Properties

Label 2016.2.s.l.865.1
Level $2016$
Weight $2$
Character 2016.865
Analytic conductor $16.098$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2016.865
Dual form 2016.2.s.l.289.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.50000 + 2.59808i) q^{5} +(-0.500000 - 2.59808i) q^{7} +O(q^{10})\) \(q+(1.50000 + 2.59808i) q^{5} +(-0.500000 - 2.59808i) q^{7} +(2.50000 - 4.33013i) q^{11} +2.00000 q^{13} +(1.00000 - 1.73205i) q^{17} +(-3.00000 - 5.19615i) q^{19} +(1.00000 + 1.73205i) q^{23} +(-2.00000 + 3.46410i) q^{25} -1.00000 q^{29} +(-0.500000 + 0.866025i) q^{31} +(6.00000 - 5.19615i) q^{35} +(-5.00000 - 8.66025i) q^{37} -4.00000 q^{41} -4.00000 q^{43} +(-4.00000 - 6.92820i) q^{47} +(-6.50000 + 2.59808i) q^{49} +(2.50000 - 4.33013i) q^{53} +15.0000 q^{55} +(6.50000 - 11.2583i) q^{59} +(4.00000 + 6.92820i) q^{61} +(3.00000 + 5.19615i) q^{65} +(-7.00000 + 12.1244i) q^{67} +12.0000 q^{71} +(3.00000 - 5.19615i) q^{73} +(-12.5000 - 4.33013i) q^{77} +(5.50000 + 9.52628i) q^{79} +7.00000 q^{83} +6.00000 q^{85} +(-3.00000 - 5.19615i) q^{89} +(-1.00000 - 5.19615i) q^{91} +(9.00000 - 15.5885i) q^{95} +19.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{5} - q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{5} - q^{7} + 5 q^{11} + 4 q^{13} + 2 q^{17} - 6 q^{19} + 2 q^{23} - 4 q^{25} - 2 q^{29} - q^{31} + 12 q^{35} - 10 q^{37} - 8 q^{41} - 8 q^{43} - 8 q^{47} - 13 q^{49} + 5 q^{53} + 30 q^{55} + 13 q^{59} + 8 q^{61} + 6 q^{65} - 14 q^{67} + 24 q^{71} + 6 q^{73} - 25 q^{77} + 11 q^{79} + 14 q^{83} + 12 q^{85} - 6 q^{89} - 2 q^{91} + 18 q^{95} + 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 0 0
\(7\) −0.500000 2.59808i −0.188982 0.981981i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.50000 4.33013i 0.753778 1.30558i −0.192201 0.981356i \(-0.561563\pi\)
0.945979 0.324227i \(-0.105104\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 1.73205i 0.242536 0.420084i −0.718900 0.695113i \(-0.755354\pi\)
0.961436 + 0.275029i \(0.0886875\pi\)
\(18\) 0 0
\(19\) −3.00000 5.19615i −0.688247 1.19208i −0.972404 0.233301i \(-0.925047\pi\)
0.284157 0.958778i \(-0.408286\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 + 1.73205i 0.208514 + 0.361158i 0.951247 0.308431i \(-0.0998038\pi\)
−0.742732 + 0.669588i \(0.766471\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) 0 0
\(31\) −0.500000 + 0.866025i −0.0898027 + 0.155543i −0.907428 0.420208i \(-0.861957\pi\)
0.817625 + 0.575751i \(0.195290\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.00000 5.19615i 1.01419 0.878310i
\(36\) 0 0
\(37\) −5.00000 8.66025i −0.821995 1.42374i −0.904194 0.427121i \(-0.859528\pi\)
0.0821995 0.996616i \(-0.473806\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 6.92820i −0.583460 1.01058i −0.995066 0.0992202i \(-0.968365\pi\)
0.411606 0.911362i \(-0.364968\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.50000 4.33013i 0.343401 0.594789i −0.641661 0.766989i \(-0.721754\pi\)
0.985062 + 0.172200i \(0.0550875\pi\)
\(54\) 0 0
\(55\) 15.0000 2.02260
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.50000 11.2583i 0.846228 1.46571i −0.0383226 0.999265i \(-0.512201\pi\)
0.884551 0.466444i \(-0.154465\pi\)
\(60\) 0 0
\(61\) 4.00000 + 6.92820i 0.512148 + 0.887066i 0.999901 + 0.0140840i \(0.00448323\pi\)
−0.487753 + 0.872982i \(0.662183\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 + 5.19615i 0.372104 + 0.644503i
\(66\) 0 0
\(67\) −7.00000 + 12.1244i −0.855186 + 1.48123i 0.0212861 + 0.999773i \(0.493224\pi\)
−0.876472 + 0.481452i \(0.840109\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 3.00000 5.19615i 0.351123 0.608164i −0.635323 0.772246i \(-0.719133\pi\)
