Properties

Label 2016.2.s.u.865.2
Level $2016$
Weight $2$
Character 2016.865
Analytic conductor $16.098$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1156923.1
Defining polynomial: \(x^{6} - 3 x^{5} + 12 x^{4} - 19 x^{3} + 27 x^{2} - 18 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.2
Root \(0.500000 - 1.51496i\) of defining polynomial
Character \(\chi\) \(=\) 2016.865
Dual form 2016.2.s.u.289.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.227452 + 0.393958i) q^{5} +(2.16908 - 1.51496i) q^{7} +O(q^{10})\) \(q+(0.227452 + 0.393958i) q^{5} +(2.16908 - 1.51496i) q^{7} +(-2.89653 + 5.01694i) q^{11} -5.88325 q^{13} +(1.45490 - 2.51997i) q^{17} +(-2.94163 - 5.09505i) q^{19} +(-1.45490 - 2.51997i) q^{23} +(2.39653 - 4.15091i) q^{25} -3.54510 q^{29} +(2.16908 - 3.75696i) q^{31} +(1.09019 + 0.509947i) q^{35} +(-3.85144 - 6.67088i) q^{37} -9.58612 q^{41} +10.7931 q^{43} +(2.45490 + 4.25202i) q^{47} +(2.40981 - 6.57212i) q^{49} +(6.56561 - 11.3720i) q^{53} -2.63529 q^{55} +(-0.896531 + 1.55284i) q^{59} +(-2.33816 - 4.04981i) q^{61} +(-1.33816 - 2.31776i) q^{65} +(-3.94163 + 6.82710i) q^{67} +0.909808 q^{71} +(-2.60347 + 4.50934i) q^{73} +(1.31764 + 15.2703i) q^{77} +(1.37602 + 2.38333i) q^{79} -9.97345 q^{83} +1.32368 q^{85} +(-2.45490 - 4.25202i) q^{89} +(-12.7612 + 8.91288i) q^{91} +(1.33816 - 2.31776i) q^{95} -5.79306 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{7} + O(q^{10}) \) \( 6 q - 3 q^{7} - 6 q^{13} + 6 q^{17} - 3 q^{19} - 6 q^{23} - 3 q^{25} - 24 q^{29} - 3 q^{31} + 12 q^{35} - 3 q^{37} + 12 q^{41} + 30 q^{43} + 12 q^{47} + 9 q^{49} + 6 q^{53} - 24 q^{55} + 12 q^{59} + 18 q^{61} + 24 q^{65} - 9 q^{67} - 33 q^{73} + 12 q^{77} + 27 q^{79} - 36 q^{83} + 72 q^{85} - 12 q^{89} - 51 q^{91} - 24 q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.227452 + 0.393958i 0.101720 + 0.176184i 0.912393 0.409315i \(-0.134232\pi\)
−0.810674 + 0.585498i \(0.800899\pi\)
\(6\) 0 0
\(7\) 2.16908 1.51496i 0.819835 0.572600i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.89653 + 5.01694i −0.873337 + 1.51266i −0.0148132 + 0.999890i \(0.504715\pi\)
−0.858524 + 0.512774i \(0.828618\pi\)
\(12\) 0 0
\(13\) −5.88325 −1.63172 −0.815861 0.578249i \(-0.803736\pi\)
−0.815861 + 0.578249i \(0.803736\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.45490 2.51997i 0.352866 0.611182i −0.633884 0.773428i \(-0.718540\pi\)
0.986750 + 0.162246i \(0.0518738\pi\)
\(18\) 0 0
\(19\) −2.94163 5.09505i −0.674856 1.16888i −0.976511 0.215467i \(-0.930873\pi\)
0.301656 0.953417i \(-0.402461\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.45490 2.51997i −0.303368 0.525450i 0.673528 0.739161i \(-0.264778\pi\)
−0.976897 + 0.213712i \(0.931445\pi\)
\(24\) 0 0
\(25\) 2.39653 4.15091i 0.479306 0.830183i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.54510 −0.658308 −0.329154 0.944276i \(-0.606763\pi\)
−0.329154 + 0.944276i \(0.606763\pi\)
\(30\) 0 0
\(31\) 2.16908 3.75696i 0.389578 0.674769i −0.602815 0.797881i \(-0.705954\pi\)
0.992393 + 0.123112i \(0.0392875\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.09019 + 0.509947i 0.184276 + 0.0861968i
\(36\) 0 0
\(37\) −3.85144 6.67088i −0.633172 1.09669i −0.986899 0.161338i \(-0.948419\pi\)
0.353727 0.935349i \(-0.384914\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.58612 −1.49710 −0.748551 0.663078i \(-0.769250\pi\)
−0.748551 + 0.663078i \(0.769250\pi\)
\(42\) 0 0
\(43\) 10.7931 1.64593 0.822963 0.568095i \(-0.192319\pi\)
0.822963 + 0.568095i \(0.192319\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.45490 + 4.25202i 0.358085 + 0.620221i 0.987641 0.156734i \(-0.0500966\pi\)
−0.629556 + 0.776955i \(0.716763\pi\)
\(48\) 0 0
