.973971\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 260.761i 0.403031i 0.979485 + 0.201516i \(0.0645867\pi\)
−0.979485 + 0.201516i \(0.935413\pi\)
\(648\) 0 0
\(649\) −276.098 −0.425420
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 1090.58i − 1.67011i −0.550167 0.835055i \(-0.685436\pi\)
0.550167 0.835055i \(-0.314564\pi\)
\(654\) 0 0
\(655\) − 155.527i − 0.237446i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −362.780 −0.550500 −0.275250 0.961373i \(-0.588761\pi\)
−0.275250 + 0.961373i \(0.588761\pi\)
\(660\) 0 0
\(661\) − 117.834i − 0.178266i −0.996020 0.0891330i \(-0.971590\pi\)
0.996020 0.0891330i \(-0.0284096\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −101.980 −0.153353
\(666\) 0 0
\(667\) −790.794 −1.18560
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 169.017i 0.251888i
\(672\) 0 0
\(673\) −6.56854 −0.00976009 −0.00488005 0.999988i \(-0.501553\pi\)
−0.00488005 + 0.999988i \(0.501553\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 125.796i 0.185813i 0.995675 + 0.0929066i \(0.0296158\pi\)
−0.995675 + 0.0929066i \(0.970384\pi\)
\(678\) 0 0
\(679\) − 254.277i − 0.374487i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −553.775 −0.810797 −0.405399 0.914140i \(-0.632867\pi\)
−0.405399 + 0.914140i \(0.632867\pi\)
\(684\) 0 0
\(685\) 88.8274i 0.129675i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −151.598 −0.220026
\(690\) 0 0
\(691\) 1046.83 1.51494 0.757471 0.652868i \(-0.226435\pi\)
0.757471 + 0.652868i \(0.226435\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 284.651i − 0.409569i
\(696\) 0 0
\(697\) −638.039 −0.915407
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 625.993i − 0.893000i −0.894784 0.446500i \(-0.852670\pi\)
0.894784 0.446500i \(-0.147330\pi\)
\(702\) 0 0
\(703\) − 1456.95i − 2.07248i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −51.8995 −0.0734081
\(708\) 0 0
\(709\) − 593.492i − 0.837083i −0.908198 0.418541i \(-0.862541\pi\)
0.908198 0.418541i \(-0.137459\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1645.55 −2.30792
\(714\) 0 0
\(715\) 10.7737 0.0150682
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 611.505i 0.850493i 0.905078 + 0.425247i \(0.139813\pi\)
−0.905078 + 0.425247i \(0.860187\pi\)
\(720\) 0 0
\(721\) −113.990 −0.158100
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 507.323i 0.699756i
\(726\) 0 0
\(727\) 944.144i 1.29868i 0.760496 + 0.649342i \(0.224956\pi\)
−0.760496 + 0.649342i \(0.775044\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −406.225 −0.555712
\(732\) 0 0
\(733\) 218.254i 0.297755i 0.988856 + 0.148878i \(0.0475660\pi\)
−0.988856 + 0.148878i \(0.952434\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −149.685 −0.203101
\(738\) 0 0
\(739\) 7.29942 0.00987743 0.00493872 0.999988i \(-0.498428\pi\)
0.00493872 + 0.999988i \(0.498428\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 106.867i 0.143832i 0.997411 + 0.0719159i \(0.0229113\pi\)
−0.997411 + 0.0719159i \(0.977089\pi\)
\(744\) 0 0
\(745\) −298.051 −0.400068
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 41.2684i − 0.0550980i
\(750\) 0 0
\(751\) 127.463i 0.169725i 0.996393 + 0.0848624i \(0.0270451\pi\)
−0.996393 + 0.0848624i \(0.972955\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 177.849 0.235562
\(756\) 0 0
\(757\) − 704.275i − 0.930350i −0.885219 0.465175i \(-0.845991\pi\)
0.885219 0.465175i \(-0.154009\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1002.93 1.31791 0.658955 0.752182i \(-0.270999\pi\)
0.658955 + 0.752182i \(0.270999\pi\)
\(762\) 0 0
\(763\) 10.1909 0.0133564
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 95.4028i − 0.124384i
\(768\) 0 0
\(769\) −646.950 −0.841288 −0.420644 0.907226i \(-0.638196\pi\)
−0.420644 + 0.907226i \(0.638196\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 564.265i − 0.729968i −0.931014 0.364984i \(-0.881075\pi\)
0.931014 0.364984i \(-0.118925\pi\)
\(774\) 0 0
\(775\) 1055.68i 1.36217i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 670.759 0.861052