0.986447 + 0.164083i \(0.0524664\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.5000 4.33013i −1.42451 0.493464i
\(78\) 0 0
\(79\) 5.50000 + 9.52628i 0.618798 + 1.07179i 0.989705 + 0.143120i \(0.0457135\pi\)
−0.370907 + 0.928670i \(0.620953\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.00000 0.768350 0.384175 0.923260i \(-0.374486\pi\)
0.384175 + 0.923260i \(0.374486\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 5.19615i −0.317999 0.550791i 0.662071 0.749441i \(-0.269678\pi\)
−0.980071 + 0.198650i \(0.936344\pi\)
\(90\) 0 0
\(91\) −1.00000 5.19615i −0.104828 0.544705i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9.00000 15.5885i 0.923381 1.59934i
\(96\) 0 0
\(97\) 19.0000 1.92916 0.964579 0.263795i \(-0.0849741\pi\)
0.964579 + 0.263795i \(0.0849741\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.00000 5.19615i 0.298511 0.517036i −0.677284 0.735721i \(-0.736843\pi\)
0.975796 + 0.218685i \(0.0701767\pi\)
\(102\) 0 0
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.50000 11.2583i −0.628379 1.08838i −0.987877 0.155238i \(-0.950386\pi\)
0.359498 0.933146i \(-0.382948\pi\)
\(108\) 0 0
\(109\) −5.00000 + 8.66025i −0.478913 + 0.829502i −0.999708 0.0241802i \(-0.992302\pi\)
0.520794 + 0.853682i \(0.325636\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.0000 1.12887 0.564433 0.825479i \(-0.309095\pi\)
0.564433 + 0.825479i \(0.309095\pi\)
\(114\) 0 0
\(115\) −3.00000 + 5.19615i −0.279751 + 0.484544i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.00000 1.73205i −0.458349 0.158777i
\(120\) 0 0
\(121\) −7.00000 12.1244i −0.636364 1.10221i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 7.00000 0.621150 0.310575 0.950549i \(-0.399478\pi\)
0.310575 + 0.950549i \(0.399478\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.50000 + 7.79423i 0.393167 + 0.680985i 0.992865 0.119241i \(-0.0380462\pi\)
−0.599699 + 0.800226i \(0.704713\pi\)
\(132\) 0 0
\(133\) −12.0000 + 10.3923i −1.04053 + 0.901127i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.0000 + 19.0526i −0.939793 + 1.62777i −0.173939 + 0.984757i \(0.555649\pi\)
−0.765855 + 0.643013i \(0.777684\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.00000 8.66025i 0.418121 0.724207i
\(144\) 0 0
\(145\) −1.50000 2.59808i −0.124568 0.215758i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.00000 + 15.5885i 0.737309 + 1.27706i 0.953703 + 0.300750i \(0.0972370\pi\)
−0.216394 + 0.976306i \(0.569430\pi\)
\(150\) 0 0
\(151\) 5.50000 9.52628i 0.447584 0.775238i −0.550645 0.834740i \(-0.685618\pi\)
0.998228 + 0.0595022i \(0.0189513\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.00000 −0.240966
\(156\) 0 0
\(157\) 6.00000 10.3923i 0.478852 0.829396i −0.520854 0.853646i \(-0.674386\pi\)
0.999706 + 0.0242497i \(0.00771967\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.00000 3.46410i 0.315244 0.273009i
\(162\) 0 0
\(163\) −7.00000 12.1244i −0.548282 0.949653i −0.998392 0.0566798i \(-0.981949\pi\)
0.450110 0.892973i \(-0.351385\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.0000 1.70241 0.851206 0.524832i \(-0.175872\pi\)
0.851206 + 0.524832i \(0.175872\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.00000 + 15.5885i 0.684257 + 1.18517i 0.973670 + 0.227964i \(0.0732068\pi\)
−0.289412 + 0.957205i \(0.593460\pi\)
\(174\) 0 0
\(175\) 10.0000 + 3.46410i 0.755929 + 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.0000 25.9808i 1.10282 1.91014i
\(186\) 0 0