\(49\) 2.40981 6.57212i 0.344258 0.938875i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.56561 11.3720i 0.901856 1.56206i 0.0767730 0.997049i \(-0.475538\pi\)
0.825083 0.565012i \(-0.191128\pi\)
\(54\) 0 0
\(55\) −2.63529 −0.355342
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.896531 + 1.55284i −0.116718 + 0.202162i −0.918465 0.395501i \(-0.870571\pi\)
0.801747 + 0.597664i \(0.203904\pi\)
\(60\) 0 0
\(61\) −2.33816 4.04981i −0.299370 0.518525i 0.676622 0.736331i \(-0.263443\pi\)
−0.975992 + 0.217806i \(0.930110\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.33816 2.31776i −0.165978 0.287482i
\(66\) 0 0
\(67\) −3.94163 + 6.82710i −0.481546 + 0.834063i −0.999776 0.0211789i \(-0.993258\pi\)
0.518229 + 0.855242i \(0.326591\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.909808 0.107974 0.0539872 0.998542i \(-0.482807\pi\)
0.0539872 + 0.998542i \(0.482807\pi\)
\(72\) 0 0
\(73\) −2.60347 + 4.50934i −0.304713 + 0.527778i −0.977197 0.212333i \(-0.931894\pi\)
0.672484 + 0.740111i \(0.265227\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.31764 + 15.2703i 0.150159 + 1.74021i
\(78\) 0 0
\(79\) 1.37602 + 2.38333i 0.154814 + 0.268146i 0.932991 0.359899i \(-0.117189\pi\)
−0.778177 + 0.628045i \(0.783856\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.97345 −1.09473 −0.547364 0.836895i \(-0.684369\pi\)
−0.547364 + 0.836895i \(0.684369\pi\)
\(84\) 0 0
\(85\) 1.32368 0.143574
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.45490 4.25202i −0.260219 0.450713i 0.706081 0.708131i \(-0.250462\pi\)
−0.966300 + 0.257418i \(0.917128\pi\)
\(90\) 0 0
\(91\) −12.7612 + 8.91288i −1.33774 + 0.934324i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.33816 2.31776i 0.137292 0.237797i
\(96\) 0 0
\(97\) −5.79306 −0.588196 −0.294098 0.955775i \(-0.595019\pi\)
−0.294098 + 0.955775i \(0.595019\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.33816 14.4421i 0.829678 1.43704i −0.0686134 0.997643i \(-0.521858\pi\)
0.898291 0.439401i \(-0.144809\pi\)
\(102\) 0 0
\(103\) 0.396531 + 0.686812i 0.0390714 + 0.0676736i 0.884900 0.465781i \(-0.154227\pi\)
−0.845828 + 0.533455i \(0.820893\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.98672 + 10.3693i 0.578758 + 1.00244i 0.995622 + 0.0934699i \(0.0297959\pi\)
−0.416864 + 0.908969i \(0.636871\pi\)
\(108\) 0 0
\(109\) 2.30634 3.99470i 0.220907 0.382623i −0.734176 0.678959i \(-0.762432\pi\)
0.955084 + 0.296336i \(0.0957649\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) 0.661842 1.14634i 0.0617171 0.106897i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.661842 7.67013i −0.0606709 0.703119i
\(120\) 0 0
\(121\) −11.2798 19.5372i −1.02544 1.77611i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4.45490 0.398459
\(126\) 0 0
\(127\) −1.24797 −0.110739 −0.0553696 0.998466i \(-0.517634\pi\)
−0.0553696 + 0.998466i \(0.517634\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.89653 5.01694i −0.253071 0.438332i 0.711299 0.702890i \(-0.248107\pi\)
−0.964370 + 0.264558i \(0.914774\pi\)
\(132\) 0 0
\(133\) −14.0994 6.59512i −1.22257 0.571870i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.54510 + 2.67618i −0.132006 + 0.228642i −0.924450 0.381303i \(-0.875475\pi\)
0.792443 + 0.609945i \(0.208809\pi\)
\(138\) 0 0
\(139\) −5.70287 −0.483711 −0.241856 0.970312i \(-0.577756\pi\)
−0.241856 + 0.970312i \(0.577756\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 17.0410 29.5159i 1.42504 2.46825i
\(144\) 0 0
\(145\) −0.806339 1.39662i −0.0669628 0.115983i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.54510 + 2.67618i 0.126579 + 0.219242i 0.922349 0.386357i \(-0.126267\pi\)
−0.795770 + 0.605599i \(0.792934\pi\)
\(150\) 0 0
\(151\) 0.862740 1.49431i 0.0702088 0.121605i −0.828784 0.559569i \(-0.810967\pi\)
