Properties

Label 2016.2.s.v.289.3
Level $2016$
Weight $2$
Character 2016.289
Analytic conductor $16.098$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1156923.1
Defining polynomial: \(x^{6} - 3 x^{5} + 12 x^{4} - 19 x^{3} + 27 x^{2} - 18 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.3
Root \(0.500000 + 0.0585812i\) of defining polynomial
Character \(\chi\) \(=\) 2016.289
Dual form 2016.2.s.v.865.3

$q$-expansion

\(f(q)\) \(=\) \(q+(1.37328 - 2.37860i) q^{5} +(2.64510 - 0.0585812i) q^{7} +O(q^{10})\) \(q+(1.37328 - 2.37860i) q^{5} +(2.64510 - 0.0585812i) q^{7} +(-0.771819 - 1.33683i) q^{11} +6.03677 q^{13} +(3.74657 + 6.48925i) q^{17} +(-3.01839 + 5.22800i) q^{19} +(3.74657 - 6.48925i) q^{23} +(-1.27182 - 2.20285i) q^{25} -1.25343 q^{29} +(2.64510 + 4.58145i) q^{31} +(3.49314 - 6.37208i) q^{35} +(-2.47475 + 4.28639i) q^{37} +5.08727 q^{41} -3.45636 q^{43} +(-4.74657 + 8.22130i) q^{47} +(6.99314 - 0.309906i) q^{49} +(-1.91692 - 3.32021i) q^{53} -4.23970 q^{55} +(-2.77182 - 4.80093i) q^{59} +(7.29021 - 12.6270i) q^{61} +(8.29021 - 14.3591i) q^{65} +(-2.01839 - 3.49595i) q^{67} -5.49314 q^{71} +(-6.27182 - 10.8631i) q^{73} +(-2.11985 - 3.49084i) q^{77} +(-3.89853 + 6.75246i) q^{79} -6.52991 q^{83} +20.5804 q^{85} +(-4.74657 + 8.22130i) q^{89} +(15.9679 - 0.353641i) q^{91} +(8.29021 + 14.3591i) q^{95} +1.54364 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 3q^{7} + O(q^{10}) \) \( 6q + 3q^{7} - 6q^{13} + 6q^{17} + 3q^{19} + 6q^{23} - 3q^{25} - 24q^{29} + 3q^{31} - 12q^{35} - 3q^{37} + 12q^{41} - 30q^{43} - 12q^{47} + 9q^{49} + 6q^{53} + 24q^{55} - 12q^{59} + 18q^{61} + 24q^{65} + 9q^{67} - 33q^{73} + 12q^{77} - 27q^{79} + 36q^{83} + 72q^{85} - 12q^{89} + 51q^{91} + 24q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.37328 2.37860i 0.614151 1.06374i −0.376381 0.926465i \(-0.622832\pi\)
0.990533 0.137277i \(-0.0438349\pi\)
\(6\) 0 0
\(7\) 2.64510 0.0585812i 0.999755 0.0221416i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.771819 1.33683i −0.232712 0.403069i 0.725893 0.687807i \(-0.241427\pi\)
−0.958605 + 0.284738i \(0.908093\pi\)
\(12\) 0 0
\(13\) 6.03677 1.67430 0.837150 0.546974i \(-0.184220\pi\)
0.837150 + 0.546974i \(0.184220\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.74657 + 6.48925i 0.908676 + 1.57387i 0.815905 + 0.578186i \(0.196239\pi\)
0.0927713 + 0.995687i \(0.470427\pi\)
\(18\) 0 0
\(19\) −3.01839 + 5.22800i −0.692465 + 1.19939i 0.278562 + 0.960418i \(0.410142\pi\)
−0.971028 + 0.238967i \(0.923191\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.74657 6.48925i 0.781213 1.35310i −0.150022 0.988683i \(-0.547934\pi\)
0.931235 0.364419i \(-0.118732\pi\)
\(24\) 0 0
\(25\) −1.27182 2.20285i −0.254364 0.440571i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.25343 −0.232756 −0.116378 0.993205i \(-0.537128\pi\)
−0.116378 + 0.993205i \(0.537128\pi\)
\(30\) 0 0
\(31\) 2.64510 + 4.58145i 0.475074 + 0.822853i 0.999592 0.0285462i \(-0.00908778\pi\)
−0.524518 + 0.851399i \(0.675754\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.49314 6.37208i 0.590448 1.07708i
\(36\) 0 0
\(37\) −2.47475 + 4.28639i −0.406846 + 0.704679i −0.994534 0.104409i \(-0.966705\pi\)
0.587688 + 0.809088i \(0.300038\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.08727 0.794499 0.397249 0.917711i \(-0.369965\pi\)
0.397249 + 0.917711i \(0.369965\pi\)
\(42\) 0 0
\(43\) −3.45636 −0.527090 −0.263545 0.964647i \(-0.584892\pi\)
−0.263545 + 0.964647i \(0.584892\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.74657 + 8.22130i −0.692358 + 1.19920i 0.278705 + 0.960377i \(0.410095\pi\)
−0.971063 + 0.238823i \(0.923239\pi\)
\(48\) 0 0
\(49\) 6.99314 0.309906i 0.999019 0.0442723i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.91692 3.32021i −0.263309 0.456065i 0.703810 0.710388i \(-0.251481\pi\)