\(187\) −5.00000 8.66025i −0.365636 0.633300i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 10.3923i −0.434145 0.751961i 0.563081 0.826402i \(-0.309616\pi\)
−0.997225 + 0.0744412i \(0.976283\pi\)
\(192\) 0 0
\(193\) −8.50000 + 14.7224i −0.611843 + 1.05974i 0.379086 + 0.925361i \(0.376238\pi\)
−0.990930 + 0.134382i \(0.957095\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 8.00000 13.8564i 0.567105 0.982255i −0.429745 0.902950i \(-0.641397\pi\)
0.996850 0.0793045i \(-0.0252700\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.500000 + 2.59808i 0.0350931 + 0.182349i
\(204\) 0 0
\(205\) −6.00000 10.3923i −0.419058 0.725830i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −30.0000 −2.07514
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.00000 10.3923i −0.409197 0.708749i
\(216\) 0 0
\(217\) 2.50000 + 0.866025i 0.169711 + 0.0587896i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.00000 3.46410i 0.134535 0.233021i
\(222\) 0 0
\(223\) −9.00000 −0.602685 −0.301342 0.953516i \(-0.597435\pi\)
−0.301342 + 0.953516i \(0.597435\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.500000 + 0.866025i −0.0331862 + 0.0574801i −0.882141 0.470985i \(-0.843899\pi\)
0.848955 + 0.528465i \(0.177232\pi\)
\(228\) 0 0
\(229\) 4.00000 + 6.92820i 0.264327 + 0.457829i 0.967387 0.253302i \(-0.0815167\pi\)
−0.703060 + 0.711131i \(0.748183\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.00000 + 5.19615i 0.196537 + 0.340411i 0.947403 0.320043i \(-0.103697\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) 0 0
\(235\) 12.0000 20.7846i 0.782794 1.35584i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 0.500000 0.866025i 0.0322078 0.0557856i −0.849472 0.527633i \(-0.823079\pi\)
0.881680 + 0.471848i \(0.156413\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −16.5000 12.9904i −1.05415 0.829925i
\(246\) 0 0
\(247\) −6.00000 10.3923i −0.381771 0.661247i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −17.0000 −1.07303 −0.536515 0.843891i \(-0.680260\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(252\) 0 0
\(253\) 10.0000 0.628695
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.00000 12.1244i −0.436648 0.756297i 0.560781 0.827964i \(-0.310501\pi\)
−0.997429 + 0.0716680i \(0.977168\pi\)
\(258\) 0 0
\(259\) −20.0000 + 17.3205i −1.24274 + 1.07624i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.00000 + 13.8564i −0.493301 + 0.854423i −0.999970 0.00771799i \(-0.997543\pi\)
0.506669 + 0.862141i \(0.330877\pi\)
\(264\) 0 0
\(265\) 15.0000 0.921443
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.5000 18.1865i 0.640196 1.10885i −0.345192 0.938532i \(-0.612186\pi\)
0.985389 0.170321i \(-0.0544803\pi\)
\(270\) 0 0
\(271\) 5.50000 + 9.52628i 0.334101 + 0.578680i 0.983312 0.181928i \(-0.0582339\pi\)
−0.649211 + 0.760609i \(0.724901\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.0000 + 17.3205i 0.603023 + 1.04447i
\(276\) 0 0
\(277\) 14.0000 24.2487i 0.841178 1.45696i −0.0477206 0.998861i \(-0.515196\pi\)
0.888899 0.458103i \(-0.151471\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.00000 + 10.3923i 0.118056 + 0.613438i
\(288\) 0 0
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −25.0000 −1.46052 −0.730258 0.683172i \(-0.760600\pi\)
−0.730258 + 0.683172i \(0.760600\pi\)
\(294\) 0 0
\(295\) 39.0000 2.27067
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.00000 + 3.46410i 0.115663 + 0.200334i
\(300\) 0 0
\(301\) 2.00000 + 10.3923i 0.115278 + 0.599002i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.0000 + 20.7846i −0.687118 + 1.19012i
\(306\) 0 0
