Properties

Label 2016.2.s.v.865.1
Level $2016$
Weight $2$
Character 2016.865
Analytic conductor $16.098$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1156923.1
Defining polynomial: \(x^{6} - 3 x^{5} + 12 x^{4} - 19 x^{3} + 27 x^{2} - 18 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.1
Root \(0.500000 + 2.43956i\) of defining polynomial
Character \(\chi\) \(=\) 2016.865
Dual form 2016.2.s.v.289.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.60074 - 2.77256i) q^{5} +(1.02398 - 2.43956i) q^{7} +O(q^{10})\) \(q+(-1.60074 - 2.77256i) q^{5} +(1.02398 - 2.43956i) q^{7} +(-2.12471 + 3.68011i) q^{11} -3.15352 q^{13} +(-2.20147 + 3.81306i) q^{17} +(1.57676 + 2.73103i) q^{19} +(-2.20147 - 3.81306i) q^{23} +(-2.62471 + 4.54614i) q^{25} -7.20147 q^{29} +(1.02398 - 1.77358i) q^{31} +(-8.40294 + 1.06607i) q^{35} +(4.82618 + 8.35920i) q^{37} +10.4989 q^{41} -0.750575 q^{43} +(1.20147 + 2.08101i) q^{47} +(-4.90294 - 4.99611i) q^{49} +(-1.64869 + 2.85561i) q^{53} +13.6044 q^{55} +(-4.12471 + 7.14421i) q^{59} +(4.04795 + 7.01126i) q^{61} +(5.04795 + 8.74331i) q^{65} +(2.57676 - 4.46308i) q^{67} +6.40294 q^{71} +(-7.62471 + 13.2064i) q^{73} +(6.80221 + 8.95172i) q^{77} +(-8.22545 - 14.2469i) q^{79} +14.5565 q^{83} +14.0959 q^{85} +(1.20147 + 2.08101i) q^{89} +(-3.22913 + 7.69321i) q^{91} +(5.04795 - 8.74331i) q^{95} +4.24943 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 3q^{7} + O(q^{10}) \) \( 6q + 3q^{7} - 6q^{13} + 6q^{17} + 3q^{19} + 6q^{23} - 3q^{25} - 24q^{29} + 3q^{31} - 12q^{35} - 3q^{37} + 12q^{41} - 30q^{43} - 12q^{47} + 9q^{49} + 6q^{53} + 24q^{55} - 12q^{59} + 18q^{61} + 24q^{65} + 9q^{67} - 33q^{73} + 12q^{77} - 27q^{79} + 36q^{83} + 72q^{85} - 12q^{89} + 51q^{91} + 24q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.60074 2.77256i −0.715871 1.23992i −0.962623 0.270846i \(-0.912697\pi\)
0.246752 0.969079i \(-0.420637\pi\)
\(6\) 0 0
\(7\) 1.02398 2.43956i 0.387027 0.922069i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.12471 + 3.68011i −0.640625 + 1.10959i 0.344669 + 0.938724i \(0.387991\pi\)
−0.985293 + 0.170871i \(0.945342\pi\)
\(12\) 0 0
\(13\) −3.15352 −0.874629 −0.437314 0.899309i \(-0.644070\pi\)
−0.437314 + 0.899309i \(0.644070\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.20147 + 3.81306i −0.533935 + 0.924803i 0.465279 + 0.885164i \(0.345954\pi\)
−0.999214 + 0.0396391i \(0.987379\pi\)
\(18\) 0 0
\(19\) 1.57676 + 2.73103i 0.361734 + 0.626541i 0.988246 0.152870i \(-0.0488517\pi\)
−0.626513 + 0.779411i \(0.715518\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.20147 3.81306i −0.459039 0.795078i 0.539872 0.841747i \(-0.318473\pi\)
−0.998910 + 0.0466689i \(0.985139\pi\)
\(24\) 0 0
\(25\) −2.62471 + 4.54614i −0.524943 + 0.909227i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.20147 −1.33728 −0.668640 0.743586i \(-0.733123\pi\)
−0.668640 + 0.743586i \(0.733123\pi\)
\(30\) 0 0
\(31\) 1.02398 1.77358i 0.183912 0.318544i −0.759298 0.650744i \(-0.774457\pi\)
0.943209 + 0.332199i \(0.107791\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.40294 + 1.06607i −1.42036 + 0.180198i
\(36\) 0 0
\(37\) 4.82618 + 8.35920i 0.793420 + 1.37424i 0.923838 + 0.382784i \(0.125035\pi\)
−0.130418 + 0.991459i \(0.541632\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.4989 1.63964 0.819822 0.572618i \(-0.194072\pi\)
0.819822 + 0.572618i \(0.194072\pi\)
\(42\) 0 0
\(43\) −0.750575 −0.114462 −0.0572308 0.998361i \(-0.518227\pi\)
−0.0572308 + 0.998361i \(0.518227\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.20147 + 2.08101i 0.175253 + 0.303547i 0.940249 0.340488i \(-0.110592\pi\)
−0.764996 + 0.644035i \(0.777259\pi\)
\(48\) 0 0