−0.967119 + 0.254323i \(0.918147\pi\)
\(54\) 0 0
\(55\) −4.23970 −0.571682
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.77182 4.80093i −0.360860 0.625028i 0.627243 0.778824i \(-0.284183\pi\)
−0.988103 + 0.153796i \(0.950850\pi\)
\(60\) 0 0
\(61\) 7.29021 12.6270i 0.933415 1.61672i 0.155979 0.987760i \(-0.450147\pi\)
0.777436 0.628962i \(-0.216520\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.29021 14.3591i 1.02827 1.78102i
\(66\) 0 0
\(67\) −2.01839 3.49595i −0.246585 0.427098i 0.715991 0.698110i \(-0.245975\pi\)
−0.962576 + 0.271012i \(0.912642\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.49314 −0.651915 −0.325958 0.945384i \(-0.605687\pi\)
−0.325958 + 0.945384i \(0.605687\pi\)
\(72\) 0 0
\(73\) −6.27182 10.8631i −0.734061 1.27143i −0.955134 0.296173i \(-0.904289\pi\)
0.221073 0.975257i \(-0.429044\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.11985 3.49084i −0.241580 0.397818i
\(78\) 0 0
\(79\) −3.89853 + 6.75246i −0.438619 + 0.759711i −0.997583 0.0694809i \(-0.977866\pi\)
0.558964 + 0.829192i \(0.311199\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.52991 −0.716751 −0.358375 0.933578i \(-0.616669\pi\)
−0.358375 + 0.933578i \(0.616669\pi\)
\(84\) 0 0
\(85\) 20.5804 2.23226
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.74657 + 8.22130i −0.503135 + 0.871456i 0.496858 + 0.867832i \(0.334487\pi\)
−0.999993 + 0.00362404i \(0.998846\pi\)
\(90\) 0 0
\(91\) 15.9679 0.353641i 1.67389 0.0370717i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.29021 + 14.3591i 0.850557 + 1.47321i
\(96\) 0 0
\(97\) 1.54364 0.156733 0.0783663 0.996925i \(-0.475030\pi\)
0.0783663 + 0.996925i \(0.475030\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.29021 2.23470i −0.128380 0.222361i 0.794669 0.607043i \(-0.207644\pi\)
−0.923049 + 0.384682i \(0.874311\pi\)
\(102\) 0 0
\(103\) 3.27182 5.66696i 0.322382 0.558382i −0.658597 0.752496i \(-0.728850\pi\)
0.980979 + 0.194114i \(0.0621832\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.26496 3.92302i 0.218961 0.379252i −0.735529 0.677493i \(-0.763066\pi\)
0.954491 + 0.298241i \(0.0963998\pi\)
\(108\) 0 0
\(109\) 3.22132 + 5.57949i 0.308546 + 0.534418i 0.978045 0.208396i \(-0.0668242\pi\)
−0.669498 + 0.742814i \(0.733491\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) −10.2902 17.8232i −0.959567 1.66202i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.2902 + 16.9452i 0.943302 + 1.55337i
\(120\) 0 0
\(121\) 4.30859 7.46270i 0.391690 0.678427i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.74657 0.603431
\(126\) 0 0
\(127\) −3.79707 −0.336935 −0.168468 0.985707i \(-0.553882\pi\)
−0.168468 + 0.985707i \(0.553882\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.771819 + 1.33683i −0.0674341 + 0.116799i −0.897771 0.440462i \(-0.854815\pi\)
0.830337 + 0.557262i \(0.188148\pi\)
\(132\) 0 0
\(133\) −7.67768 + 14.0054i −0.665739 + 1.21442i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.746568 + 1.29309i 0.0637836 + 0.110476i 0.896154 0.443744i \(-0.146350\pi\)
−0.832370 + 0.554220i \(0.813017\pi\)
\(138\) 0 0
\(139\) 2.94950 0.250173 0.125087 0.992146i \(-0.460079\pi\)
0.125087 + 0.992146i \(0.460079\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.65929 8.07013i −0.389630 0.674858i
\(144\) 0 0
\(145\) −1.72132 + 2.98141i −0.142948 + 0.247593i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.746568 + 1.29309i −0.0611613 + 0.105934i −0.894985 0.446097i \(-0.852814\pi\)
0.833823 + 0.552031i \(0.186147\pi\)
\(150\) 0 0
\(151\) 4.86642 + 8.42889i 0.396024 + 0.685933i 0.993231 0.116154i \(-0.0370565\pi\)
−0.597208 + 0.802087i \(0.703723\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.5299 1.16707