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 + 20.7846i −0.680458 + 1.17859i 0.294384 + 0.955687i \(0.404886\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(312\) 0 0
\(313\) −0.500000 0.866025i −0.0282617 0.0489506i 0.851549 0.524276i \(-0.175664\pi\)
−0.879810 + 0.475325i \(0.842331\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.50000 + 11.2583i 0.365076 + 0.632331i 0.988788 0.149323i \(-0.0477095\pi\)
−0.623712 + 0.781654i \(0.714376\pi\)
\(318\) 0 0
\(319\) −2.50000 + 4.33013i −0.139973 + 0.242441i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) −4.00000 + 6.92820i −0.221880 + 0.384308i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −16.0000 + 13.8564i −0.882109 + 0.763928i
\(330\) 0 0
\(331\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −42.0000 −2.29471
\(336\) 0 0
\(337\) −3.00000 −0.163420 −0.0817102 0.996656i \(-0.526038\pi\)
−0.0817102 + 0.996656i \(0.526038\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.50000 + 4.33013i 0.135383 + 0.234490i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0000 20.7846i 0.638696 1.10625i −0.347024 0.937856i \(-0.612808\pi\)
0.985719 0.168397i \(-0.0538590\pi\)
\(354\) 0 0
\(355\) 18.0000 + 31.1769i 0.955341 + 1.65470i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.0000 + 22.5167i 0.686114 + 1.18838i 0.973085 + 0.230445i \(0.0740181\pi\)
−0.286972 + 0.957939i \(0.592649\pi\)
\(360\) 0 0
\(361\) −8.50000 + 14.7224i −0.447368 + 0.774865i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 18.0000 0.942163
\(366\) 0 0
\(367\) −9.50000 + 16.4545i −0.495896 + 0.858917i −0.999989 0.00473247i \(-0.998494\pi\)
0.504093 + 0.863649i \(0.331827\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.5000 4.33013i −0.648968 0.224809i
\(372\) 0 0
\(373\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.0000 + 32.9090i 0.970855 + 1.68157i 0.692987 + 0.720950i \(0.256294\pi\)
0.277868 + 0.960619i \(0.410372\pi\)
\(384\) 0 0
\(385\) −7.50000 38.9711i −0.382235 1.98615i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.00000 15.5885i 0.456318 0.790366i −0.542445 0.840091i \(-0.682501\pi\)
0.998763 + 0.0497253i \(0.0158346\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.5000 + 28.5788i −0.830205 + 1.43796i
\(396\) 0 0
\(397\) −4.00000 6.92820i −0.200754 0.347717i 0.748017 0.663679i \(-0.231006\pi\)
−0.948772 + 0.315963i \(0.897673\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.0000 + 27.7128i 0.799002 + 1.38391i 0.920267 + 0.391292i \(0.127972\pi\)
−0.121265 + 0.992620i \(0.538695\pi\)
\(402\) 0 0
\(403\) −1.00000 + 1.73205i −0.0498135 + 0.0862796i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −50.0000 −2.47841
\(408\) 0 0
\(409\) −9.50000 + 16.4545i −0.469745 + 0.813622i −0.999402 0.0345902i \(-0.988987\pi\)
0.529657 + 0.848212i \(0.322321\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −32.5000 11.2583i −1.59922 0.553986i
\(414\) 0 0
\(415\) 10.5000 + 18.1865i 0.515425 + 0.892742i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −12.0000 −0.584844 −0.292422 0.956289i \(-0.594461\pi\)
−0.292422 + 0.956289i \(0.594461\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.00000 + 6.92820i 0.194029 + 0.336067i
\(426\) 0 0
\(427\) 16.0000 13.8564i 0.774294 0.670559i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.0000 + 24.2487i −0.674356 + 1.16802i 0.302300 + 0.953213i \(0.402245\pi\)
−0.976657 + 0.214807i \(0.931088\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.00000 10.3923i 0.287019 0.497131i
\(438\) 0 0
\(439\) −10.5000 18.1865i −0.501138 0.867996i −0.999999 0.00131415i \(-0.999582\pi\)
0.498861 0.866682i \(-0.333752\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.50000 + 7.79423i 0.213801 + 0.370315i 0.952901 0.303281i \(-0.0980821\pi\)
