Properties

Label 2016.2.s.u.865.3
Level $2016$
Weight $2$
Character 2016.865
Analytic conductor $16.098$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1156923.1
Defining polynomial: \(x^{6} - 3 x^{5} + 12 x^{4} - 19 x^{3} + 27 x^{2} - 18 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.3
Root \(0.500000 - 0.0585812i\) of defining polynomial
Character \(\chi\) \(=\) 2016.865
Dual form 2016.2.s.u.289.3

$q$-expansion

\(f(q)\) \(=\) \(q+(1.37328 + 2.37860i) q^{5} +(-2.64510 - 0.0585812i) q^{7} +O(q^{10})\) \(q+(1.37328 + 2.37860i) q^{5} +(-2.64510 - 0.0585812i) q^{7} +(0.771819 - 1.33683i) q^{11} +6.03677 q^{13} +(3.74657 - 6.48925i) q^{17} +(3.01839 + 5.22800i) q^{19} +(-3.74657 - 6.48925i) q^{23} +(-1.27182 + 2.20285i) q^{25} -1.25343 q^{29} +(-2.64510 + 4.58145i) q^{31} +(-3.49314 - 6.37208i) q^{35} +(-2.47475 - 4.28639i) q^{37} +5.08727 q^{41} +3.45636 q^{43} +(4.74657 + 8.22130i) q^{47} +(6.99314 + 0.309906i) q^{49} +(-1.91692 + 3.32021i) q^{53} +4.23970 q^{55} +(2.77182 - 4.80093i) q^{59} +(7.29021 + 12.6270i) q^{61} +(8.29021 + 14.3591i) q^{65} +(2.01839 - 3.49595i) q^{67} +5.49314 q^{71} +(-6.27182 + 10.8631i) q^{73} +(-2.11985 + 3.49084i) q^{77} +(3.89853 + 6.75246i) q^{79} +6.52991 q^{83} +20.5804 q^{85} +(-4.74657 - 8.22130i) q^{89} +(-15.9679 - 0.353641i) q^{91} +(-8.29021 + 14.3591i) q^{95} +1.54364 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{7} + O(q^{10}) \) \( 6 q - 3 q^{7} - 6 q^{13} + 6 q^{17} - 3 q^{19} - 6 q^{23} - 3 q^{25} - 24 q^{29} - 3 q^{31} + 12 q^{35} - 3 q^{37} + 12 q^{41} + 30 q^{43} + 12 q^{47} + 9 q^{49} + 6 q^{53} - 24 q^{55} + 12 q^{59} + 18 q^{61} + 24 q^{65} - 9 q^{67} - 33 q^{73} + 12 q^{77} + 27 q^{79} - 36 q^{83} + 72 q^{85} - 12 q^{89} - 51 q^{91} - 24 q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.37328 + 2.37860i 0.614151 + 1.06374i 0.990533 + 0.137277i \(0.0438349\pi\)
−0.376381 + 0.926465i \(0.622832\pi\)
\(6\) 0 0
\(7\) −2.64510 0.0585812i −0.999755 0.0221416i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.771819 1.33683i 0.232712 0.403069i −0.725893 0.687807i \(-0.758573\pi\)
0.958605 + 0.284738i \(0.0919067\pi\)
\(12\) 0 0
\(13\) 6.03677 1.67430 0.837150 0.546974i \(-0.184220\pi\)
0.837150 + 0.546974i \(0.184220\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.74657 6.48925i 0.908676 1.57387i 0.0927713 0.995687i \(-0.470427\pi\)
0.815905 0.578186i \(-0.196239\pi\)
\(18\) 0 0
\(19\) 3.01839 + 5.22800i 0.692465 + 1.19939i 0.971028 + 0.238967i \(0.0768088\pi\)
−0.278562 + 0.960418i \(0.589858\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.74657 6.48925i −0.781213 1.35310i −0.931235 0.364419i \(-0.881268\pi\)
0.150022 0.988683i \(-0.452066\pi\)
\(24\) 0 0
\(25\) −1.27182 + 2.20285i −0.254364 + 0.440571i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.25343 −0.232756 −0.116378 0.993205i \(-0.537128\pi\)
−0.116378 + 0.993205i \(0.537128\pi\)
\(30\) 0 0
\(31\) −2.64510 + 4.58145i −0.475074 + 0.822853i −0.999592 0.0285462i \(-0.990912\pi\)
0.524518 + 0.851399i \(0.324246\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.49314 6.37208i −0.590448 1.07708i
\(36\) 0 0
\(37\) −2.47475 4.28639i −0.406846 0.704679i 0.587688 0.809088i \(-0.300038\pi\)
−0.994534 + 0.104409i \(0.966705\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.08727 0.794499 0.397249 0.917711i \(-0.369965\pi\)
0.397249 + 0.917711i \(0.369965\pi\)
\(42\) 0 0
\(43\) 3.45636 0.527090 0.263545 0.964647i \(-0.415108\pi\)
0.263545 + 0.964647i \(0.415108\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.74657 + 8.22130i 0.692358 + 1.19920i 0.971063 + 0.238823i \(0.0767615\pi\)
−0.278705 + 0.960377i \(0.589905\pi\)
\(48\) 0 0