\(156\) 0 0
\(157\) −4.54364 7.86981i −0.362622 0.628079i 0.625770 0.780008i \(-0.284785\pi\)
−0.988391 + 0.151929i \(0.951452\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.52991 17.3842i 0.751062 1.37007i
\(162\) 0 0
\(163\) 9.78334 16.9452i 0.766290 1.32725i −0.173271 0.984874i \(-0.555434\pi\)
0.939562 0.342380i \(-0.111233\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.8990 −0.920772 −0.460386 0.887719i \(-0.652289\pi\)
−0.460386 + 0.887719i \(0.652289\pi\)
\(168\) 0 0
\(169\) 23.4426 1.80328
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.29021 2.23470i 0.0980925 0.169901i −0.812803 0.582539i \(-0.802059\pi\)
0.910895 + 0.412638i \(0.135393\pi\)
\(174\) 0 0
\(175\) −3.49314 5.75227i −0.264056 0.434831i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.49314 + 2.58619i 0.111602 + 0.193301i 0.916416 0.400226i \(-0.131068\pi\)
−0.804814 + 0.593527i \(0.797735\pi\)
\(180\) 0 0
\(181\) −10.5436 −0.783702 −0.391851 0.920029i \(-0.628165\pi\)
−0.391851 + 0.920029i \(0.628165\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.79707 + 11.7729i 0.499730 + 0.865559i
\(186\) 0 0
\(187\) 5.78334 10.0170i 0.422920 0.732519i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.58041 + 14.8617i −0.620857 + 1.07536i 0.368470 + 0.929640i \(0.379882\pi\)
−0.989327 + 0.145716i \(0.953452\pi\)
\(192\) 0 0
\(193\) −5.44950 9.43881i −0.392264 0.679420i 0.600484 0.799637i \(-0.294975\pi\)
−0.992748 + 0.120216i \(0.961641\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.41959 −0.386130 −0.193065 0.981186i \(-0.561843\pi\)
−0.193065 + 0.981186i \(0.561843\pi\)
\(198\) 0 0
\(199\) −11.4931 19.9067i −0.814727 1.41115i −0.909524 0.415652i \(-0.863554\pi\)
0.0947970 0.995497i \(-0.469780\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.31546 + 0.0734275i −0.232699 + 0.00515360i
\(204\) 0 0
\(205\) 6.98627 12.1006i 0.487942 0.845141i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.31859 0.644580
\(210\) 0 0
\(211\) −3.08727 −0.212537 −0.106268 0.994337i \(-0.533890\pi\)
−0.106268 + 0.994337i \(0.533890\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.74657 + 8.22130i −0.323713 + 0.560688i
\(216\) 0 0
\(217\) 7.26496 + 11.9635i 0.493177 + 0.812132i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 22.6172 + 39.1741i 1.52140 + 2.63514i
\(222\) 0 0
\(223\) 22.7466 1.52322 0.761611 0.648034i \(-0.224409\pi\)
0.761611 + 0.648034i \(0.224409\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.3017 19.5752i −0.750122 1.29925i −0.947763 0.318975i \(-0.896661\pi\)
0.197641 0.980274i \(-0.436672\pi\)
\(228\) 0 0
\(229\) 5.67768 9.83403i 0.375192 0.649851i −0.615164 0.788399i \(-0.710910\pi\)
0.990356 + 0.138548i \(0.0442435\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.70979 2.96145i 0.112012 0.194011i −0.804569 0.593859i \(-0.797604\pi\)
0.916582 + 0.399848i \(0.130937\pi\)
\(234\) 0 0
\(235\) 13.0368 + 22.5804i 0.850425 + 1.47298i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.49314 −0.484691 −0.242345 0.970190i \(-0.577917\pi\)
−0.242345 + 0.970190i \(0.577917\pi\)
\(240\) 0 0
\(241\) 9.30173 + 16.1111i 0.599177 + 1.03781i 0.992943 + 0.118594i \(0.0378388\pi\)
−0.393766 + 0.919211i \(0.628828\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.86642 17.0594i 0.566455 1.08989i
\(246\) 0 0
\(247\) −18.2213 + 31.5602i −1.15939 + 2.00813i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.5299 1.54831 0.774157 0.632994i \(-0.218174\pi\)
0.774157 + 0.632994i \(0.218174\pi\)
\(252\) 0 0
\(253\) −11.5667 −0.727191
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.74657 + 15.1495i −0.545596 + 0.945000i 0.452973 + 0.891524i \(0.350363\pi\)
−0.998569 + 0.0534758i \(0.982970\pi\)