−0.739100 + 0.673596i \(0.764749\pi\)
\(444\) 0 0
\(445\) 9.00000 15.5885i 0.426641 0.738964i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −10.0000 + 17.3205i −0.470882 + 0.815591i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12.0000 10.3923i 0.562569 0.487199i
\(456\) 0 0
\(457\) 14.5000 + 25.1147i 0.678281 + 1.17482i 0.975498 + 0.220008i \(0.0706083\pi\)
−0.297217 + 0.954810i \(0.596058\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.00000 −0.0931493 −0.0465746 0.998915i \(-0.514831\pi\)
−0.0465746 + 0.998915i \(0.514831\pi\)
\(462\) 0 0
\(463\) −36.0000 −1.67306 −0.836531 0.547920i \(-0.815420\pi\)
−0.836531 + 0.547920i \(0.815420\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.0000 31.1769i −0.832941 1.44270i −0.895696 0.444667i \(-0.853322\pi\)
0.0627555 0.998029i \(-0.480011\pi\)
\(468\) 0 0
\(469\) 35.0000 + 12.1244i 1.61615 + 0.559851i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10.0000 + 17.3205i −0.459800 + 0.796398i
\(474\) 0 0
\(475\) 24.0000 1.10120
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.0000 + 20.7846i −0.548294 + 0.949673i 0.450098 + 0.892979i \(0.351389\pi\)
−0.998392 + 0.0566937i \(0.981944\pi\)
\(480\) 0 0
\(481\) −10.0000 17.3205i −0.455961 0.789747i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.5000 + 49.3634i 1.29412 + 2.24148i
\(486\) 0 0
\(487\) −1.50000 + 2.59808i −0.0679715 + 0.117730i −0.898008 0.439979i \(-0.854986\pi\)
0.830037 + 0.557709i \(0.188319\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 31.0000 1.39901 0.699505 0.714628i \(-0.253404\pi\)
0.699505 + 0.714628i \(0.253404\pi\)
\(492\) 0 0
\(493\) −1.00000 + 1.73205i −0.0450377 + 0.0780076i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.00000 31.1769i −0.269137 1.39848i
\(498\) 0 0
\(499\) 5.00000 + 8.66025i 0.223831 + 0.387686i 0.955968 0.293471i \(-0.0948104\pi\)
−0.732137 + 0.681157i \(0.761477\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.0000 −0.624229 −0.312115 0.950044i \(-0.601037\pi\)
−0.312115 + 0.950044i \(0.601037\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.5000 + 21.6506i 0.554053 + 0.959648i 0.997977 + 0.0635830i \(0.0202528\pi\)
−0.443924 + 0.896065i \(0.646414\pi\)
\(510\) 0 0
\(511\) −15.0000 5.19615i −0.663561 0.229864i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.0000 + 20.7846i −0.528783 + 0.915879i
\(516\) 0 0
\(517\) −40.0000 −1.75920
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 20.0000 34.6410i 0.876216 1.51765i 0.0207541 0.999785i \(-0.493393\pi\)
0.855462 0.517866i \(-0.173273\pi\)
\(522\) 0 0
\(523\) −13.0000 22.5167i −0.568450 0.984585i −0.996719 0.0809336i \(-0.974210\pi\)
0.428269 0.903651i \(-0.359124\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.00000 + 1.73205i 0.0435607 + 0.0754493i
\(528\) 0 0
\(529\) 9.50000 16.4545i 0.413043 0.715412i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −8.00000 −0.346518
\(534\) 0 0
\(535\) 19.5000 33.7750i 0.843059 1.46022i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.00000 + 34.6410i −0.215365 + 1.49209i
\(540\) 0 0
\(541\) 12.0000 + 20.7846i 0.515920 + 0.893600i 0.999829 + 0.0184818i \(0.00588327\pi\)
−0.483909 + 0.875118i \(0.660783\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −30.0000 −1.28506
\(546\) 0 0
\(547\) 2.00000 0.0855138 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.00000 + 5.19615i 0.127804 + 0.221364i
\(552\) 0 0
\(553\) 22.0000 19.0526i 0.935535 0.810197i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.5000 + 28.5788i −0.699127 + 1.21092i 0.269642 + 0.962961i \(0.413095\pi\)