0.898993 + 0.437964i \(0.144300\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.97345 0.158511
\(156\) 0 0
\(157\) 2.79306 4.83773i 0.222911 0.386093i −0.732780 0.680466i \(-0.761778\pi\)
0.955691 + 0.294373i \(0.0951109\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.97345 3.26189i −0.549585 0.257073i
\(162\) 0 0
\(163\) 4.42835 + 7.67013i 0.346855 + 0.600771i 0.985689 0.168574i \(-0.0539162\pi\)
−0.638834 + 0.769345i \(0.720583\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.4057 1.34690 0.673448 0.739234i \(-0.264812\pi\)
0.673448 + 0.739234i \(0.264812\pi\)
\(168\) 0 0
\(169\) 21.6127 1.66251
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.33816 14.4421i −0.633938 1.09801i −0.986739 0.162315i \(-0.948104\pi\)
0.352801 0.935699i \(-0.385229\pi\)
\(174\) 0 0
\(175\) −1.09019 12.6343i −0.0824108 0.955064i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.09019 5.35237i 0.230972 0.400055i −0.727123 0.686508i \(-0.759143\pi\)
0.958094 + 0.286453i \(0.0924762\pi\)
\(180\) 0 0
\(181\) −3.20694 −0.238370 −0.119185 0.992872i \(-0.538028\pi\)
−0.119185 + 0.992872i \(0.538028\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.75203 3.03461i 0.128812 0.223109i
\(186\) 0 0
\(187\) 8.42835 + 14.5983i 0.616342 + 1.06754i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.6763 18.4919i −0.772511 1.33803i −0.936183 0.351514i \(-0.885667\pi\)
0.163672 0.986515i \(-0.447666\pi\)
\(192\) 0 0
\(193\) −8.20287 + 14.2078i −0.590456 + 1.02270i 0.403716 + 0.914885i \(0.367719\pi\)
−0.994171 + 0.107814i \(0.965615\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −24.6763 −1.75811 −0.879057 0.476716i \(-0.841827\pi\)
−0.879057 + 0.476716i \(0.841827\pi\)
\(198\) 0 0
\(199\) 6.90981 11.9681i 0.489823 0.848399i −0.510108 0.860110i \(-0.670395\pi\)
0.999931 + 0.0117114i \(0.00372795\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.68959 + 5.37067i −0.539704 + 0.376947i
\(204\) 0 0
\(205\) −2.18038 3.77654i −0.152285 0.263765i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 34.0821 2.35751
\(210\) 0 0
\(211\) −11.5861 −0.797622 −0.398811 0.917033i \(-0.630577\pi\)
−0.398811 + 0.917033i \(0.630577\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.45490 + 4.25202i 0.167423 + 0.289985i
\(216\) 0 0
\(217\) −0.986723 11.4352i −0.0669831 0.776272i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −8.55957 + 14.8256i −0.575779 + 0.997279i
\(222\) 0 0
\(223\) −20.4549 −1.36976 −0.684881 0.728655i \(-0.740146\pi\)
−0.684881 + 0.728655i \(0.740146\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.86998 + 15.3633i −0.588721 + 1.01969i 0.405679 + 0.914016i \(0.367035\pi\)
−0.994400 + 0.105679i \(0.966298\pi\)
\(228\) 0 0
\(229\) 12.0994 + 20.9568i 0.799551 + 1.38486i 0.919909 + 0.392132i \(0.128262\pi\)
−0.120358 + 0.992731i \(0.538404\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.3382 + 19.6383i 0.742787 + 1.28655i 0.951221 + 0.308509i \(0.0998300\pi\)
−0.208434 + 0.978036i \(0.566837\pi\)
\(234\) 0 0
\(235\) −1.11675 + 1.93426i −0.0728485 + 0.126177i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.90981 0.188220 0.0941099 0.995562i \(-0.469999\pi\)
0.0941099 + 0.995562i \(0.469999\pi\)
\(240\) 0 0
\(241\) −10.8700 + 18.8274i −0.700197 + 1.21278i 0.268200 + 0.963363i \(0.413571\pi\)
−0.968397 + 0.249413i \(0.919762\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.13726 0.545479i 0.200432 0.0348494i
\(246\) 0 0
\(247\) 17.3063 + 29.9755i 1.10118 + 1.90729i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.02655 −0.506632 −0.253316 0.967384i \(-0.581521\pi\)
−0.253316 + 0.967384i \(0.581521\pi\)
\(252\) 0 0
\(253\) 16.8567 1.05977
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.45490 11.1802i −0.402646 0.697403i 0.591398 0.806379i \(-0.298576\pi\)