\(780\) 0 0
\(781\) − 458.389i − 0.586926i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −328.794 −0.418846
\(786\) 0 0
\(787\) −923.345 −1.17325 −0.586623 0.809860i \(-0.699543\pi\)
−0.586623 + 0.809860i \(0.699543\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 36.4442i − 0.0460735i
\(792\) 0 0
\(793\) −58.4020 −0.0736469
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 207.983i − 0.260957i −0.991451 0.130479i \(-0.958349\pi\)
0.991451 0.130479i \(-0.0416514\pi\)
\(798\) 0 0
\(799\) 854.785i 1.06982i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −310.891 −0.387162
\(804\) 0 0
\(805\) − 144.439i − 0.179428i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −340.540 −0.420939 −0.210470 0.977600i \(-0.567499\pi\)
−0.210470 + 0.977600i \(0.567499\pi\)
\(810\) 0 0
\(811\) 907.380 1.11884 0.559420 0.828884i \(-0.311024\pi\)
0.559420 + 0.828884i \(0.311024\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 372.791i − 0.457412i
\(816\) 0 0
\(817\) 427.058 0.522715
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 633.423i 0.771526i 0.922598 + 0.385763i \(0.126062\pi\)
−0.922598 + 0.385763i \(0.873938\pi\)
\(822\) 0 0
\(823\) − 143.649i − 0.174544i −0.996185 0.0872718i \(-0.972185\pi\)
0.996185 0.0872718i \(-0.0278149\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1545.57 1.86888 0.934442 0.356114i \(-0.115899\pi\)
0.934442 + 0.356114i \(0.115899\pi\)
\(828\) 0 0
\(829\) 743.956i 0.897413i 0.893679 + 0.448707i \(0.148115\pi\)
−0.893679 + 0.448707i \(0.851885\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 165.598 0.198797
\(834\) 0 0
\(835\) −328.723 −0.393681
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 96.3107i − 0.114792i −0.998351 0.0573961i \(-0.981720\pi\)
0.998351 0.0573961i \(-0.0182798\pi\)
\(840\) 0 0
\(841\) 337.000 0.400713
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 258.201i − 0.305563i
\(846\) 0 0
\(847\) 266.909i 0.315123i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2063.56 2.42486
\(852\) 0 0
\(853\) 904.866i 1.06080i 0.847746 + 0.530402i \(0.177959\pi\)
−0.847746 + 0.530402i \(0.822041\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −160.932 −0.187785 −0.0938926 0.995582i \(-0.529931\pi\)
−0.0938926 + 0.995582i \(0.529931\pi\)
\(858\) 0 0
\(859\) −231.693 −0.269724 −0.134862 0.990864i \(-0.543059\pi\)
−0.134862 + 0.990864i \(0.543059\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1337.35i 1.54965i 0.632176 + 0.774825i \(0.282162\pi\)
−0.632176 + 0.774825i \(0.717838\pi\)
\(864\) 0 0
\(865\) 282.402 0.326476
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 173.583i 0.199750i
\(870\) 0 0
\(871\) − 51.7223i − 0.0593827i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −195.176 −0.223058
\(876\) 0 0
\(877\) − 1436.14i − 1.63755i −0.574111 0.818777i \(-0.694652\pi\)
0.574111 0.818777i \(-0.305348\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 186.706 0.211926 0.105963 0.994370i \(-0.466208\pi\)
0.105963 + 0.994370i \(0.466208\pi\)
\(882\) 0 0
\(883\) −1277.99 −1.44733 −0.723664 0.690153i \(-0.757543\pi\)
−0.723664 + 0.690153i \(0.757543\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 980.717i 1.10566i 0.833295 + 0.552828i \(0.186451\pi\)
−0.833295 + 0.552828i \(0.813549\pi\)
\(888\) 0 0
\(889\) −330.784 −0.372085
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 898.621i − 1.00629i
\(894\) 0 0
\(895\) − 88.6605i − 0.0990621i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1048.76 −1.16659
\(900\) 0 0
\(901\) 2313.99i 2.56825i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 505.578 0.558649
\(906\) 0 0
\(907\) 658.372 0.725878 0.362939 0.931813i \(-0.381773\pi\)
0.362939 + 0.931813i \(0.381773\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 276.507i 0.303520i 0.988417 + 0.151760i \(0.0484941\pi\)
−0.988417 + 0.151760i \(0.951506\pi\)
\(912\) 0 0
\(913\) −16.2153 −0.0177605
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 265.502i − 0.289533i