\(49\) −4.90294 4.99611i −0.700421 0.713730i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.64869 + 2.85561i −0.226465 + 0.392249i −0.956758 0.290885i \(-0.906050\pi\)
0.730293 + 0.683134i \(0.239384\pi\)
\(54\) 0 0
\(55\) 13.6044 1.83442
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.12471 + 7.14421i −0.536992 + 0.930097i 0.462072 + 0.886842i \(0.347106\pi\)
−0.999064 + 0.0432549i \(0.986227\pi\)
\(60\) 0 0
\(61\) 4.04795 + 7.01126i 0.518287 + 0.897700i 0.999774 + 0.0212466i \(0.00676352\pi\)
−0.481487 + 0.876453i \(0.659903\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.04795 + 8.74331i 0.626121 + 1.08447i
\(66\) 0 0
\(67\) 2.57676 4.46308i 0.314801 0.545252i −0.664594 0.747205i \(-0.731395\pi\)
0.979395 + 0.201953i \(0.0647288\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.40294 0.759890 0.379945 0.925009i \(-0.375943\pi\)
0.379945 + 0.925009i \(0.375943\pi\)
\(72\) 0 0
\(73\) −7.62471 + 13.2064i −0.892405 + 1.54569i −0.0554215 + 0.998463i \(0.517650\pi\)
−0.836984 + 0.547228i \(0.815683\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.80221 + 8.95172i 0.775184 + 1.02014i
\(78\) 0 0
\(79\) −8.22545 14.2469i −0.925435 1.60290i −0.790860 0.611998i \(-0.790366\pi\)
−0.134576 0.990903i \(-0.542967\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.5565 1.59778 0.798890 0.601477i \(-0.205421\pi\)
0.798890 + 0.601477i \(0.205421\pi\)
\(84\) 0 0
\(85\) 14.0959 1.52892
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.20147 + 2.08101i 0.127356 + 0.220587i 0.922651 0.385635i \(-0.126018\pi\)
−0.795296 + 0.606222i \(0.792684\pi\)
\(90\) 0 0
\(91\) −3.22913 + 7.69321i −0.338505 + 0.806468i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.04795 8.74331i 0.517909 0.897045i
\(96\) 0 0
\(97\) 4.24943 0.431464 0.215732 0.976453i \(-0.430786\pi\)
0.215732 + 0.976453i \(0.430786\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.95205 3.38104i 0.194236 0.336427i −0.752414 0.658691i \(-0.771111\pi\)
0.946650 + 0.322264i \(0.104444\pi\)
\(102\) 0 0
\(103\) 4.62471 + 8.01024i 0.455686 + 0.789272i 0.998727 0.0504341i \(-0.0160605\pi\)
−0.543041 + 0.839706i \(0.682727\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.27823 14.3383i −0.800287 1.38614i −0.919427 0.393260i \(-0.871347\pi\)
0.119140 0.992877i \(-0.461986\pi\)
\(108\) 0 0
\(109\) −10.0277 + 17.3684i −0.960475 + 1.66359i −0.239167 + 0.970979i \(0.576874\pi\)
−0.721309 + 0.692614i \(0.756459\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) −7.04795 + 12.2074i −0.657225 + 1.13835i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.04795 + 9.27512i 0.646085 + 0.850249i
\(120\) 0 0
\(121\) −3.52881 6.11207i −0.320801 0.555643i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.798528 0.0714225
\(126\) 0 0
\(127\) −12.4509 −1.10484 −0.552419 0.833566i \(-0.686295\pi\)
−0.552419 + 0.833566i \(0.686295\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.12471 3.68011i −0.185637 0.321533i 0.758154 0.652076i \(-0.226102\pi\)
−0.943791 + 0.330543i \(0.892768\pi\)
\(132\) 0 0
\(133\) 8.27708 1.05010i 0.717714 0.0910551i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.20147 + 9.00921i −0.444392 + 0.769709i −0.998010 0.0630617i \(-0.979914\pi\)
0.553618 + 0.832771i \(0.313247\pi\)
\(138\) 0 0
\(139\) −11.6524 −0.988341 −0.494171 0.869365i \(-0.664528\pi\)
−0.494171 + 0.869365i \(0.664528\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.70032 11.6053i 0.560309 0.970484i
\(144\) 0 0
\(145\) 11.5277 + 19.9665i 0.957320 + 1.65813i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.20147 + 9.00921i 0.426121 + 0.738064i 0.996524 0.0833012i \(-0.0265464\pi\)
−0.570403 + 0.821365i \(0.693213\pi\)
\(150\) 0 0
\(151\) −10.0037 + 17.3269i −0.814088 + 1.41004i 0.0958929 + 0.995392i \(0.469429\pi\)