−0.994044 + 0.108976i \(0.965243\pi\)
\(258\) 0 0
\(259\) −18.4602 8.63491i −1.14706 0.536547i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.45490 + 7.71612i −0.274701 + 0.475796i −0.970060 0.242867i \(-0.921912\pi\)
0.695359 + 0.718663i \(0.255246\pi\)
\(264\) 0 0
\(265\) 5.97345 0.366946
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.02051 + 5.23168i −0.184164 + 0.318981i −0.943295 0.331957i \(-0.892291\pi\)
0.759130 + 0.650938i \(0.225624\pi\)
\(270\) 0 0
\(271\) 6.68236 + 11.5742i 0.405924 + 0.703081i 0.994429 0.105413i \(-0.0336164\pi\)
−0.588504 + 0.808494i \(0.700283\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 13.8833 + 24.0465i 0.837192 + 1.45006i
\(276\) 0 0
\(277\) −2.39653 + 4.15091i −0.143994 + 0.249404i −0.928997 0.370087i \(-0.879328\pi\)
0.785003 + 0.619491i \(0.212661\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.32368 −0.436894 −0.218447 0.975849i \(-0.570099\pi\)
−0.218447 + 0.975849i \(0.570099\pi\)
\(282\) 0 0
\(283\) 6.60347 11.4375i 0.392535 0.679891i −0.600248 0.799814i \(-0.704931\pi\)
0.992783 + 0.119923i \(0.0382647\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −20.7931 + 14.5226i −1.22738 + 0.857240i
\(288\) 0 0
\(289\) 4.26651 + 7.38981i 0.250971 + 0.434695i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.54510 −0.440789 −0.220395 0.975411i \(-0.570735\pi\)
−0.220395 + 0.975411i \(0.570735\pi\)
\(294\) 0 0
\(295\) −0.815671 −0.0474902
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.55957 + 14.8256i 0.495013 + 0.857387i
\(300\) 0 0
\(301\) 23.4110 16.3510i 1.34939 0.942458i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.06364 1.84227i 0.0609037 0.105488i
\(306\) 0 0
\(307\) 23.1086 1.31888 0.659439 0.751758i \(-0.270794\pi\)
0.659439 + 0.751758i \(0.270794\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.70287 + 6.41356i −0.209971 + 0.363680i −0.951705 0.307014i \(-0.900670\pi\)
0.741734 + 0.670694i \(0.234003\pi\)
\(312\) 0 0
\(313\) −7.29306 12.6320i −0.412228 0.714000i 0.582905 0.812540i \(-0.301916\pi\)
−0.995133 + 0.0985402i \(0.968583\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.682356 + 1.18188i 0.0383249 + 0.0663807i 0.884552 0.466442i \(-0.154464\pi\)
−0.846227 + 0.532823i \(0.821131\pi\)
\(318\) 0 0
\(319\) 10.2685 17.7855i 0.574925 0.995799i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −17.1191 −0.952534
\(324\) 0 0
\(325\) −14.0994 + 24.4209i −0.782094 + 1.35463i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.7665 + 5.50389i 0.648709 + 0.303439i
\(330\) 0 0
\(331\) −5.48672 9.50328i −0.301578 0.522348i 0.674916 0.737895i \(-0.264180\pi\)
−0.976493 + 0.215547i \(0.930847\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.58612 −0.195931
\(336\) 0 0
\(337\) −22.1722 −1.20780 −0.603900 0.797060i \(-0.706387\pi\)
−0.603900 + 0.797060i \(0.706387\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.5656 + 21.7643i 0.680466 + 1.17860i
\(342\) 0 0
\(343\) −4.72942 17.9062i −0.255365 0.966845i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.116746 0.202210i 0.00626725 0.0108552i −0.862875 0.505418i \(-0.831338\pi\)
0.869142 + 0.494563i \(0.164672\pi\)
\(348\) 0 0
\(349\) 7.35263 0.393577 0.196789 0.980446i \(-0.436949\pi\)
0.196789 + 0.980446i \(0.436949\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.58612 16.6037i 0.510218 0.883723i −0.489712 0.871884i \(-0.662898\pi\)
0.999930 0.0118391i \(-0.00376859\pi\)
\(354\) 0 0
\(355\) 0.206938 + 0.358427i 0.0109831 + 0.0190233i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.4694 + 18.1335i 0.552553 + 0.957049i 0.998089 + 0.0617857i \(0.0196795\pi\)
−0.445537 + 0.895264i \(0.646987\pi\)
\(360\) 0 0
\(361\) −7.80634 + 13.5210i −0.410860 + 0.711630i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.36866 −0.123981