\(258\) 0 0
\(259\) −6.29487 + 11.4829i −0.391144 + 0.713514i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.74657 + 11.6854i 0.416011 + 0.720553i 0.995534 0.0944035i \(-0.0300944\pi\)
−0.579523 + 0.814956i \(0.696761\pi\)
\(264\) 0 0
\(265\) −10.5299 −0.646847
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.17035 + 5.49121i 0.193300 + 0.334805i 0.946342 0.323167i \(-0.104748\pi\)
−0.753042 + 0.657972i \(0.771414\pi\)
\(270\) 0 0
\(271\) −10.1199 + 17.5281i −0.614737 + 1.06476i 0.375693 + 0.926744i \(0.377405\pi\)
−0.990431 + 0.138012i \(0.955929\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.96323 + 3.40041i −0.118387 + 0.205052i
\(276\) 0 0
\(277\) 1.27182 + 2.20285i 0.0764162 + 0.132357i 0.901701 0.432360i \(-0.142319\pi\)
−0.825285 + 0.564716i \(0.808986\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −26.5804 −1.58565 −0.792827 0.609447i \(-0.791392\pi\)
−0.792827 + 0.609447i \(0.791392\pi\)
\(282\) 0 0
\(283\) −10.2718 17.7913i −0.610596 1.05758i −0.991140 0.132821i \(-0.957597\pi\)
0.380544 0.924763i \(-0.375737\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.4564 0.298018i 0.794304 0.0175915i
\(288\) 0 0
\(289\) −19.5735 + 33.9024i −1.15139 + 1.99426i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.25343 −0.306909 −0.153454 0.988156i \(-0.549040\pi\)
−0.153454 + 0.988156i \(0.549040\pi\)
\(294\) 0 0
\(295\) −15.2260 −0.886491
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.6172 39.1741i 1.30799 2.26550i
\(300\) 0 0
\(301\) −9.14243 + 0.202478i −0.526961 + 0.0116706i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −20.0230 34.6809i −1.14652 1.98582i
\(306\) 0 0
\(307\) −14.8485 −0.847449 −0.423724 0.905791i \(-0.639277\pi\)
−0.423724 + 0.905791i \(0.639277\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.949499 + 1.64458i 0.0538412 + 0.0932556i 0.891690 0.452647i \(-0.149520\pi\)
−0.837849 + 0.545903i \(0.816187\pi\)
\(312\) 0 0
\(313\) 0.0436371 0.0755817i 0.00246652 0.00427213i −0.864790 0.502135i \(-0.832548\pi\)
0.867256 + 0.497862i \(0.165882\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.11985 7.13579i 0.231394 0.400786i −0.726825 0.686823i \(-0.759005\pi\)
0.958219 + 0.286037i \(0.0923380\pi\)
\(318\) 0 0
\(319\) 0.967422 + 1.67562i 0.0541652 + 0.0938169i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −45.2344 −2.51691
\(324\) 0 0
\(325\) −7.67768 13.2981i −0.425881 0.737648i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.0735 + 22.0242i −0.665636 + 1.21424i
\(330\) 0 0
\(331\) −2.76496 + 4.78904i −0.151976 + 0.263230i −0.931954 0.362577i \(-0.881897\pi\)
0.779978 + 0.625807i \(0.215230\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.0873 −0.605763
\(336\) 0 0
\(337\) 7.17455 0.390823 0.195411 0.980721i \(-0.437396\pi\)
0.195411 + 0.980721i \(0.437396\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.08308 7.07210i 0.221111 0.382976i
\(342\) 0 0
\(343\) 18.4794 1.22940i 0.997794 0.0663814i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.0368 20.8483i −0.646168 1.11920i −0.984030 0.178000i \(-0.943037\pi\)
0.337863 0.941195i \(-0.390296\pi\)
\(348\) 0 0
\(349\) −31.1608 −1.66800 −0.834000 0.551764i \(-0.813955\pi\)
−0.834000 + 0.551764i \(0.813955\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.08727 8.81142i −0.270768 0.468984i 0.698290 0.715814i \(-0.253944\pi\)
−0.969059 + 0.246830i \(0.920611\pi\)
\(354\) 0 0
\(355\) −7.54364 + 13.0660i −0.400375 + 0.693469i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.1240 27.9277i 0.850995 1.47397i −0.0293169 0.999570i \(-0.509333\pi\)
0.880312 0.474396i \(-0.157333\pi\)
\(360\) 0 0
\(361\) −8.72132 15.1058i −0.459017 0.795040i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −34.4520 −1.80330