\(49\) 6.99314 + 0.309906i 0.999019 + 0.0442723i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.91692 + 3.32021i −0.263309 + 0.456065i −0.967119 0.254323i \(-0.918147\pi\)
0.703810 + 0.710388i \(0.251481\pi\)
\(54\) 0 0
\(55\) 4.23970 0.571682
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.77182 4.80093i 0.360860 0.625028i −0.627243 0.778824i \(-0.715817\pi\)
0.988103 + 0.153796i \(0.0491499\pi\)
\(60\) 0 0
\(61\) 7.29021 + 12.6270i 0.933415 + 1.61672i 0.777436 + 0.628962i \(0.216520\pi\)
0.155979 + 0.987760i \(0.450147\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.29021 + 14.3591i 1.02827 + 1.78102i
\(66\) 0 0
\(67\) 2.01839 3.49595i 0.246585 0.427098i −0.715991 0.698110i \(-0.754025\pi\)
0.962576 + 0.271012i \(0.0873581\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.49314 0.651915 0.325958 0.945384i \(-0.394313\pi\)
0.325958 + 0.945384i \(0.394313\pi\)
\(72\) 0 0
\(73\) −6.27182 + 10.8631i −0.734061 + 1.27143i 0.221073 + 0.975257i \(0.429044\pi\)
−0.955134 + 0.296173i \(0.904289\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.11985 + 3.49084i −0.241580 + 0.397818i
\(78\) 0 0
\(79\) 3.89853 + 6.75246i 0.438619 + 0.759711i 0.997583 0.0694809i \(-0.0221343\pi\)
−0.558964 + 0.829192i \(0.688801\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.52991 0.716751 0.358375 0.933578i \(-0.383331\pi\)
0.358375 + 0.933578i \(0.383331\pi\)
\(84\) 0 0
\(85\) 20.5804 2.23226
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.74657 8.22130i −0.503135 0.871456i −0.999993 0.00362404i \(-0.998846\pi\)
0.496858 0.867832i \(-0.334487\pi\)
\(90\) 0 0
\(91\) −15.9679 0.353641i −1.67389 0.0370717i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.29021 + 14.3591i −0.850557 + 1.47321i
\(96\) 0 0
\(97\) 1.54364 0.156733 0.0783663 0.996925i \(-0.475030\pi\)
0.0783663 + 0.996925i \(0.475030\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.29021 + 2.23470i −0.128380 + 0.222361i −0.923049 0.384682i \(-0.874311\pi\)
0.794669 + 0.607043i \(0.207644\pi\)
\(102\) 0 0
\(103\) −3.27182 5.66696i −0.322382 0.558382i 0.658597 0.752496i \(-0.271150\pi\)
−0.980979 + 0.194114i \(0.937817\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.26496 3.92302i −0.218961 0.379252i 0.735529 0.677493i \(-0.236934\pi\)
−0.954491 + 0.298241i \(0.903600\pi\)
\(108\) 0 0
\(109\) 3.22132 5.57949i 0.308546 0.534418i −0.669498 0.742814i \(-0.733491\pi\)
0.978045 + 0.208396i \(0.0668242\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) 10.2902 17.8232i 0.959567 1.66202i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.2902 + 16.9452i −0.943302 + 1.55337i
\(120\) 0 0
\(121\) 4.30859 + 7.46270i 0.391690 + 0.678427i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.74657 0.603431
\(126\) 0 0
\(127\) 3.79707 0.336935 0.168468 0.985707i \(-0.446118\pi\)
0.168468 + 0.985707i \(0.446118\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.771819 + 1.33683i 0.0674341 + 0.116799i 0.897771 0.440462i \(-0.145185\pi\)
−0.830337 + 0.557262i \(0.811852\pi\)
\(132\) 0 0
\(133\) −7.67768 14.0054i −0.665739 1.21442i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.746568 1.29309i 0.0637836 0.110476i −0.832370 0.554220i \(-0.813017\pi\)
0.896154 + 0.443744i \(0.146350\pi\)
\(138\) 0 0
\(139\) −2.94950 −0.250173 −0.125087 0.992146i \(-0.539921\pi\)
−0.125087 + 0.992146i \(0.539921\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.65929 8.07013i 0.389630 0.674858i
\(144\) 0 0
\(145\) −1.72132 2.98141i −0.142948 0.247593i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.746568 1.29309i −0.0611613 0.105934i 0.833823 0.552031i \(-0.186147\pi\)
−0.894985 + 0.446097i \(0.852814\pi\)
\(150\) 0 0
\(151\) −4.86642 + 8.42889i −0.396024 + 0.685933i −0.993231 0.116154i \(-0.962944\pi\)