−0.909981 + 0.414650i \(0.863904\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.55646 −0.526628
\(156\) 0 0
\(157\) −7.24943 + 12.5564i −0.578567 + 1.00211i 0.417077 + 0.908871i \(0.363055\pi\)
−0.995644 + 0.0932364i \(0.970279\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −11.5565 + 1.46615i −0.910777 + 0.115549i
\(162\) 0 0
\(163\) −5.35499 9.27512i −0.419435 0.726483i 0.576447 0.817134i \(-0.304439\pi\)
−0.995883 + 0.0906510i \(0.971105\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.3047 1.33908 0.669540 0.742776i \(-0.266491\pi\)
0.669540 + 0.742776i \(0.266491\pi\)
\(168\) 0 0
\(169\) −3.05531 −0.235024
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.95205 3.38104i −0.148411 0.257056i 0.782229 0.622991i \(-0.214083\pi\)
−0.930640 + 0.365935i \(0.880749\pi\)
\(174\) 0 0
\(175\) 8.40294 + 11.0583i 0.635203 + 0.835928i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.4029 + 18.0184i −0.777553 + 1.34676i 0.155796 + 0.987789i \(0.450206\pi\)
−0.933349 + 0.358971i \(0.883128\pi\)
\(180\) 0 0
\(181\) −13.2494 −0.984822 −0.492411 0.870363i \(-0.663884\pi\)
−0.492411 + 0.870363i \(0.663884\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.4509 26.7617i 1.13597 1.96756i
\(186\) 0 0
\(187\) −9.35499 16.2033i −0.684105 1.18490i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.09591 3.63021i −0.151654 0.262673i 0.780181 0.625553i \(-0.215127\pi\)
−0.931836 + 0.362880i \(0.881793\pi\)
\(192\) 0 0
\(193\) 9.15237 15.8524i 0.658802 1.14108i −0.322124 0.946697i \(-0.604397\pi\)
0.980926 0.194381i \(-0.0622698\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.9041 −0.848132 −0.424066 0.905631i \(-0.639397\pi\)
−0.424066 + 0.905631i \(0.639397\pi\)
\(198\) 0 0
\(199\) 0.402945 0.697921i 0.0285640 0.0494743i −0.851390 0.524533i \(-0.824240\pi\)
0.879954 + 0.475059i \(0.157573\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.37414 + 17.5685i −0.517563 + 1.23306i
\(204\) 0 0
\(205\) −16.8059 29.1087i −1.17377 2.03304i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −13.4006 −0.926942
\(210\) 0 0
\(211\) −8.49885 −0.585085 −0.292542 0.956253i \(-0.594501\pi\)
−0.292542 + 0.956253i \(0.594501\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.20147 + 2.08101i 0.0819397 + 0.141924i
\(216\) 0 0
\(217\) −3.27823 4.31416i −0.222541 0.292864i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.94239 12.0246i 0.466995 0.808860i
\(222\) 0 0
\(223\) 16.7985 1.12491 0.562456 0.826827i \(-0.309856\pi\)
0.562456 + 0.826827i \(0.309856\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.43175 14.6042i 0.559635 0.969316i −0.437892 0.899028i \(-0.644275\pi\)
0.997527 0.0702885i \(-0.0223920\pi\)
\(228\) 0 0
\(229\) −10.2771 17.8004i −0.679129 1.17629i −0.975244 0.221133i \(-0.929024\pi\)
0.296115 0.955152i \(-0.404309\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.95205 + 8.57720i 0.324419 + 0.561911i 0.981395 0.192001i \(-0.0614978\pi\)
−0.656975 + 0.753912i \(0.728164\pi\)
\(234\) 0 0
\(235\) 3.84648 6.66230i 0.250917 0.434601i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.40294 0.284803 0.142401 0.989809i \(-0.454518\pi\)
0.142401 + 0.989809i \(0.454518\pi\)
\(240\) 0 0
\(241\) −10.4318 + 18.0683i −0.671968 + 1.16388i 0.305377 + 0.952232i \(0.401218\pi\)
−0.977345 + 0.211652i \(0.932116\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.00368 + 21.5911i −0.383561 + 1.37941i
\(246\) 0 0
\(247\) −4.97234 8.61235i −0.316383 0.547991i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.44354 0.217354 0.108677 0.994077i \(-0.465339\pi\)
0.108677 + 0.994077i \(0.465339\pi\)
\(252\) 0 0
\(253\) 18.7100 1.17629
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.79853 4.84719i −0.174567 0.302360i 0.765444 0.643502i \(-0.222519\pi\)