\(366\) 0 0
\(367\) 1.93531 + 3.35205i 0.101022 + 0.174976i 0.912106 0.409954i \(-0.134455\pi\)
−0.811084 + 0.584930i \(0.801122\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.26496 8.66999i −0.273343 0.450123i
\(372\) 0 0
\(373\) −17.3454 + 30.0431i −0.898109 + 1.55557i −0.0682000 + 0.997672i \(0.521726\pi\)
−0.829909 + 0.557899i \(0.811608\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.56668 −0.389704
\(378\) 0 0
\(379\) −13.4564 −0.691207 −0.345603 0.938381i \(-0.612326\pi\)
−0.345603 + 0.938381i \(0.612326\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.08727 + 3.61527i −0.106655 + 0.184731i −0.914413 0.404782i \(-0.867347\pi\)
0.807758 + 0.589514i \(0.200681\pi\)
\(384\) 0 0
\(385\) −11.2145 + 0.248367i −0.571542 + 0.0126579i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.32698 16.1548i −0.472897 0.819081i 0.526622 0.850099i \(-0.323458\pi\)
−0.999519 + 0.0310185i \(0.990125\pi\)
\(390\) 0 0
\(391\) 56.1471 2.83948
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.7076 + 18.5461i 0.538757 + 0.933155i
\(396\) 0 0
\(397\) 0.728181 1.26125i 0.0365464 0.0633002i −0.847174 0.531316i \(-0.821698\pi\)
0.883720 + 0.468016i \(0.155031\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.6172 + 25.3177i −0.729947 + 1.26431i 0.226958 + 0.973905i \(0.427122\pi\)
−0.956905 + 0.290401i \(0.906211\pi\)
\(402\) 0 0
\(403\) 15.9679 + 27.6572i 0.795417 + 1.37770i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.64023 0.378712
\(408\) 0 0
\(409\) −13.0299 22.5685i −0.644288 1.11594i −0.984466 0.175578i \(-0.943821\pi\)
0.340178 0.940361i \(-0.389513\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.61299 12.5366i −0.374611 0.616885i
\(414\) 0 0
\(415\) −8.96742 + 15.5320i −0.440193 + 0.762437i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.8853 1.60655 0.803275 0.595608i \(-0.203089\pi\)
0.803275 + 0.595608i \(0.203089\pi\)
\(420\) 0 0
\(421\) −17.1976 −0.838160 −0.419080 0.907949i \(-0.637647\pi\)
−0.419080 + 0.907949i \(0.637647\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 9.52991 16.5063i 0.462269 0.800673i
\(426\) 0 0
\(427\) 18.5436 33.8268i 0.897389 1.63699i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.49314 2.58619i −0.0719219 0.124572i 0.827822 0.560991i \(-0.189580\pi\)
−0.899744 + 0.436419i \(0.856247\pi\)
\(432\) 0 0
\(433\) 18.4426 0.886297 0.443148 0.896448i \(-0.353862\pi\)
0.443148 + 0.896448i \(0.353862\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 22.6172 + 39.1741i 1.08193 + 1.87395i
\(438\) 0 0
\(439\) 0.286010 0.495384i 0.0136505 0.0236434i −0.859119 0.511775i \(-0.828988\pi\)
0.872770 + 0.488132i \(0.162321\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18.2650 + 31.6358i −0.867794 + 1.50306i −0.00354850 + 0.999994i \(0.501130\pi\)
−0.864246 + 0.503070i \(0.832204\pi\)
\(444\) 0 0
\(445\) 13.0368 + 22.5804i 0.618002 + 1.07041i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 22.5530 1.06434 0.532170 0.846638i \(-0.321377\pi\)
0.532170 + 0.846638i \(0.321377\pi\)
\(450\) 0 0
\(451\) −3.92645 6.80082i −0.184889 0.320238i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 21.0873 38.4668i 0.988587 1.80335i
\(456\) 0 0
\(457\) −10.1172 + 17.5235i −0.473262 + 0.819714i −0.999532 0.0306040i \(-0.990257\pi\)
0.526270 + 0.850318i \(0.323590\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −25.4931 −1.18733 −0.593667 0.804711i \(-0.702320\pi\)
−0.593667 + 0.804711i \(0.702320\pi\)
\(462\) 0 0
\(463\) 7.70446 0.358057 0.179028 0.983844i \(-0.442705\pi\)
0.179028 + 0.983844i \(0.442705\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.0735 + 31.3043i −0.836344 + 1.44859i 0.0565874 + 0.998398i \(0.481978\pi\)
−0.892931 + 0.450193i \(0.851355\pi\)
\(468\) 0 0