\(366\) 0 0
\(367\) 12.5072 21.6632i 0.652872 1.13081i −0.329550 0.944138i \(-0.606897\pi\)
0.982423 0.186670i \(-0.0597696\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.98672 34.6133i −0.155063 1.79703i
\(372\) 0 0
\(373\) 10.1630 + 17.6029i 0.526222 + 0.911444i 0.999533 + 0.0305483i \(0.00972533\pi\)
−0.473311 + 0.880895i \(0.656941\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.8567 1.07417
\(378\) 0 0
\(379\) 20.7931 1.06807 0.534034 0.845463i \(-0.320675\pi\)
0.534034 + 0.845463i \(0.320675\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.5861 21.7998i −0.643121 1.11392i −0.984732 0.174077i \(-0.944306\pi\)
0.341611 0.939841i \(-0.389027\pi\)
\(384\) 0 0
\(385\) −5.71615 + 3.99235i −0.291322 + 0.203469i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.2214 21.1681i 0.619650 1.07327i −0.369899 0.929072i \(-0.620608\pi\)
0.989549 0.144194i \(-0.0460589\pi\)
\(390\) 0 0
\(391\) −8.46698 −0.428194
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.625956 + 1.08419i −0.0314952 + 0.0545514i
\(396\) 0 0
\(397\) 4.39653 + 7.61502i 0.220656 + 0.382187i 0.955007 0.296583i \(-0.0958470\pi\)
−0.734352 + 0.678769i \(0.762514\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.5596 + 28.6820i 0.826945 + 1.43231i 0.900423 + 0.435015i \(0.143257\pi\)
−0.0734778 + 0.997297i \(0.523410\pi\)
\(402\) 0 0
\(403\) −12.7612 + 22.1031i −0.635683 + 1.10103i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 44.6232 2.21189
\(408\) 0 0
\(409\) 3.47345 6.01618i 0.171751 0.297481i −0.767281 0.641311i \(-0.778391\pi\)
0.939032 + 0.343830i \(0.111724\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.407836 + 4.72643i 0.0200683 + 0.232573i
\(414\) 0 0
\(415\) −2.26848 3.92912i −0.111355 0.192873i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −29.2254 −1.42775 −0.713876 0.700272i \(-0.753062\pi\)
−0.713876 + 0.700272i \(0.753062\pi\)
\(420\) 0 0
\(421\) 33.2359 1.61982 0.809909 0.586556i \(-0.199516\pi\)
0.809909 + 0.586556i \(0.199516\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.97345 12.0784i −0.338262 0.585887i
\(426\) 0 0
\(427\) −11.2069 5.24215i −0.542342 0.253685i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3.09019 + 5.35237i −0.148849 + 0.257815i −0.930802 0.365523i \(-0.880890\pi\)
0.781953 + 0.623337i \(0.214224\pi\)
\(432\) 0 0
\(433\) 16.6127 0.798354 0.399177 0.916874i \(-0.369296\pi\)
0.399177 + 0.916874i \(0.369296\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.55957 + 14.8256i −0.409460 + 0.709205i
\(438\) 0 0
\(439\) −13.8136 23.9258i −0.659286 1.14192i −0.980801 0.195012i \(-0.937525\pi\)
0.321515 0.946905i \(-0.395808\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.0133 + 17.3435i 0.475745 + 0.824015i 0.999614 0.0277842i \(-0.00884512\pi\)
−0.523869 + 0.851799i \(0.675512\pi\)
\(444\) 0 0
\(445\) 1.11675 1.93426i 0.0529388 0.0916927i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −15.0371 −0.709644 −0.354822 0.934934i \(-0.615459\pi\)
−0.354822 + 0.934934i \(0.615459\pi\)
\(450\) 0 0
\(451\) 27.7665 48.0930i 1.30747 2.26461i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.41388 3.00015i −0.300687 0.140649i
\(456\) 0 0
\(457\) 21.0596 + 36.4762i 0.985125 + 1.70629i 0.641379 + 0.767224i \(0.278363\pi\)
0.343746 + 0.939063i \(0.388304\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −20.9098 −0.973867 −0.486933 0.873439i \(-0.661885\pi\)
−0.486933 + 0.873439i \(0.661885\pi\)
\(462\) 0 0
\(463\) 38.1457 1.77278 0.886390 0.462939i \(-0.153205\pi\)
0.886390 + 0.462939i \(0.153205\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.76651 9.98789i −0.266842 0.462184i 0.701202 0.712962i \(-0.252647\pi\)
−0.968045 + 0.250778i \(0.919314\pi\)
