# Properties

 Label 2016.2.s.n Level $2016$ Weight $2$ Character orbit 2016.s Analytic conductor $16.098$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2016 = 2^{5} \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2016.s (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$16.0978410475$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 672) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 3 \zeta_{6} q^{5} + ( -1 + 3 \zeta_{6} ) q^{7} +O(q^{10})$$ $$q + 3 \zeta_{6} q^{5} + ( -1 + 3 \zeta_{6} ) q^{7} + ( -1 + \zeta_{6} ) q^{11} -4 q^{13} + ( 4 - 4 \zeta_{6} ) q^{17} + 8 \zeta_{6} q^{23} + ( -4 + 4 \zeta_{6} ) q^{25} + 7 q^{29} + ( -11 + 11 \zeta_{6} ) q^{31} + ( -9 + 6 \zeta_{6} ) q^{35} -4 \zeta_{6} q^{37} + 4 q^{41} -2 q^{43} -2 \zeta_{6} q^{47} + ( -8 + 3 \zeta_{6} ) q^{49} + ( -11 + 11 \zeta_{6} ) q^{53} -3 q^{55} + ( 7 - 7 \zeta_{6} ) q^{59} -10 \zeta_{6} q^{61} -12 \zeta_{6} q^{65} + ( -10 + 10 \zeta_{6} ) q^{67} -6 q^{71} + ( 6 - 6 \zeta_{6} ) q^{73} + ( -2 - \zeta_{6} ) q^{77} -11 \zeta_{6} q^{79} -11 q^{83} + 12 q^{85} + 6 \zeta_{6} q^{89} + ( 4 - 12 \zeta_{6} ) q^{91} + 7 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 3q^{5} + q^{7} + O(q^{10})$$ $$2q + 3q^{5} + q^{7} - q^{11} - 8q^{13} + 4q^{17} + 8q^{23} - 4q^{25} + 14q^{29} - 11q^{31} - 12q^{35} - 4q^{37} + 8q^{41} - 4q^{43} - 2q^{47} - 13q^{49} - 11q^{53} - 6q^{55} + 7q^{59} - 10q^{61} - 12q^{65} - 10q^{67} - 12q^{71} + 6q^{73} - 5q^{77} - 11q^{79} - 22q^{83} + 24q^{85} + 6q^{89} - 4q^{91} + 14q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$577$$ $$1765$$ $$1793$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
289.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0 0 1.50000 2.59808i 0 0.500000 2.59808i 0 0 0
865.1 0 0 0 1.50000 + 2.59808i 0 0.500000 + 2.59808i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2016.2.s.n 2
3.b odd 2 1 672.2.q.a 2
4.b odd 2 1 2016.2.s.k 2
7.c even 3 1 inner 2016.2.s.n 2
12.b even 2 1 672.2.q.f yes 2
21.g even 6 1 4704.2.a.b 1
21.h odd 6 1 672.2.q.a 2
21.h odd 6 1 4704.2.a.bf 1
24.f even 2 1 1344.2.q.k 2
24.h odd 2 1 1344.2.q.u 2
28.g odd 6 1 2016.2.s.k 2
84.j odd 6 1 4704.2.a.s 1
84.n even 6 1 672.2.q.f yes 2
84.n even 6 1 4704.2.a.o 1
168.s odd 6 1 1344.2.q.u 2
168.s odd 6 1 9408.2.a.e 1
168.v even 6 1 1344.2.q.k 2
168.v even 6 1 9408.2.a.bt 1
168.ba even 6 1 9408.2.a.dc 1
168.be odd 6 1 9408.2.a.bl 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.2.q.a 2 3.b odd 2 1
672.2.q.a 2 21.h odd 6 1
672.2.q.f yes 2 12.b even 2 1
672.2.q.f yes 2 84.n even 6 1
1344.2.q.k 2 24.f even 2 1
1344.2.q.k 2 168.v even 6 1
1344.2.q.u 2 24.h odd 2 1
1344.2.q.u 2 168.s odd 6 1
2016.2.s.k 2 4.b odd 2 1
2016.2.s.k 2 28.g odd 6 1
2016.2.s.n 2 1.a even 1 1 trivial
2016.2.s.n 2 7.c even 3 1 inner
4704.2.a.b 1 21.g even 6 1
4704.2.a.o 1 84.n even 6 1
4704.2.a.s 1 84.j odd 6 1
4704.2.a.bf 1 21.h odd 6 1
9408.2.a.e 1 168.s odd 6 1
9408.2.a.bl 1 168.be odd 6 1
9408.2.a.bt 1 168.v even 6 1
9408.2.a.dc 1 168.ba even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2016, [\chi])$$:

 $$T_{5}^{2} - 3 T_{5} + 9$$ $$T_{11}^{2} + T_{11} + 1$$ $$T_{13} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$1 - 3 T + 4 T^{2} - 15 T^{3} + 25 T^{4}$$
$7$ $$1 - T + 7 T^{2}$$
$11$ $$1 + T - 10 T^{2} + 11 T^{3} + 121 T^{4}$$
$13$ $$( 1 + 4 T + 13 T^{2} )^{2}$$
$17$ $$1 - 4 T - T^{2} - 68 T^{3} + 289 T^{4}$$
$19$ $$1 - 19 T^{2} + 361 T^{4}$$
$23$ $$1 - 8 T + 41 T^{2} - 184 T^{3} + 529 T^{4}$$
$29$ $$( 1 - 7 T + 29 T^{2} )^{2}$$
$31$ $$( 1 + 4 T + 31 T^{2} )( 1 + 7 T + 31 T^{2} )$$
$37$ $$1 + 4 T - 21 T^{2} + 148 T^{3} + 1369 T^{4}$$
$41$ $$( 1 - 4 T + 41 T^{2} )^{2}$$
$43$ $$( 1 + 2 T + 43 T^{2} )^{2}$$
$47$ $$1 + 2 T - 43 T^{2} + 94 T^{3} + 2209 T^{4}$$
$53$ $$1 + 11 T + 68 T^{2} + 583 T^{3} + 2809 T^{4}$$
$59$ $$1 - 7 T - 10 T^{2} - 413 T^{3} + 3481 T^{4}$$
$61$ $$1 + 10 T + 39 T^{2} + 610 T^{3} + 3721 T^{4}$$
$67$ $$1 + 10 T + 33 T^{2} + 670 T^{3} + 4489 T^{4}$$
$71$ $$( 1 + 6 T + 71 T^{2} )^{2}$$
$73$ $$1 - 6 T - 37 T^{2} - 438 T^{3} + 5329 T^{4}$$
$79$ $$1 + 11 T + 42 T^{2} + 869 T^{3} + 6241 T^{4}$$
$83$ $$( 1 + 11 T + 83 T^{2} )^{2}$$
$89$ $$1 - 6 T - 53 T^{2} - 534 T^{3} + 7921 T^{4}$$
$97$ $$( 1 - 7 T + 97 T^{2} )^{2}$$