\(469\) −5.54364 9.12890i −0.255981 0.421534i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.66769 + 4.62057i 0.122660 + 0.212454i
\(474\) 0 0
\(475\) 15.3554 0.704552
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13.2902 23.0193i −0.607245 1.05178i −0.991692 0.128632i \(-0.958941\pi\)
0.384447 0.923147i \(-0.374392\pi\)
\(480\) 0 0
\(481\) −14.9395 + 25.8760i −0.681183 + 1.17984i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.11985 3.67169i 0.0962575 0.166723i
\(486\) 0 0
\(487\) −20.2118 35.0078i −0.915883 1.58636i −0.805603 0.592456i \(-0.798158\pi\)
−0.110281 0.993900i \(-0.535175\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14.6309 0.660284 0.330142 0.943931i \(-0.392903\pi\)
0.330142 + 0.943931i \(0.392903\pi\)
\(492\) 0 0
\(493\) −4.69607 8.13383i −0.211500 0.366329i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.5299 + 0.321794i −0.651756 + 0.0144344i
\(498\) 0 0
\(499\) −18.0552 + 31.2725i −0.808260 + 1.39995i 0.105808 + 0.994387i \(0.466257\pi\)
−0.914068 + 0.405561i \(0.867076\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19.4931 0.869156 0.434578 0.900634i \(-0.356898\pi\)
0.434578 + 0.900634i \(0.356898\pi\)
\(504\) 0 0
\(505\) −7.08727 −0.315380
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.9537 + 20.7044i −0.529838 + 0.917707i 0.469556 + 0.882903i \(0.344414\pi\)
−0.999394 + 0.0348040i \(0.988919\pi\)
\(510\) 0 0
\(511\) −17.2260 28.3666i −0.762032 1.25487i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.98627 15.5647i −0.395982 0.685862i
\(516\) 0 0
\(517\) 14.6540 0.644480
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.54364 6.13776i −0.155250 0.268900i 0.777900 0.628388i \(-0.216285\pi\)
−0.933150 + 0.359488i \(0.882952\pi\)
\(522\) 0 0
\(523\) −14.3737 + 24.8961i −0.628520 + 1.08863i 0.359329 + 0.933211i \(0.383006\pi\)
−0.987849 + 0.155418i \(0.950328\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −19.8201 + 34.3294i −0.863378 + 1.49541i
\(528\) 0 0
\(529\) −16.5735 28.7062i −0.720589 1.24810i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 30.7107 1.33023
\(534\) 0 0
\(535\) −6.22085 10.7748i −0.268951 0.465837i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.81172 9.10944i −0.250329 0.392371i
\(540\) 0 0
\(541\) 3.51152 6.08214i 0.150972 0.261491i −0.780613 0.625015i \(-0.785093\pi\)
0.931585 + 0.363523i \(0.118426\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 17.6951 0.757976
\(546\) 0 0
\(547\) −5.59414 −0.239188 −0.119594 0.992823i \(-0.538159\pi\)
−0.119594 + 0.992823i \(0.538159\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.78334 6.55294i 0.161176 0.279165i
\(552\) 0 0
\(553\) −9.91646 + 18.0893i −0.421691 + 0.769237i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.3228 + 24.8078i 0.606876 + 1.05114i 0.991752 + 0.128172i \(0.0409108\pi\)
−0.384876 + 0.922968i \(0.625756\pi\)
\(558\) 0 0
\(559\) −20.8653 −0.882507
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.94637 + 17.2276i 0.419189 + 0.726057i 0.995858 0.0909207i \(-0.0289810\pi\)
−0.576669 + 0.816978i \(0.695648\pi\)
\(564\) 0 0
\(565\) −10.9863 + 19.0288i −0.462196 + 0.800547i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.8201 30.8653i 0.747058 1.29394i −0.202169 0.979351i \(-0.564799\pi\)
0.949227 0.314592i \(-0.101868\pi\)
\(570\) 0 0
\(571\) −13.8385 23.9690i −0.579123 1.00307i −0.995580 0.0939155i \(-0.970062\pi\)
0.416457 0.909155i \(-0.363272\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −19.0598 −0.794849
\(576\) 0 0
\(577\) 3.00686 + 5.20804i 0.125177 + 0.216814i 0.921802 0.387660i \(-0.126717\pi\)
−0.796625 + 0.604474i \(0.793383\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −17.2723 + 0.382530i −0.716575 + 0.0158700i
\(582\) 0 0