\(468\) 0 0
\(469\) 1.79306 + 20.7799i 0.0827959 + 0.959527i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −31.2624 + 54.1481i −1.43745 + 2.48973i
\(474\) 0 0
\(475\) −28.1988 −1.29385
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.66184 6.34250i 0.167314 0.289796i −0.770161 0.637850i \(-0.779824\pi\)
0.937475 + 0.348054i \(0.113157\pi\)
\(480\) 0 0
\(481\) 22.6590 + 39.2465i 1.03316 + 1.78949i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.31764 2.28223i −0.0598311 0.103631i
\(486\) 0 0
\(487\) −13.0258 + 22.5613i −0.590254 + 1.02235i 0.403943 + 0.914784i \(0.367639\pi\)
−0.994198 + 0.107567i \(0.965694\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.37919 0.333018 0.166509 0.986040i \(-0.446751\pi\)
0.166509 + 0.986040i \(0.446751\pi\)
\(492\) 0 0
\(493\) −5.15777 + 8.93353i −0.232294 + 0.402346i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.97345 1.37832i 0.0885211 0.0618261i
\(498\) 0 0
\(499\) 0.175119 + 0.303315i 0.00783940 + 0.0135782i 0.869918 0.493196i \(-0.164171\pi\)
−0.862079 + 0.506774i \(0.830838\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.9098 −0.664795 −0.332398 0.943139i \(-0.607858\pi\)
−0.332398 + 0.943139i \(0.607858\pi\)
\(504\) 0 0
\(505\) 7.58612 0.337578
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.44886 + 14.6339i 0.374489 + 0.648635i 0.990250 0.139298i \(-0.0444847\pi\)
−0.615761 + 0.787933i \(0.711151\pi\)
\(510\) 0 0
\(511\) 1.18433 + 13.7253i 0.0523916 + 0.607170i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.180384 + 0.312434i −0.00794865 + 0.0137675i
\(516\) 0 0
\(517\) −28.4428 −1.25091
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.79306 6.56978i 0.166177 0.287827i −0.770896 0.636962i \(-0.780191\pi\)
0.937073 + 0.349134i \(0.113524\pi\)
\(522\) 0 0
\(523\) 21.2572 + 36.8185i 0.929511 + 1.60996i 0.784140 + 0.620584i \(0.213104\pi\)
0.145371 + 0.989377i \(0.453562\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.31160 10.9320i −0.274938 0.476206i
\(528\) 0 0
\(529\) 7.26651 12.5860i 0.315935 0.547216i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 56.3976 2.44285
\(534\) 0 0
\(535\) −2.72338 + 4.71704i −0.117742 + 0.203935i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 25.9919 + 31.1262i 1.11955 + 1.34070i
\(540\) 0 0
\(541\) −7.03182 12.1795i −0.302322 0.523636i 0.674340 0.738421i \(-0.264428\pi\)
−0.976661 + 0.214785i \(0.931095\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.09833 0.0898824
\(546\) 0 0
\(547\) −4.49593 −0.192232 −0.0961161 0.995370i \(-0.530642\pi\)
−0.0961161 + 0.995370i \(0.530642\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.4283 + 18.0624i 0.444263 + 0.769485i
\(552\) 0 0
\(553\) 6.59533 + 3.08503i 0.280462 + 0.131189i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.9303 27.5921i 0.674989 1.16912i −0.301483 0.953472i \(-0.597482\pi\)
0.976472 0.215644i \(-0.0691852\pi\)
\(558\) 0 0
\(559\) −63.4983 −2.68569
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 23.0688 39.9563i 0.972233 1.68396i 0.283454 0.958986i \(-0.408520\pi\)
0.688779 0.724972i \(-0.258147\pi\)
\(564\) 0 0
\(565\) −1.81962 3.15167i −0.0765518 0.132592i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.31160 14.3961i −0.348441 0.603517i 0.637532 0.770424i \(-0.279955\pi\)
−0.985973 + 0.166907i \(0.946622\pi\)
\(570\) 0 0
\(571\) −18.2532 + 31.6155i −0.763874 + 1.32307i 0.176966 + 0.984217i \(0.443372\pi\)
−0.940840 + 0.338852i \(0.889962\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −13.9469 −0.581626
\(576\) 0 0
\(577\) 7.59019 13.1466i 0.315984 0.547300i −0.663662 0.748032i \(-0.730999\pi\)
0.979646 + 0.200732i \(0.0643321\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −21.6332 + 15.1093i −0.897496 + 0.626841i