−0.940011 + 0.341143i \(0.889186\pi\)
\(258\) 0 0
\(259\) 25.3347 3.21417i 1.57422 0.199719i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.798528 1.38309i 0.0492393 0.0852850i −0.840355 0.542036i \(-0.817654\pi\)
0.889595 + 0.456751i \(0.150987\pi\)
\(264\) 0 0
\(265\) 10.5565 0.648478
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.85016 15.3289i 0.539604 0.934621i −0.459321 0.888270i \(-0.651907\pi\)
0.998925 0.0463511i \(-0.0147593\pi\)
\(270\) 0 0
\(271\) −1.19779 2.07464i −0.0727607 0.126025i 0.827350 0.561687i \(-0.189848\pi\)
−0.900110 + 0.435662i \(0.856514\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −11.1535 19.3185i −0.672583 1.16495i
\(276\) 0 0
\(277\) 2.62471 4.54614i 0.157704 0.273151i −0.776337 0.630319i \(-0.782924\pi\)
0.934040 + 0.357168i \(0.116258\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −20.0959 −1.19882 −0.599411 0.800442i \(-0.704598\pi\)
−0.599411 + 0.800442i \(0.704598\pi\)
\(282\) 0 0
\(283\) −11.6247 + 20.1346i −0.691017 + 1.19688i 0.280487 + 0.959858i \(0.409504\pi\)
−0.971505 + 0.237020i \(0.923829\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.7506 25.6126i 0.634586 1.51186i
\(288\) 0 0
\(289\) −1.19296 2.06627i −0.0701742 0.121545i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −11.2015 −0.654397 −0.327199 0.944956i \(-0.606105\pi\)
−0.327199 + 0.944956i \(0.606105\pi\)
\(294\) 0 0
\(295\) 26.4103 1.53767
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.94239 + 12.0246i 0.401489 + 0.695399i
\(300\) 0 0
\(301\) −0.768571 + 1.83108i −0.0442997 + 0.105541i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.9594 22.4464i 0.742054 1.28527i
\(306\) 0 0
\(307\) 28.9571 1.65267 0.826335 0.563179i \(-0.190422\pi\)
0.826335 + 0.563179i \(0.190422\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.6524 + 23.6466i −0.774155 + 1.34088i 0.161113 + 0.986936i \(0.448492\pi\)
−0.935268 + 0.353940i \(0.884842\pi\)
\(312\) 0 0
\(313\) 2.74943 + 4.76214i 0.155407 + 0.269172i 0.933207 0.359339i \(-0.116998\pi\)
−0.777800 + 0.628511i \(0.783665\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.80221 8.31767i −0.269719 0.467167i 0.699070 0.715053i \(-0.253597\pi\)
−0.968789 + 0.247886i \(0.920264\pi\)
\(318\) 0 0
\(319\) 15.3011 26.5022i 0.856695 1.48384i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −13.8848 −0.772569
\(324\) 0 0
\(325\) 8.27708 14.3363i 0.459130 0.795236i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.30704 0.800162i 0.347718 0.0441144i
\(330\) 0 0
\(331\) 7.77823 + 13.4723i 0.427530 + 0.740504i 0.996653 0.0817484i \(-0.0260504\pi\)
−0.569123 + 0.822253i \(0.692717\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −16.4989 −0.901428
\(336\) 0 0
\(337\) 17.9977 0.980397 0.490199 0.871611i \(-0.336924\pi\)
0.490199 + 0.871611i \(0.336924\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.35131 + 7.53669i 0.235637 + 0.408135i
\(342\) 0 0
\(343\) −17.2088 + 6.84515i −0.929190 + 0.369603i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.84648 + 4.93025i −0.152807 + 0.264670i −0.932258 0.361793i \(-0.882165\pi\)
0.779451 + 0.626463i \(0.215498\pi\)
\(348\) 0 0
\(349\) −18.1918 −0.973785 −0.486893 0.873462i \(-0.661870\pi\)
−0.486893 + 0.873462i \(0.661870\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.4989 + 18.1845i −0.558797 + 0.967866i 0.438800 + 0.898585i \(0.355404\pi\)
−0.997597 + 0.0692807i \(0.977930\pi\)
\(354\) 0 0
\(355\) −10.2494 17.7525i −0.543983 0.942206i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.3453 + 21.3827i 0.651562 + 1.12854i 0.982744 + 0.184971i \(0.0592191\pi\)
−0.331182 + 0.943567i \(0.607448\pi\)
\(360\) 0 0
\(361\) 4.52766 7.84213i 0.238298 0.412744i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 48.8206 2.55539