0.597208 + 0.802087i \(0.296277\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −14.5299 −1.16707
\(156\) 0 0
\(157\) −4.54364 + 7.86981i −0.362622 + 0.628079i −0.988391 0.151929i \(-0.951452\pi\)
0.625770 + 0.780008i \(0.284785\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.52991 + 17.3842i 0.751062 + 1.37007i
\(162\) 0 0
\(163\) −9.78334 16.9452i −0.766290 1.32725i −0.939562 0.342380i \(-0.888767\pi\)
0.173271 0.984874i \(-0.444566\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.8990 0.920772 0.460386 0.887719i \(-0.347711\pi\)
0.460386 + 0.887719i \(0.347711\pi\)
\(168\) 0 0
\(169\) 23.4426 1.80328
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.29021 + 2.23470i 0.0980925 + 0.169901i 0.910895 0.412638i \(-0.135393\pi\)
−0.812803 + 0.582539i \(0.802059\pi\)
\(174\) 0 0
\(175\) 3.49314 5.75227i 0.264056 0.434831i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.49314 + 2.58619i −0.111602 + 0.193301i −0.916416 0.400226i \(-0.868932\pi\)
0.804814 + 0.593527i \(0.202265\pi\)
\(180\) 0 0
\(181\) −10.5436 −0.783702 −0.391851 0.920029i \(-0.628165\pi\)
−0.391851 + 0.920029i \(0.628165\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.79707 11.7729i 0.499730 0.865559i
\(186\) 0 0
\(187\) −5.78334 10.0170i −0.422920 0.732519i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.58041 + 14.8617i 0.620857 + 1.07536i 0.989327 + 0.145716i \(0.0465485\pi\)
−0.368470 + 0.929640i \(0.620118\pi\)
\(192\) 0 0
\(193\) −5.44950 + 9.43881i −0.392264 + 0.679420i −0.992748 0.120216i \(-0.961641\pi\)
0.600484 + 0.799637i \(0.294975\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.41959 −0.386130 −0.193065 0.981186i \(-0.561843\pi\)
−0.193065 + 0.981186i \(0.561843\pi\)
\(198\) 0 0
\(199\) 11.4931 19.9067i 0.814727 1.41115i −0.0947970 0.995497i \(-0.530220\pi\)
0.909524 0.415652i \(-0.136446\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.31546 + 0.0734275i 0.232699 + 0.00515360i
\(204\) 0 0
\(205\) 6.98627 + 12.1006i 0.487942 + 0.845141i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.31859 0.644580
\(210\) 0 0
\(211\) 3.08727 0.212537 0.106268 0.994337i \(-0.466110\pi\)
0.106268 + 0.994337i \(0.466110\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.74657 + 8.22130i 0.323713 + 0.560688i
\(216\) 0 0
\(217\) 7.26496 11.9635i 0.493177 0.812132i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 22.6172 39.1741i 1.52140 2.63514i
\(222\) 0 0
\(223\) −22.7466 −1.52322 −0.761611 0.648034i \(-0.775591\pi\)
−0.761611 + 0.648034i \(0.775591\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.3017 19.5752i 0.750122 1.29925i −0.197641 0.980274i \(-0.563328\pi\)
0.947763 0.318975i \(-0.103339\pi\)
\(228\) 0 0
\(229\) 5.67768 + 9.83403i 0.375192 + 0.649851i 0.990356 0.138548i \(-0.0442435\pi\)
−0.615164 + 0.788399i \(0.710910\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.70979 + 2.96145i 0.112012 + 0.194011i 0.916582 0.399848i \(-0.130937\pi\)
−0.804569 + 0.593859i \(0.797604\pi\)
\(234\) 0 0
\(235\) −13.0368 + 22.5804i −0.850425 + 1.47298i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.49314 0.484691 0.242345 0.970190i \(-0.422083\pi\)
0.242345 + 0.970190i \(0.422083\pi\)
\(240\) 0 0
\(241\) 9.30173 16.1111i 0.599177 1.03781i −0.393766 0.919211i \(-0.628828\pi\)
0.992943 0.118594i \(-0.0378388\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.86642 + 17.0594i 0.566455 + 1.08989i
\(246\) 0 0
\(247\) 18.2213 + 31.5602i 1.15939 + 2.00813i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.5299 −1.54831 −0.774157 0.632994i \(-0.781826\pi\)
−0.774157 + 0.632994i \(0.781826\pi\)
\(252\) 0 0
\(253\) −11.5667 −0.727191
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.74657 15.1495i −0.545596 0.945000i −0.998569 0.0534758i \(-0.982970\pi\)