\(918\) 0 0
\(919\) − 1339.73i − 1.45782i −0.684611 0.728908i \(-0.740028\pi\)
0.684611 0.728908i \(-0.259972\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 158.392 0.171606
\(924\) 0 0
\(925\) − 1323.85i − 1.43119i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −35.4012 −0.0381067 −0.0190534 0.999818i \(-0.506065\pi\)
−0.0190534 + 0.999818i \(0.506065\pi\)
\(930\) 0 0
\(931\) −174.090 −0.186993
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 164.450i − 0.175883i
\(936\) 0 0
\(937\) 610.235 0.651265 0.325633 0.945496i \(-0.394423\pi\)
0.325633 + 0.945496i \(0.394423\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1852.90i − 1.96907i −0.175175 0.984537i \(-0.556049\pi\)
0.175175 0.984537i \(-0.443951\pi\)
\(942\) 0 0
\(943\) 950.032i 1.00746i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1832.90 −1.93548 −0.967738 0.251959i \(-0.918925\pi\)
−0.967738 + 0.251959i \(0.918925\pi\)
\(948\) 0 0
\(949\) − 107.426i − 0.113199i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −349.687 −0.366933 −0.183467 0.983026i \(-0.558732\pi\)
−0.183467 + 0.983026i \(0.558732\pi\)
\(954\) 0 0
\(955\) 150.432 0.157521
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 151.638i 0.158121i
\(960\) 0 0
\(961\) −1221.35 −1.27092
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 243.796i − 0.252639i
\(966\) 0 0
\(967\) − 632.128i − 0.653700i −0.945076 0.326850i \(-0.894013\pi\)
0.945076 0.326850i \(-0.105987\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 656.497 0.676104 0.338052 0.941128i \(-0.390232\pi\)
0.338052 + 0.941128i \(0.390232\pi\)
\(972\) 0 0
\(973\) − 485.929i − 0.499413i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −169.314 −0.173300 −0.0866498 0.996239i \(-0.527616\pi\)
−0.0866498 + 0.996239i \(0.527616\pi\)
\(978\) 0 0
\(979\) 197.616 0.201855
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 698.607i − 0.710689i −0.934735 0.355345i \(-0.884364\pi\)
0.934735 0.355345i \(-0.115636\pi\)
\(984\) 0 0
\(985\) 192.362 0.195291
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 604.865i 0.611592i
\(990\) 0 0
\(991\) 429.702i 0.433605i 0.976216 + 0.216802i \(0.0695627\pi\)
−0.976216 + 0.216802i \(0.930437\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −280.483 −0.281892
\(996\) 0 0
\(997\) 52.3910i 0.0525487i 0.999655 + 0.0262743i \(0.00836434\pi\)
−0.999655 + 0.0262743i \(0.991636\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.3.g.a.1135.2 4
3.2 odd 2 224.3.g.a.15.2 4
4.3 odd 2 504.3.g.a.379.2 4
8.3 odd 2 inner 2016.3.g.a.1135.3 4
8.5 even 2 504.3.g.a.379.1 4
12.11 even 2 56.3.g.a.43.3 4
21.20 even 2 1568.3.g.h.687.3 4
24.5 odd 2 56.3.g.a.43.4 yes 4
24.11 even 2 224.3.g.a.15.1 4
48.5 odd 4 1792.3.d.g.1023.7 8
48.11 even 4 1792.3.d.g.1023.1 8
48.29 odd 4 1792.3.d.g.1023.2 8
48.35 even 4 1792.3.d.g.1023.8 8
84.11 even 6 392.3.k.i.275.3 8
84.23 even 6 392.3.k.i.67.1 8
84.47 odd 6 392.3.k.j.67.1 8
84.59 odd 6 392.3.k.j.275.3 8
84.83 odd 2 392.3.g.h.99.3 4
168.5 even 6 392.3.k.j.67.3 8
168.53 odd 6 392.3.k.i.275.1 8
168.83 odd 2 1568.3.g.h.687.4 4
168.101 even 6 392.3.k.j.275.1 8
168.125 even 2 392.3.g.h.99.4 4
168.149 odd 6 392.3.k.i.67.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.3.g.a.43.3 4 12.11 even 2
56.3.g.a.43.4 yes 4 24.5 odd 2
224.3.g.a.15.1 4 24.11 even 2
224.3.g.a.15.2 4 3.2 odd 2
392.3.g.h.99.3 4 84.83 odd 2
392.3.g.h.99.4 4 168.125 even 2
392.3.k.i.67.1 8 84.23 even 6
392.3.k.i.67.3 8 168.149 odd 6
392.3.k.i.275.1 8 168.53 odd 6
392.3.k.i.275.3 8 84.11 even 6
392.3.k.j.67.1 8 84.47 odd 6
392.3.k.j.67.3 8 168.5 even 6
392.3.k.j.275.1 8 168.101 even 6
392.3.k.j.275.3 8 84.59 odd 6
504.3.g.a.379.1 4 8.5 even 2
504.3.g.a.379.2 4 4.3 odd 2
1568.3.g.h.687.3 4 21.20 even 2
1568.3.g.h.687.4 4 168.83 odd 2
1792.3.d.g.1023.1 8 48.11 even 4
1792.3.d.g.1023.2 8 48.29 odd 4
1792.3.d.g.1023.7 8 48.5 odd 4
1792.3.d.g.1023.8 8 48.35 even 4
2016.3.g.a.1135.2 4 1.1 even 1 trivial
2016.3.g.a.1135.3 4 8.3 odd 2 inner