\(366\) 0 0
\(367\) −2.92807 + 5.07157i −0.152844 + 0.264734i −0.932272 0.361758i \(-0.882177\pi\)
0.779428 + 0.626492i \(0.215510\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.27823 + 6.94616i 0.274032 + 0.360627i
\(372\) 0 0
\(373\) −0.317673 0.550227i −0.0164485 0.0284897i 0.857684 0.514177i \(-0.171903\pi\)
−0.874132 + 0.485688i \(0.838569\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 22.7100 1.16962
\(378\) 0 0
\(379\) −10.7506 −0.552220 −0.276110 0.961126i \(-0.589045\pi\)
−0.276110 + 0.961126i \(0.589045\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7.49885 12.9884i −0.383173 0.663676i 0.608341 0.793676i \(-0.291835\pi\)
−0.991514 + 0.130000i \(0.958502\pi\)
\(384\) 0 0
\(385\) 13.9306 33.1888i 0.709969 1.69146i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.10557 5.37900i 0.157458 0.272726i −0.776493 0.630126i \(-0.783003\pi\)
0.933952 + 0.357400i \(0.116337\pi\)
\(390\) 0 0
\(391\) 19.3859 0.980388
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −26.3335 + 45.6110i −1.32498 + 2.29494i
\(396\) 0 0
\(397\) −0.624713 1.08203i −0.0313534 0.0543057i 0.849923 0.526907i \(-0.176648\pi\)
−0.881276 + 0.472601i \(0.843315\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.05761 + 1.83184i 0.0528147 + 0.0914778i 0.891224 0.453563i \(-0.149847\pi\)
−0.838409 + 0.545041i \(0.816514\pi\)
\(402\) 0 0
\(403\) −3.22913 + 5.59302i −0.160854 + 0.278608i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −41.0170 −2.03314
\(408\) 0 0
\(409\) 8.05646 13.9542i 0.398367 0.689991i −0.595158 0.803609i \(-0.702911\pi\)
0.993525 + 0.113618i \(0.0362439\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 13.2052 + 17.3780i 0.649783 + 0.855116i
\(414\) 0 0
\(415\) −23.3011 40.3586i −1.14380 1.98113i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −20.1106 −0.982469 −0.491234 0.871027i \(-0.663454\pi\)
−0.491234 + 0.871027i \(0.663454\pi\)
\(420\) 0 0
\(421\) 4.96171 0.241819 0.120909 0.992664i \(-0.461419\pi\)
0.120909 + 0.992664i \(0.461419\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11.5565 20.0164i −0.560571 0.970937i
\(426\) 0 0
\(427\) 21.2494 2.69588i 1.02833 0.130463i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.4029 18.0184i 0.501092 0.867917i −0.498907 0.866656i \(-0.666265\pi\)
0.999999 0.00126164i \(-0.000401592\pi\)
\(432\) 0 0
\(433\) −8.05531 −0.387114 −0.193557 0.981089i \(-0.562002\pi\)
−0.193557 + 0.981089i \(0.562002\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.94239 12.0246i 0.332099 0.575213i
\(438\) 0 0
\(439\) −8.09959 14.0289i −0.386572 0.669563i 0.605414 0.795911i \(-0.293008\pi\)
−0.991986 + 0.126348i \(0.959674\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.72177 13.3745i −0.366872 0.635441i 0.622202 0.782856i \(-0.286238\pi\)
−0.989075 + 0.147415i \(0.952905\pi\)
\(444\) 0 0
\(445\) 3.84648 6.66230i 0.182341 0.315823i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −31.5159 −1.48733 −0.743663 0.668555i \(-0.766913\pi\)
−0.743663 + 0.668555i \(0.766913\pi\)
\(450\) 0 0
\(451\) −22.3070 + 38.6369i −1.05040 + 1.81934i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 26.4989 3.36186i 1.24229 0.157606i
\(456\) 0 0
\(457\) 5.55761 + 9.62607i 0.259974 + 0.450289i 0.966235 0.257664i \(-0.0829526\pi\)
−0.706260 + 0.707952i \(0.749619\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −13.5971 −0.633278 −0.316639 0.948546i \(-0.602554\pi\)
−0.316639 + 0.948546i \(0.602554\pi\)
\(462\) 0 0
\(463\) −2.55876 −0.118916 −0.0594579 0.998231i \(-0.518937\pi\)
−0.0594579 + 0.998231i \(0.518937\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.307039 + 0.531807i 0.0142081 + 0.0246091i 0.873042 0.487645i \(-0.162144\pi\)
−0.858834 + 0.512254i \(0.828811\pi\)