0.452973 0.891524i \(-0.350363\pi\)
\(258\) 0 0
\(259\) 6.29487 + 11.4829i 0.391144 + 0.713514i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.74657 + 11.6854i −0.416011 + 0.720553i −0.995534 0.0944035i \(-0.969906\pi\)
0.579523 + 0.814956i \(0.303239\pi\)
\(264\) 0 0
\(265\) −10.5299 −0.646847
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.17035 5.49121i 0.193300 0.334805i −0.753042 0.657972i \(-0.771414\pi\)
0.946342 + 0.323167i \(0.104748\pi\)
\(270\) 0 0
\(271\) 10.1199 + 17.5281i 0.614737 + 1.06476i 0.990431 + 0.138012i \(0.0440713\pi\)
−0.375693 + 0.926744i \(0.622595\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.96323 + 3.40041i 0.118387 + 0.205052i
\(276\) 0 0
\(277\) 1.27182 2.20285i 0.0764162 0.132357i −0.825285 0.564716i \(-0.808986\pi\)
0.901701 + 0.432360i \(0.142319\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −26.5804 −1.58565 −0.792827 0.609447i \(-0.791392\pi\)
−0.792827 + 0.609447i \(0.791392\pi\)
\(282\) 0 0
\(283\) 10.2718 17.7913i 0.610596 1.05758i −0.380544 0.924763i \(-0.624263\pi\)
0.991140 0.132821i \(-0.0424035\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −13.4564 0.298018i −0.794304 0.0175915i
\(288\) 0 0
\(289\) −19.5735 33.9024i −1.15139 1.99426i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.25343 −0.306909 −0.153454 0.988156i \(-0.549040\pi\)
−0.153454 + 0.988156i \(0.549040\pi\)
\(294\) 0 0
\(295\) 15.2260 0.886491
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −22.6172 39.1741i −1.30799 2.26550i
\(300\) 0 0
\(301\) −9.14243 0.202478i −0.526961 0.0116706i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −20.0230 + 34.6809i −1.14652 + 1.98582i
\(306\) 0 0
\(307\) 14.8485 0.847449 0.423724 0.905791i \(-0.360723\pi\)
0.423724 + 0.905791i \(0.360723\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.949499 + 1.64458i −0.0538412 + 0.0932556i −0.891690 0.452647i \(-0.850480\pi\)
0.837849 + 0.545903i \(0.183813\pi\)
\(312\) 0 0
\(313\) 0.0436371 + 0.0755817i 0.00246652 + 0.00427213i 0.867256 0.497862i \(-0.165882\pi\)
−0.864790 + 0.502135i \(0.832548\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.11985 + 7.13579i 0.231394 + 0.400786i 0.958219 0.286037i \(-0.0923380\pi\)
−0.726825 + 0.686823i \(0.759005\pi\)
\(318\) 0 0
\(319\) −0.967422 + 1.67562i −0.0541652 + 0.0938169i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 45.2344 2.51691
\(324\) 0 0
\(325\) −7.67768 + 13.2981i −0.425881 + 0.737648i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.0735 22.0242i −0.665636 1.21424i
\(330\) 0 0
\(331\) 2.76496 + 4.78904i 0.151976 + 0.263230i 0.931954 0.362577i \(-0.118103\pi\)
−0.779978 + 0.625807i \(0.784770\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 11.0873 0.605763
\(336\) 0 0
\(337\) 7.17455 0.390823 0.195411 0.980721i \(-0.437396\pi\)
0.195411 + 0.980721i \(0.437396\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.08308 + 7.07210i 0.221111 + 0.382976i
\(342\) 0 0
\(343\) −18.4794 1.22940i −0.997794 0.0663814i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0368 20.8483i 0.646168 1.11920i −0.337863 0.941195i \(-0.609704\pi\)
0.984030 0.178000i \(-0.0569627\pi\)
\(348\) 0 0
\(349\) −31.1608 −1.66800 −0.834000 0.551764i \(-0.813955\pi\)
−0.834000 + 0.551764i \(0.813955\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.08727 + 8.81142i −0.270768 + 0.468984i −0.969059 0.246830i \(-0.920611\pi\)
0.698290 + 0.715814i \(0.253944\pi\)
\(354\) 0 0
\(355\) 7.54364 + 13.0660i 0.400375 + 0.693469i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −16.1240 27.9277i −0.850995 1.47397i −0.880312 0.474396i \(-0.842667\pi\)
0.0293169 0.999570i \(-0.490667\pi\)
\(360\) 0 0
\(361\) −8.72132 + 15.1058i −0.459017 + 0.795040i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −34.4520 −1.80330