\(583\) −2.95903 + 5.12519i −0.122551 + 0.212264i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.5436 0.641555 0.320777 0.947155i \(-0.396056\pi\)
0.320777 + 0.947155i \(0.396056\pi\)
\(588\) 0 0
\(589\) −31.9358 −1.31589
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24.3270 + 42.1356i −0.998989 + 1.73030i −0.460568 + 0.887624i \(0.652354\pi\)
−0.538421 + 0.842676i \(0.680979\pi\)
\(594\) 0 0
\(595\) 54.4373 1.20562i 2.23171 0.0494258i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.4564 + 18.1110i 0.427235 + 0.739993i 0.996626 0.0820735i \(-0.0261542\pi\)
−0.569391 + 0.822067i \(0.692821\pi\)
\(600\) 0 0
\(601\) −7.98627 −0.325767 −0.162883 0.986645i \(-0.552079\pi\)
−0.162883 + 0.986645i \(0.552079\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −11.8338 20.4968i −0.481114 0.833314i
\(606\) 0 0
\(607\) 1.35490 2.34675i 0.0549936 0.0952517i −0.837218 0.546869i \(-0.815819\pi\)
0.892212 + 0.451618i \(0.149153\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −28.6540 + 49.6301i −1.15922 + 2.00782i
\(612\) 0 0
\(613\) 8.25343 + 14.2954i 0.333353 + 0.577384i 0.983167 0.182709i \(-0.0584866\pi\)
−0.649814 + 0.760093i \(0.725153\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.1608 0.932420 0.466210 0.884674i \(-0.345619\pi\)
0.466210 + 0.884674i \(0.345619\pi\)
\(618\) 0 0
\(619\) −14.7145 25.4862i −0.591424 1.02438i −0.994041 0.109008i \(-0.965233\pi\)
0.402617 0.915369i \(-0.368101\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0735 + 22.0242i −0.483716 + 0.882382i
\(624\) 0 0
\(625\) 15.6240 27.0616i 0.624962 1.08247i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −37.0873 −1.47877
\(630\) 0 0
\(631\) 35.7054 1.42141 0.710705 0.703491i \(-0.248376\pi\)
0.710705 + 0.703491i \(0.248376\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.21445 + 9.03170i −0.206929 + 0.358412i
\(636\) 0 0
\(637\) 42.2160 1.87083i 1.67266 0.0741252i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.68141 2.91229i −0.0664118 0.115029i 0.830908 0.556410i \(-0.187822\pi\)
−0.897319 + 0.441382i \(0.854488\pi\)
\(642\) 0 0
\(643\) −10.2113 −0.402695 −0.201348 0.979520i \(-0.564532\pi\)
−0.201348 + 0.979520i \(0.564532\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.2765 + 17.7994i 0.404010 + 0.699766i 0.994206 0.107494i \(-0.0342827\pi\)
−0.590196 + 0.807260i \(0.700949\pi\)
\(648\) 0 0
\(649\) −4.27868 + 7.41089i −0.167953 + 0.290903i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.67722 + 9.83323i −0.222167 + 0.384804i −0.955466 0.295102i \(-0.904646\pi\)
0.733299 + 0.679906i \(0.237980\pi\)
\(654\) 0 0
\(655\) 2.11985 + 3.67169i 0.0828295 + 0.143465i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.2344 0.827174 0.413587 0.910465i \(-0.364276\pi\)
0.413587 + 0.910465i \(0.364276\pi\)
\(660\) 0 0
\(661\) 14.4610 + 25.0472i 0.562469 + 0.974224i 0.997280 + 0.0737028i \(0.0234816\pi\)
−0.434812 + 0.900521i \(0.643185\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 22.7696 + 37.4955i 0.882968 + 1.45401i
\(666\) 0 0
\(667\) −4.69607 + 8.13383i −0.181832 + 0.314943i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −22.5069 −0.868868
\(672\) 0 0
\(673\) −34.2618 −1.32070 −0.660348 0.750960i \(-0.729591\pi\)
−0.660348 + 0.750960i \(0.729591\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.3733 30.0914i 0.667710 1.15651i −0.310833 0.950464i \(-0.600608\pi\)
0.978543 0.206042i \(-0.0660585\pi\)
\(678\) 0 0
\(679\) 4.08308 0.0904281i 0.156694 0.00347031i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.140907 0.244058i −0.00539166 0.00933863i 0.863317 0.504662i \(-0.168383\pi\)
−0.868709 + 0.495323i \(0.835050\pi\)
\(684\) 0 0
\(685\) 4.10100 0.156691
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −11.5720 20.0433i −0.440859 0.763590i