\(468\) 0 0
\(469\) −8.24943 10.8563i −0.380923 0.501295i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.59476 2.76220i 0.0733270 0.127006i
\(474\) 0 0
\(475\) −16.5542 −0.759557
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.0480 + 17.4036i −0.459103 + 0.795189i −0.998914 0.0465970i \(-0.985162\pi\)
0.539811 + 0.841786i \(0.318496\pi\)
\(480\) 0 0
\(481\) −15.2195 26.3609i −0.693948 1.20195i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.80221 11.7818i −0.308872 0.534983i
\(486\) 0 0
\(487\) 11.6860 20.2408i 0.529544 0.917196i −0.469863 0.882740i \(-0.655697\pi\)
0.999406 0.0344568i \(-0.0109701\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 22.7483 1.02662 0.513308 0.858205i \(-0.328420\pi\)
0.513308 + 0.858205i \(0.328420\pi\)
\(492\) 0 0
\(493\) 15.8538 27.4597i 0.714021 1.23672i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.55646 15.6204i 0.294098 0.700670i
\(498\) 0 0
\(499\) −4.26972 7.39537i −0.191139 0.331062i 0.754489 0.656313i \(-0.227885\pi\)
−0.945628 + 0.325250i \(0.894551\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7.59706 0.338736 0.169368 0.985553i \(-0.445827\pi\)
0.169368 + 0.985553i \(0.445827\pi\)
\(504\) 0 0
\(505\) −12.4989 −0.556192
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.49517 4.32176i −0.110596 0.191559i 0.805414 0.592712i \(-0.201943\pi\)
−0.916011 + 0.401153i \(0.868609\pi\)
\(510\) 0 0
\(511\) 24.4103 + 32.1240i 1.07985 + 1.42108i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 14.8059 25.6446i 0.652425 1.13003i
\(516\) 0 0
\(517\) −10.2111 −0.449085
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.24943 + 10.8243i −0.273792 + 0.474222i −0.969830 0.243783i \(-0.921611\pi\)
0.696037 + 0.718005i \(0.254945\pi\)
\(522\) 0 0
\(523\) 22.1309 + 38.3319i 0.967718 + 1.67614i 0.702129 + 0.712050i \(0.252233\pi\)
0.265589 + 0.964086i \(0.414434\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.50851 + 7.80897i 0.196394 + 0.340164i
\(528\) 0 0
\(529\) 1.80704 3.12988i 0.0785669 0.136082i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −33.1083 −1.43408
\(534\) 0 0
\(535\) −26.5025 + 45.9037i −1.14580 + 1.98459i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 28.8036 7.42807i 1.24066 0.319950i
\(540\) 0 0
\(541\) −12.9797 22.4815i −0.558041 0.966556i −0.997660 0.0683711i \(-0.978220\pi\)
0.439619 0.898184i \(-0.355114\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 64.2065 2.75031
\(546\) 0 0
\(547\) −22.9018 −0.979210 −0.489605 0.871944i \(-0.662859\pi\)
−0.489605 + 0.871944i \(0.662859\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −11.3550 19.6674i −0.483739 0.837860i
\(552\) 0 0
\(553\) −43.1789 + 5.47802i −1.83615 + 0.232949i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.25311 + 5.63454i −0.137839 + 0.238743i −0.926678 0.375856i \(-0.877349\pi\)
0.788840 + 0.614599i \(0.210682\pi\)
\(558\) 0 0
\(559\) 2.36695 0.100111
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.1224 38.3171i 0.932349 1.61488i 0.153053 0.988218i \(-0.451089\pi\)
0.779295 0.626657i \(-0.215577\pi\)
\(564\) 0 0
\(565\) 12.8059 + 22.1805i 0.538748 + 0.933139i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.50851 11.2731i −0.272851 0.472592i 0.696740 0.717324i \(-0.254633\pi\)
−0.969591 + 0.244732i \(0.921300\pi\)
\(570\) 0 0
\(571\) 15.0853 26.1285i 0.631299 1.09344i −0.355987 0.934491i \(-0.615855\pi\)
0.987286 0.158951i \(-0.0508112\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 23.1129 0.963876
\(576\) 0 0
\(577\) 14.9029 25.8127i 0.620418 1.07459i −0.368990 0.929433i \(-0.620296\pi\)
0.989408 0.145162i \(-0.0463702\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 14.9055 35.5114i 0.618383 1.47326i
\(582\) 0 0