\(366\) 0 0
\(367\) −1.93531 + 3.35205i −0.101022 + 0.174976i −0.912106 0.409954i \(-0.865545\pi\)
0.811084 + 0.584930i \(0.198878\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.26496 8.66999i 0.273343 0.450123i
\(372\) 0 0
\(373\) −17.3454 30.0431i −0.898109 1.55557i −0.829909 0.557899i \(-0.811608\pi\)
−0.0682000 0.997672i \(-0.521726\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.56668 −0.389704
\(378\) 0 0
\(379\) 13.4564 0.691207 0.345603 0.938381i \(-0.387674\pi\)
0.345603 + 0.938381i \(0.387674\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.08727 + 3.61527i 0.106655 + 0.184731i 0.914413 0.404782i \(-0.132653\pi\)
−0.807758 + 0.589514i \(0.799319\pi\)
\(384\) 0 0
\(385\) −11.2145 0.248367i −0.571542 0.0126579i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.32698 + 16.1548i −0.472897 + 0.819081i −0.999519 0.0310185i \(-0.990125\pi\)
0.526622 + 0.850099i \(0.323458\pi\)
\(390\) 0 0
\(391\) −56.1471 −2.83948
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.7076 + 18.5461i −0.538757 + 0.933155i
\(396\) 0 0
\(397\) 0.728181 + 1.26125i 0.0365464 + 0.0633002i 0.883720 0.468016i \(-0.155031\pi\)
−0.847174 + 0.531316i \(0.821698\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.6172 25.3177i −0.729947 1.26431i −0.956905 0.290401i \(-0.906211\pi\)
0.226958 0.973905i \(-0.427122\pi\)
\(402\) 0 0
\(403\) −15.9679 + 27.6572i −0.795417 + 1.37770i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.64023 −0.378712
\(408\) 0 0
\(409\) −13.0299 + 22.5685i −0.644288 + 1.11594i 0.340178 + 0.940361i \(0.389513\pi\)
−0.984466 + 0.175578i \(0.943821\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.61299 + 12.5366i −0.374611 + 0.616885i
\(414\) 0 0
\(415\) 8.96742 + 15.5320i 0.440193 + 0.762437i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −32.8853 −1.60655 −0.803275 0.595608i \(-0.796911\pi\)
−0.803275 + 0.595608i \(0.796911\pi\)
\(420\) 0 0
\(421\) −17.1976 −0.838160 −0.419080 0.907949i \(-0.637647\pi\)
−0.419080 + 0.907949i \(0.637647\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 9.52991 + 16.5063i 0.462269 + 0.800673i
\(426\) 0 0
\(427\) −18.5436 33.8268i −0.897389 1.63699i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.49314 2.58619i 0.0719219 0.124572i −0.827822 0.560991i \(-0.810420\pi\)
0.899744 + 0.436419i \(0.143753\pi\)
\(432\) 0 0
\(433\) 18.4426 0.886297 0.443148 0.896448i \(-0.353862\pi\)
0.443148 + 0.896448i \(0.353862\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 22.6172 39.1741i 1.08193 1.87395i
\(438\) 0 0
\(439\) −0.286010 0.495384i −0.0136505 0.0236434i 0.859119 0.511775i \(-0.171012\pi\)
−0.872770 + 0.488132i \(0.837679\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.2650 + 31.6358i 0.867794 + 1.50306i 0.864246 + 0.503070i \(0.167796\pi\)
0.00354850 + 0.999994i \(0.498870\pi\)
\(444\) 0 0
\(445\) 13.0368 22.5804i 0.618002 1.07041i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 22.5530 1.06434 0.532170 0.846638i \(-0.321377\pi\)
0.532170 + 0.846638i \(0.321377\pi\)
\(450\) 0 0
\(451\) 3.92645 6.80082i 0.184889 0.320238i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −21.0873 38.4668i −0.988587 1.80335i
\(456\) 0 0
\(457\) −10.1172 17.5235i −0.473262 0.819714i 0.526270 0.850318i \(-0.323590\pi\)
−0.999532 + 0.0306040i \(0.990257\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −25.4931 −1.18733 −0.593667 0.804711i \(-0.702320\pi\)
−0.593667 + 0.804711i \(0.702320\pi\)
\(462\) 0 0
\(463\) −7.70446 −0.358057 −0.179028 0.983844i \(-0.557295\pi\)
−0.179028 + 0.983844i \(0.557295\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18.0735 + 31.3043i 0.836344 + 1.44859i 0.892931 + 0.450193i \(0.148645\pi\)
−0.0565874 + 0.998398i \(0.518022\pi\)