\(582\) 0 0
\(583\) 38.0350 + 65.8785i 1.57525 + 2.72841i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8.20694 −0.338737 −0.169368 0.985553i \(-0.554173\pi\)
−0.169368 + 0.985553i \(0.554173\pi\)
\(588\) 0 0
\(589\) −25.5225 −1.05164
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.77859 4.81266i −0.114103 0.197632i 0.803318 0.595550i \(-0.203066\pi\)
−0.917421 + 0.397918i \(0.869733\pi\)
\(594\) 0 0
\(595\) 2.87117 2.00532i 0.117707 0.0822103i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −17.7931 + 30.8185i −0.727005 + 1.25921i 0.231139 + 0.972921i \(0.425755\pi\)
−0.958143 + 0.286288i \(0.907578\pi\)
\(600\) 0 0
\(601\) 1.18038 0.0481489 0.0240744 0.999710i \(-0.492336\pi\)
0.0240744 + 0.999710i \(0.492336\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.13122 8.88753i 0.208614 0.361330i
\(606\) 0 0
\(607\) −6.16908 10.6852i −0.250395 0.433697i 0.713239 0.700920i \(-0.247227\pi\)
−0.963635 + 0.267223i \(0.913894\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −14.4428 25.0157i −0.584294 1.01203i
\(612\) 0 0
\(613\) 10.5451 18.2646i 0.425912 0.737702i −0.570593 0.821233i \(-0.693287\pi\)
0.996505 + 0.0835312i \(0.0266198\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.3526 −0.618074 −0.309037 0.951050i \(-0.600007\pi\)
−0.309037 + 0.951050i \(0.600007\pi\)
\(618\) 0 0
\(619\) 9.21615 15.9628i 0.370428 0.641601i −0.619203 0.785231i \(-0.712544\pi\)
0.989631 + 0.143630i \(0.0458776\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.7665 5.50389i −0.471415 0.220509i
\(624\) 0 0
\(625\) −10.9694 18.9995i −0.438775 0.759981i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −22.4139 −0.893700
\(630\) 0 0
\(631\) −5.91375 −0.235423 −0.117711 0.993048i \(-0.537556\pi\)
−0.117711 + 0.993048i \(0.537556\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.283853 0.491647i −0.0112643 0.0195104i
\(636\) 0 0
\(637\) −14.1775 + 38.6655i −0.561734 + 1.53198i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.0821 39.9793i 0.911686 1.57909i 0.100005 0.994987i \(-0.468114\pi\)
0.811681 0.584100i \(-0.198553\pi\)
\(642\) 0 0
\(643\) −31.0555 −1.22471 −0.612355 0.790583i \(-0.709778\pi\)
−0.612355 + 0.790583i \(0.709778\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.51854 14.7545i 0.334898 0.580061i −0.648567 0.761158i \(-0.724631\pi\)
0.983465 + 0.181097i \(0.0579647\pi\)
\(648\) 0 0
\(649\) −5.19366 8.99568i −0.203869 0.353111i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.06968 7.04889i −0.159259 0.275844i 0.775343 0.631541i \(-0.217577\pi\)
−0.934602 + 0.355696i \(0.884244\pi\)
\(654\) 0 0
\(655\) 1.31764 2.28223i 0.0514846 0.0891740i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 41.1191 1.60177 0.800887 0.598815i \(-0.204362\pi\)
0.800887 + 0.598815i \(0.204362\pi\)
\(660\) 0 0
\(661\) 6.67105 11.5546i 0.259474 0.449422i −0.706627 0.707586i \(-0.749784\pi\)
0.966101 + 0.258164i \(0.0831175\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.608734 7.05465i −0.0236057 0.273568i
\(666\) 0 0
\(667\) 5.15777 + 8.93353i 0.199710 + 0.345908i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 27.0902 1.04581
\(672\) 0 0
\(673\) 9.75837 0.376158 0.188079 0.982154i \(-0.439774\pi\)
0.188079 + 0.982154i \(0.439774\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.2275 + 28.1068i 0.623672 + 1.08023i 0.988796 + 0.149272i \(0.0476931\pi\)
−0.365124 + 0.930959i \(0.618974\pi\)
\(678\) 0 0
\(679\) −12.5656 + 8.77624i −0.482224 + 0.336801i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 18.4827 32.0129i 0.707219 1.22494i −0.258666 0.965967i \(-0.583283\pi\)
0.965885 0.258973i \(-0.0833839\pi\)
\(684\) 0 0
\(685\) −1.40574 −0.0537106
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −38.6272 + 66.9042i −1.47158 + 2.54885i