\(583\) −7.00598 12.1347i −0.290158 0.502568i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.2494 0.753234 0.376617 0.926369i \(-0.377087\pi\)
0.376617 + 0.926369i \(0.377087\pi\)
\(588\) 0 0
\(589\) 6.45826 0.266108
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11.8944 20.6018i −0.488446 0.846013i 0.511466 0.859304i \(-0.329103\pi\)
−0.999912 + 0.0132906i \(0.995769\pi\)
\(594\) 0 0
\(595\) 14.4339 34.3879i 0.591731 1.40976i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.75057 13.4244i 0.316680 0.548506i −0.663113 0.748519i \(-0.730765\pi\)
0.979793 + 0.200013i \(0.0640986\pi\)
\(600\) 0 0
\(601\) 15.8059 0.644736 0.322368 0.946614i \(-0.395521\pi\)
0.322368 + 0.946614i \(0.395521\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −11.2974 + 19.5676i −0.459304 + 0.795537i
\(606\) 0 0
\(607\) 2.97602 + 5.15462i 0.120793 + 0.209220i 0.920081 0.391729i \(-0.128123\pi\)
−0.799288 + 0.600949i \(0.794790\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.78887 6.56251i −0.153281 0.265491i
\(612\) 0 0
\(613\) 14.2015 24.5977i 0.573592 0.993491i −0.422601 0.906316i \(-0.638883\pi\)
0.996193 0.0871747i \(-0.0277839\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.1918 0.410307 0.205153 0.978730i \(-0.434231\pi\)
0.205153 + 0.978730i \(0.434231\pi\)
\(618\) 0 0
\(619\) 10.4306 18.0663i 0.419241 0.726147i −0.576622 0.817011i \(-0.695629\pi\)
0.995863 + 0.0908638i \(0.0289628\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.30704 0.800162i 0.252686 0.0320578i
\(624\) 0 0
\(625\) 11.8453 + 20.5167i 0.473813 + 0.820669i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −42.4989 −1.69454
\(630\) 0 0
\(631\) −41.6191 −1.65683 −0.828416 0.560113i \(-0.810758\pi\)
−0.828416 + 0.560113i \(0.810758\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19.9306 + 34.5208i 0.790922 + 1.36992i
\(636\) 0 0
\(637\) 15.4615 + 15.7553i 0.612608 + 0.624249i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −24.4006 + 42.2632i −0.963768 + 1.66929i −0.250877 + 0.968019i \(0.580719\pi\)
−0.712890 + 0.701275i \(0.752614\pi\)
\(642\) 0 0
\(643\) −11.8442 −0.467089 −0.233544 0.972346i \(-0.575032\pi\)
−0.233544 + 0.972346i \(0.575032\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.7579 + 29.0256i −0.658822 + 1.14111i 0.322098 + 0.946706i \(0.395612\pi\)
−0.980921 + 0.194408i \(0.937722\pi\)
\(648\) 0 0
\(649\) −17.5277 30.3588i −0.688021 1.19169i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −23.2531 40.2756i −0.909964 1.57610i −0.814111 0.580709i \(-0.802775\pi\)
−0.0958532 0.995395i \(-0.530558\pi\)
\(654\) 0 0
\(655\) −6.80221 + 11.7818i −0.265784 + 0.460352i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10.1152 −0.394033 −0.197017 0.980400i \(-0.563125\pi\)
−0.197017 + 0.980400i \(0.563125\pi\)
\(660\) 0 0
\(661\) −16.6321 + 28.8076i −0.646913 + 1.12049i 0.336943 + 0.941525i \(0.390607\pi\)
−0.983856 + 0.178961i \(0.942726\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −16.1609 21.2677i −0.626692 0.824728i
\(666\) 0 0
\(667\) 15.8538 + 27.4597i 0.613863 + 1.06324i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −34.4029 −1.32811
\(672\) 0 0
\(673\) −50.4966 −1.94650 −0.973249 0.229751i \(-0.926209\pi\)
−0.973249 + 0.229751i \(0.926209\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.3993 + 24.9403i 0.553409 + 0.958532i 0.998025 + 0.0628110i \(0.0200065\pi\)
−0.444617 + 0.895721i \(0.646660\pi\)
\(678\) 0 0
\(679\) 4.35131 10.3667i 0.166988 0.397839i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.62356 11.4723i 0.253444 0.438977i −0.711028 0.703164i \(-0.751770\pi\)
0.964472 + 0.264186i \(0.0851034\pi\)
\(684\) 0 0
\(685\) 33.3047 1.27251
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.19917 9.00523i 0.198073 0.343072i