\(468\) 0 0
\(469\) −5.54364 + 9.12890i −0.255981 + 0.421534i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.66769 4.62057i 0.122660 0.212454i
\(474\) 0 0
\(475\) −15.3554 −0.704552
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.2902 23.0193i 0.607245 1.05178i −0.384447 0.923147i \(-0.625608\pi\)
0.991692 0.128632i \(-0.0410587\pi\)
\(480\) 0 0
\(481\) −14.9395 25.8760i −0.681183 1.17984i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.11985 + 3.67169i 0.0962575 + 0.166723i
\(486\) 0 0
\(487\) 20.2118 35.0078i 0.915883 1.58636i 0.110281 0.993900i \(-0.464825\pi\)
0.805603 0.592456i \(-0.201842\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −14.6309 −0.660284 −0.330142 0.943931i \(-0.607097\pi\)
−0.330142 + 0.943931i \(0.607097\pi\)
\(492\) 0 0
\(493\) −4.69607 + 8.13383i −0.211500 + 0.366329i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.5299 0.321794i −0.651756 0.0144344i
\(498\) 0 0
\(499\) 18.0552 + 31.2725i 0.808260 + 1.39995i 0.914068 + 0.405561i \(0.132924\pi\)
−0.105808 + 0.994387i \(0.533743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19.4931 −0.869156 −0.434578 0.900634i \(-0.643102\pi\)
−0.434578 + 0.900634i \(0.643102\pi\)
\(504\) 0 0
\(505\) −7.08727 −0.315380
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.9537 20.7044i −0.529838 0.917707i −0.999394 0.0348040i \(-0.988919\pi\)
0.469556 0.882903i \(-0.344414\pi\)
\(510\) 0 0
\(511\) 17.2260 28.3666i 0.762032 1.25487i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.98627 15.5647i 0.395982 0.685862i
\(516\) 0 0
\(517\) 14.6540 0.644480
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3.54364 + 6.13776i −0.155250 + 0.268900i −0.933150 0.359488i \(-0.882952\pi\)
0.777900 + 0.628388i \(0.216285\pi\)
\(522\) 0 0
\(523\) 14.3737 + 24.8961i 0.628520 + 1.08863i 0.987849 + 0.155418i \(0.0496724\pi\)
−0.359329 + 0.933211i \(0.616994\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19.8201 + 34.3294i 0.863378 + 1.49541i
\(528\) 0 0
\(529\) −16.5735 + 28.7062i −0.720589 + 1.24810i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 30.7107 1.33023
\(534\) 0 0
\(535\) 6.22085 10.7748i 0.268951 0.465837i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.81172 9.10944i 0.250329 0.392371i
\(540\) 0 0
\(541\) 3.51152 + 6.08214i 0.150972 + 0.261491i 0.931585 0.363523i \(-0.118426\pi\)
−0.780613 + 0.625015i \(0.785093\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 17.6951 0.757976
\(546\) 0 0
\(547\) 5.59414 0.239188 0.119594 0.992823i \(-0.461841\pi\)
0.119594 + 0.992823i \(0.461841\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.78334 6.55294i −0.161176 0.279165i
\(552\) 0 0
\(553\) −9.91646 18.0893i −0.421691 0.769237i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.3228 24.8078i 0.606876 1.05114i −0.384876 0.922968i \(-0.625756\pi\)
0.991752 0.128172i \(-0.0409108\pi\)
\(558\) 0 0
\(559\) 20.8653 0.882507
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.94637 + 17.2276i −0.419189 + 0.726057i −0.995858 0.0909207i \(-0.971019\pi\)
0.576669 + 0.816978i \(0.304352\pi\)
\(564\) 0 0
\(565\) −10.9863 19.0288i −0.462196 0.800547i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.8201 + 30.8653i 0.747058 + 1.29394i 0.949227 + 0.314592i \(0.101868\pi\)
−0.202169 + 0.979351i \(0.564799\pi\)
\(570\) 0 0
\(571\) 13.8385 23.9690i 0.579123 1.00307i −0.416457 0.909155i \(-0.636728\pi\)
0.995580 0.0939155i \(-0.0299384\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 19.0598 0.794849
\(576\) 0 0
\(577\) 3.00686 5.20804i 0.125177 0.216814i −0.796625 0.604474i \(-0.793383\pi\)
0.921802 + 0.387660i \(0.126717\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −17.2723 0.382530i −0.716575 0.0158700i
\(582\) 0 0