\(690\) 0 0
\(691\) −7.12596 12.3425i −0.271084 0.469531i 0.698056 0.716044i \(-0.254049\pi\)
−0.969140 + 0.246512i \(0.920715\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.29713 2.24669i −0.0492029 0.0852220i
\(696\) 0 0
\(697\) −13.9469 + 24.1567i −0.528276 + 0.915001i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 51.3937 1.94111 0.970556 0.240876i \(-0.0774347\pi\)
0.970556 + 0.240876i \(0.0774347\pi\)
\(702\) 0 0
\(703\) −22.6590 + 39.2465i −0.854599 + 1.48021i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.79306 43.9580i −0.142653 1.65321i
\(708\) 0 0
\(709\) −12.5861 21.7998i −0.472682 0.818709i 0.526829 0.849971i \(-0.323381\pi\)
−0.999511 + 0.0312621i \(0.990047\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12.6232 −0.472743
\(714\) 0 0
\(715\) 15.5041 0.579819
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.09019 + 7.08442i 0.152538 + 0.264204i 0.932160 0.362047i \(-0.117922\pi\)
−0.779622 + 0.626251i \(0.784589\pi\)
\(720\) 0 0
\(721\) 1.90060 + 0.889022i 0.0707820 + 0.0331089i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −8.49593 + 14.7154i −0.315531 + 0.546516i
\(726\) 0 0
\(727\) 26.9614 0.999942 0.499971 0.866042i \(-0.333344\pi\)
0.499971 + 0.866042i \(0.333344\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15.7029 27.1982i 0.580792 1.00596i
\(732\) 0 0
\(733\) 10.7347 + 18.5930i 0.396495 + 0.686749i 0.993291 0.115644i \(-0.0368931\pi\)
−0.596796 + 0.802393i \(0.703560\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −22.8341 39.5498i −0.841105 1.45684i
\(738\) 0 0
\(739\) 0.671052 1.16230i 0.0246850 0.0427557i −0.853419 0.521226i \(-0.825475\pi\)
0.878104 + 0.478470i \(0.158808\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26.9919 −0.990236 −0.495118 0.868826i \(-0.664875\pi\)
−0.495118 + 0.868826i \(0.664875\pi\)
\(744\) 0 0
\(745\) −0.702870 + 1.21741i −0.0257512 + 0.0446024i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 28.6947 + 13.4222i 1.04848 + 0.490437i
\(750\) 0 0
\(751\) 6.44360 + 11.1606i 0.235130 + 0.407258i 0.959311 0.282353i \(-0.0911150\pi\)
−0.724180 + 0.689611i \(0.757782\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.784928 0.0285664
\(756\) 0 0
\(757\) −26.3897 −0.959151 −0.479575 0.877501i \(-0.659209\pi\)
−0.479575 + 0.877501i \(0.659209\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15.2214 + 26.3643i 0.551776 + 0.955704i 0.998147 + 0.0608556i \(0.0193829\pi\)
−0.446371 + 0.894848i \(0.647284\pi\)
\(762\) 0 0
\(763\) −1.04916 12.1588i −0.0379823 0.440179i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.27452 9.13574i 0.190452 0.329872i
\(768\) 0 0
\(769\) 42.1191 1.51886 0.759428 0.650592i \(-0.225479\pi\)
0.759428 + 0.650592i \(0.225479\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.0145 32.9340i 0.683903 1.18455i −0.289877 0.957064i \(-0.593614\pi\)
0.973780 0.227491i \(-0.0730522\pi\)
\(774\) 0 0
\(775\) −10.3965 18.0073i −0.373454 0.646842i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 28.1988 + 48.8418i 1.01033 + 1.74994i
\(780\) 0 0
\(781\) −2.63529 + 4.56445i −0.0942980 + 0.163329i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.54115 0.0906976
\(786\) 0 0
\(787\) 15.7931 27.3544i 0.562962 0.975079i −0.434274 0.900781i \(-0.642995\pi\)
0.997236 0.0742978i \(-0.0236716\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −17.3526 + 12.1197i −0.616989 + 0.430925i
\(792\) 0 0
\(793\) 13.7560 + 23.8261i 0.488489 + 0.846088i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −45.2133 −1.60154 −0.800768 0.598974i \(-0.795575\pi\)
−0.800768 + 0.598974i \(0.795575\pi\)
\(798\) 0 0
\(799\) 14.2866 0.505424
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −15.0821 26.1229i −0.532234 0.921857i