\(690\) 0 0
\(691\) −19.8335 34.3527i −0.754504 1.30684i −0.945621 0.325271i \(-0.894544\pi\)
0.191117 0.981567i \(-0.438789\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.6524 + 32.3069i 0.707525 + 1.22547i
\(696\) 0 0
\(697\) −23.1129 + 40.0328i −0.875465 + 1.51635i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.10787 0.0796130 0.0398065 0.999207i \(-0.487326\pi\)
0.0398065 + 0.999207i \(0.487326\pi\)
\(702\) 0 0
\(703\) −15.2195 + 26.3609i −0.574013 + 0.994220i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.24943 8.22425i −0.235034 0.309305i
\(708\) 0 0
\(709\) 7.49885 + 12.9884i 0.281625 + 0.487789i 0.971785 0.235868i \(-0.0757932\pi\)
−0.690160 + 0.723657i \(0.742460\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.01702 −0.337690
\(714\) 0 0
\(715\) −42.9018 −1.60444
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −11.4029 19.7505i −0.425258 0.736569i 0.571186 0.820820i \(-0.306483\pi\)
−0.996444 + 0.0842518i \(0.973150\pi\)
\(720\) 0 0
\(721\) 24.2771 3.07999i 0.904126 0.114705i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 18.9018 32.7389i 0.701995 1.21589i
\(726\) 0 0
\(727\) −16.9691 −0.629348 −0.314674 0.949200i \(-0.601895\pi\)
−0.314674 + 0.949200i \(0.601895\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.65237 2.86199i 0.0611151 0.105854i
\(732\) 0 0
\(733\) −0.672665 1.16509i −0.0248455 0.0430336i 0.853335 0.521362i \(-0.174576\pi\)
−0.878181 + 0.478329i \(0.841243\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.9497 + 18.9655i 0.403339 + 0.698604i
\(738\) 0 0
\(739\) 22.6321 39.1999i 0.832534 1.44199i −0.0634880 0.997983i \(-0.520222\pi\)
0.896022 0.444009i \(-0.146444\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −27.8036 −1.02001 −0.510007 0.860170i \(-0.670357\pi\)
−0.510007 + 0.860170i \(0.670357\pi\)
\(744\) 0 0
\(745\) 16.6524 28.8428i 0.610096 1.05672i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −43.4560 + 5.51318i −1.58785 + 0.201447i
\(750\) 0 0
\(751\) 15.0313 + 26.0350i 0.548501 + 0.950032i 0.998378 + 0.0569412i \(0.0181348\pi\)
−0.449876 + 0.893091i \(0.648532\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 64.0530 2.33113
\(756\) 0 0
\(757\) −17.3241 −0.629654 −0.314827 0.949149i \(-0.601946\pi\)
−0.314827 + 0.949149i \(0.601946\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.10557 + 10.5752i 0.221327 + 0.383349i 0.955211 0.295925i \(-0.0956280\pi\)
−0.733884 + 0.679274i \(0.762295\pi\)
\(762\) 0 0
\(763\) 32.1033 + 42.2480i 1.16222 + 1.52948i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.0074 22.5294i 0.469669 0.813490i
\(768\) 0 0
\(769\) 11.1152 0.400825 0.200413 0.979712i \(-0.435772\pi\)
0.200413 + 0.979712i \(0.435772\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.143858 + 0.249170i −0.00517423 + 0.00896202i −0.868601 0.495512i \(-0.834980\pi\)
0.863427 + 0.504474i \(0.168314\pi\)
\(774\) 0 0
\(775\) 5.37529 + 9.31027i 0.193086 + 0.334435i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.5542 + 28.6727i 0.593115 + 1.02730i
\(780\) 0 0
\(781\) −13.6044 + 23.5635i −0.486804 + 0.843170i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 46.4177 1.65672
\(786\) 0 0
\(787\) −5.75057 + 9.96029i −0.204986 + 0.355046i −0.950128 0.311860i \(-0.899048\pi\)
0.745142 + 0.666905i \(0.232382\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.19181 + 19.5165i −0.291267 + 0.693927i
\(792\) 0 0
\(793\) −12.7653 22.1101i −0.453309 0.785154i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.6980 0.662318 0.331159 0.943575i \(-0.392560\pi\)
0.331159 + 0.943575i \(0.392560\pi\)
\(798\) 0 0
\(799\) −10.5800 −0.374295
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −32.4006 56.1196i −1.14339 1.98042i
\(804\) 0