\(690\) 0 0
\(691\) 17.2076 29.8044i 0.654608 1.13381i −0.327384 0.944891i \(-0.606167\pi\)
0.981992 0.188922i \(-0.0604995\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.05050 7.01567i 0.153644 0.266120i
\(696\) 0 0
\(697\) 19.0598 + 33.0126i 0.721942 + 1.25044i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0.498472 0.0188270 0.00941352 0.999956i \(-0.497004\pi\)
0.00941352 + 0.999956i \(0.497004\pi\)
\(702\) 0 0
\(703\) −14.9395 25.8760i −0.563454 0.975931i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.54364 5.83543i −0.133272 0.219464i
\(708\) 0 0
\(709\) 2.08727 3.61527i 0.0783892 0.135774i −0.824166 0.566348i \(-0.808356\pi\)
0.902555 + 0.430574i \(0.141689\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 39.6402 1.48454
\(714\) 0 0
\(715\) −25.5941 −0.957166
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0.493136 0.854137i 0.0183909 0.0318540i −0.856683 0.515842i \(-0.827479\pi\)
0.875074 + 0.483988i \(0.160812\pi\)
\(720\) 0 0
\(721\) 8.32232 15.1813i 0.309939 0.565383i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.59414 + 2.76113i 0.0592048 + 0.102546i
\(726\) 0 0
\(727\) 34.9304 1.29550 0.647749 0.761854i \(-0.275711\pi\)
0.647749 + 0.761854i \(0.275711\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.9495 22.4292i −0.478955 0.829574i
\(732\) 0 0
\(733\) −2.56202 + 4.43756i −0.0946305 + 0.163905i −0.909454 0.415804i \(-0.863500\pi\)
0.814824 + 0.579709i \(0.196834\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.11566 + 5.39648i −0.114767 + 0.198782i
\(738\) 0 0
\(739\) −8.46102 14.6549i −0.311244 0.539090i 0.667388 0.744710i \(-0.267412\pi\)
−0.978632 + 0.205620i \(0.934079\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.81172 0.249898 0.124949 0.992163i \(-0.460123\pi\)
0.124949 + 0.992163i \(0.460123\pi\)
\(744\) 0 0
\(745\) 2.05050 + 3.55157i 0.0751245 + 0.130120i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.76122 10.5095i 0.210511 0.384008i
\(750\) 0 0
\(751\) −13.0877 + 22.6686i −0.477578 + 0.827190i −0.999670 0.0256996i \(-0.991819\pi\)
0.522091 + 0.852890i \(0.325152\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 26.7319 0.972874
\(756\) 0 0
\(757\) 49.7138 1.80688 0.903439 0.428717i \(-0.141034\pi\)
0.903439 + 0.428717i \(0.141034\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.32698 + 10.9586i −0.229353 + 0.397251i −0.957616 0.288046i \(-0.906994\pi\)
0.728264 + 0.685297i \(0.240328\pi\)
\(762\) 0 0
\(763\) 8.84757 + 14.5696i 0.320304 + 0.527455i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16.7328 28.9821i −0.604188 1.04648i
\(768\) 0 0
\(769\) −20.2344 −0.729670 −0.364835 0.931072i \(-0.618875\pi\)
−0.364835 + 0.931072i \(0.618875\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.87062 17.0964i −0.355021 0.614915i 0.632100 0.774887i \(-0.282193\pi\)
−0.987122 + 0.159972i \(0.948860\pi\)
\(774\) 0 0
\(775\) 6.72818 11.6536i 0.241683 0.418608i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −15.3554 + 26.5963i −0.550163 + 0.952910i
\(780\) 0 0
\(781\) 4.23970 + 7.34338i 0.151709 + 0.262767i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −24.9588 −0.890818
\(786\) 0 0
\(787\) −8.45636 14.6469i −0.301437 0.522104i 0.675025 0.737795i \(-0.264133\pi\)
−0.976462 + 0.215691i \(0.930800\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −21.1608 + 0.468649i −0.752392 + 0.0166633i
\(792\) 0 0
\(793\) 44.0093 76.2264i 1.56282 2.70688i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.48475 −0.123436 −0.0617180 0.998094i \(-0.519658\pi\)
−0.0617180 + 0.998094i \(0.519658\pi\)
\(798\) 0 0
\(799\) −71.1334 −2.51652
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.68141 + 16.7687i −0.341650 + 0.591754i
\(804\) 0