\(583\) 2.95903 + 5.12519i 0.122551 + 0.212264i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15.5436 −0.641555 −0.320777 0.947155i \(-0.603944\pi\)
−0.320777 + 0.947155i \(0.603944\pi\)
\(588\) 0 0
\(589\) −31.9358 −1.31589
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24.3270 42.1356i −0.998989 1.73030i −0.538421 0.842676i \(-0.680979\pi\)
−0.460568 0.887624i \(-0.652354\pi\)
\(594\) 0 0
\(595\) −54.4373 1.20562i −2.23171 0.0494258i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10.4564 + 18.1110i −0.427235 + 0.739993i −0.996626 0.0820735i \(-0.973846\pi\)
0.569391 + 0.822067i \(0.307179\pi\)
\(600\) 0 0
\(601\) −7.98627 −0.325767 −0.162883 0.986645i \(-0.552079\pi\)
−0.162883 + 0.986645i \(0.552079\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −11.8338 + 20.4968i −0.481114 + 0.833314i
\(606\) 0 0
\(607\) −1.35490 2.34675i −0.0549936 0.0952517i 0.837218 0.546869i \(-0.184181\pi\)
−0.892212 + 0.451618i \(0.850847\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 28.6540 + 49.6301i 1.15922 + 2.00782i
\(612\) 0 0
\(613\) 8.25343 14.2954i 0.333353 0.577384i −0.649814 0.760093i \(-0.725153\pi\)
0.983167 + 0.182709i \(0.0584866\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.1608 0.932420 0.466210 0.884674i \(-0.345619\pi\)
0.466210 + 0.884674i \(0.345619\pi\)
\(618\) 0 0
\(619\) 14.7145 25.4862i 0.591424 1.02438i −0.402617 0.915369i \(-0.631899\pi\)
0.994041 0.109008i \(-0.0347673\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0735 + 22.0242i 0.483716 + 0.882382i
\(624\) 0 0
\(625\) 15.6240 + 27.0616i 0.624962 + 1.08247i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −37.0873 −1.47877
\(630\) 0 0
\(631\) −35.7054 −1.42141 −0.710705 0.703491i \(-0.751624\pi\)
−0.710705 + 0.703491i \(0.751624\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.21445 + 9.03170i 0.206929 + 0.358412i
\(636\) 0 0
\(637\) 42.2160 + 1.87083i 1.67266 + 0.0741252i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.68141 + 2.91229i −0.0664118 + 0.115029i −0.897319 0.441382i \(-0.854488\pi\)
0.830908 + 0.556410i \(0.187822\pi\)
\(642\) 0 0
\(643\) 10.2113 0.402695 0.201348 0.979520i \(-0.435468\pi\)
0.201348 + 0.979520i \(0.435468\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.2765 + 17.7994i −0.404010 + 0.699766i −0.994206 0.107494i \(-0.965717\pi\)
0.590196 + 0.807260i \(0.299051\pi\)
\(648\) 0 0
\(649\) −4.27868 7.41089i −0.167953 0.290903i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.67722 9.83323i −0.222167 0.384804i 0.733299 0.679906i \(-0.237980\pi\)
−0.955466 + 0.295102i \(0.904646\pi\)
\(654\) 0 0
\(655\) −2.11985 + 3.67169i −0.0828295 + 0.143465i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −21.2344 −0.827174 −0.413587 0.910465i \(-0.635724\pi\)
−0.413587 + 0.910465i \(0.635724\pi\)
\(660\) 0 0
\(661\) 14.4610 25.0472i 0.562469 0.974224i −0.434812 0.900521i \(-0.643185\pi\)
0.997280 0.0737028i \(-0.0234816\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 22.7696 37.4955i 0.882968 1.45401i
\(666\) 0 0
\(667\) 4.69607 + 8.13383i 0.181832 + 0.314943i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 22.5069 0.868868
\(672\) 0 0
\(673\) −34.2618 −1.32070 −0.660348 0.750960i \(-0.729591\pi\)
−0.660348 + 0.750960i \(0.729591\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.3733 + 30.0914i 0.667710 + 1.15651i 0.978543 + 0.206042i \(0.0660585\pi\)
−0.310833 + 0.950464i \(0.600608\pi\)
\(678\) 0 0
\(679\) −4.08308 0.0904281i −0.156694 0.00347031i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.140907 0.244058i 0.00539166 0.00933863i −0.863317 0.504662i \(-0.831617\pi\)
0.868709 + 0.495323i \(0.164950\pi\)
\(684\) 0 0
\(685\) 4.10100 0.156691
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −11.5720 + 20.0433i −0.440859 + 0.763590i
\(690\) 0 0
\(691\) −17.2076 29.8044i −0.654608 1.13381i −0.981992 0.188922i \(-0.939501\pi\)
0.327384 0.944891i \(-0.393833\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.05050 7.01567i −0.153644 0.266120i
\(696\) 0 0
\(697\) 19.0598 33.0126i 0.721942 1.25044i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0.498472 0.0188270 0.00941352 0.999956i \(-0.497004\pi\)
0.00941352 + 0.999956i \(0.497004\pi\)
\(702\) 0 0
\(703\) 14.9395 25.8760i 0.563454 0.975931i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.54364 5.83543i 0.133272 0.219464i
\(708\) 0 0
\(709\) 2.08727 + 3.61527i 0.0783892 + 0.135774i 0.902555 0.430574i \(-0.141689\pi\)
−0.824166 + 0.566348i \(0.808356\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 39.6402 1.48454
\(714\) 0 0
\(715\) 25.5941 0.957166
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −0.493136 0.854137i −0.0183909 0.0318540i 0.856683 0.515842i \(-0.172521\pi\)
−0.875074 + 0.483988i \(0.839188\pi\)
\(720\) 0 0
\(721\) 8.32232 + 15.1813i 0.309939 + 0.565383i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.59414 2.76113i 0.0592048 0.102546i
\(726\) 0 0
\(727\) −34.9304 −1.29550 −0.647749 0.761854i \(-0.724289\pi\)
−0.647749 + 0.761854i \(0.724289\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12.9495 22.4292i 0.478955 0.829574i
\(732\) 0 0
\(733\) −2.56202 4.43756i −0.0946305 0.163905i 0.814824 0.579709i \(-0.196834\pi\)
−0.909454 + 0.415804i \(0.863500\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.11566 5.39648i −0.114767 0.198782i
\(738\) 0 0
\(739\) 8.46102 14.6549i 0.311244 0.539090i −0.667388 0.744710i \(-0.732588\pi\)
0.978632 + 0.205620i \(0.0659211\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.81172 −0.249898 −0.124949 0.992163i \(-0.539877\pi\)
−0.124949 + 0.992163i \(0.539877\pi\)
\(744\) 0 0
\(745\) 2.05050 3.55157i 0.0751245 0.130120i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.76122 + 10.5095i 0.210511 + 0.384008i
\(750\) 0 0
\(751\) 13.0877 + 22.6686i 0.477578 + 0.827190i 0.999670 0.0256996i \(-0.00818133\pi\)
−0.522091 + 0.852890i \(0.674848\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −26.7319 −0.972874
\(756\) 0 0
\(757\) 49.7138 1.80688 0.903439 0.428717i \(-0.141034\pi\)
0.903439 + 0.428717i \(0.141034\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.32698 10.9586i −0.229353 0.397251i 0.728264 0.685297i \(-0.240328\pi\)
−0.957616 + 0.288046i \(0.906994\pi\)
\(762\) 0 0
\(763\) −8.84757 + 14.5696i −0.320304 + 0.527455i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16.7328 28.9821i 0.604188 1.04648i
\(768\) 0 0
\(769\) −20.2344 −0.729670 −0.364835 0.931072i \(-0.618875\pi\)
−0.364835 + 0.931072i \(0.618875\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.87062 + 17.0964i −0.355021 + 0.614915i −0.987122 0.159972i \(-0.948860\pi\)
0.632100 + 0.774887i \(0.282193\pi\)
\(774\) 0 0
\(775\) −6.72818 11.6536i −0.241683 0.418608i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15.3554 + 26.5963i 0.550163 + 0.952910i
\(780\) 0 0
\(781\) 4.23970 7.34338i 0.151709 0.262767i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −24.9588 −0.890818
\(786\) 0 0
\(787\) 8.45636 14.6469i 0.301437 0.522104i −0.675025 0.737795i \(-0.735867\pi\)
0.976462 + 0.215691i \(0.0692004\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 21.1608 + 0.468649i 0.752392 + 0.0166633i
\(792\) 0 0
\(793\) 44.0093 + 76.2264i 1.56282 + 2.70688i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.48475 −0.123436 −0.0617180 0.998094i \(-0.519658\pi\)
−0.0617180 + 0.998094i \(0.519658\pi\)
\(798\) 0 0
\(799\) 71.1334 2.51652
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.68141 + 16.7687i 0.341650 + 0.591754i