−0.968769 + 0.247964i \(0.920239\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.50000 + 9.52628i −0.231797 + 0.401485i −0.958337 0.285640i \(-0.907794\pi\)
0.726540 + 0.687124i \(0.241127\pi\)
\(564\) 0 0
\(565\) 18.0000 + 31.1769i 0.757266 + 1.31162i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) 0 0
\(571\) −2.00000 + 3.46410i −0.0836974 + 0.144968i −0.904835 0.425762i \(-0.860006\pi\)
0.821138 + 0.570730i \(0.193340\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) −3.50000 + 6.06218i −0.145707 + 0.252372i −0.929636 0.368478i \(-0.879879\pi\)
0.783930 + 0.620850i \(0.213212\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.50000 18.1865i −0.145204 0.754505i
\(582\) 0 0
\(583\) −12.5000 21.6506i −0.517697 0.896678i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −27.0000 −1.11441 −0.557205 0.830375i \(-0.688126\pi\)
−0.557205 + 0.830375i \(0.688126\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.00000 + 5.19615i 0.123195 + 0.213380i 0.921026 0.389501i \(-0.127353\pi\)
−0.797831 + 0.602881i \(0.794019\pi\)
\(594\) 0 0
\(595\) −3.00000 15.5885i −0.122988 0.639064i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −9.00000 + 15.5885i −0.367730 + 0.636927i −0.989210 0.146503i \(-0.953198\pi\)
0.621480 + 0.783430i \(0.286532\pi\)
\(600\) 0 0
\(601\) 23.0000 0.938190 0.469095 0.883148i \(-0.344580\pi\)
0.469095 + 0.883148i \(0.344580\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 21.0000 36.3731i 0.853771 1.47878i
\(606\) 0 0
\(607\) −1.50000 2.59808i −0.0608831 0.105453i 0.833977 0.551799i \(-0.186058\pi\)
−0.894860 + 0.446346i \(0.852725\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.00000 13.8564i −0.323645 0.560570i
\(612\) 0 0
\(613\) 11.0000 19.0526i 0.444286 0.769526i −0.553716 0.832705i \(-0.686791\pi\)
0.998002 + 0.0631797i \(0.0201241\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8.00000 −0.322068 −0.161034 0.986949i \(-0.551483\pi\)
−0.161034 + 0.986949i \(0.551483\pi\)
\(618\) 0 0
\(619\) 16.0000 27.7128i 0.643094 1.11387i −0.341644 0.939829i \(-0.610984\pi\)
0.984738 0.174042i \(-0.0556830\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0000 + 10.3923i −0.480770 + 0.416359i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) −29.0000 −1.15447 −0.577236 0.816577i \(-0.695869\pi\)
−0.577236 + 0.816577i \(0.695869\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.5000 + 18.1865i 0.416680 + 0.721711i
\(636\) 0 0
\(637\) −13.0000 + 5.19615i −0.515079 + 0.205879i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.00000 13.8564i 0.315981 0.547295i −0.663665 0.748030i \(-0.731000\pi\)
0.979646 + 0.200735i \(0.0643331\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.0000 41.5692i 0.943537 1.63425i 0.184884 0.982760i \(-0.440809\pi\)
0.758654 0.651494i \(-0.225858\pi\)
\(648\) 0 0
\(649\) −32.5000 56.2917i −1.27574 2.20964i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.5000 21.6506i −0.489163 0.847255i 0.510759 0.859724i \(-0.329364\pi\)
−0.999922 + 0.0124688i \(0.996031\pi\)
\(654\) 0 0
\(655\) −13.5000 + 23.3827i −0.527489 + 0.913637i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −45.0000 15.5885i −1.74503 0.604494i
\(666\) 0 0
\(667\) −1.00000 1.73205i −0.0387202 0.0670653i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 40.0000 1.54418
\(672\) 0 0
\(673\) −39.0000 −1.50334 −0.751670 0.659540i \(-0.770751\pi\)
−0.751670 + 0.659540i \(0.770751\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.50000 7.79423i −0.172949 0.299557i 0.766501 0.642244i \(-0.221996\pi\)
−0.939450 + 0.342687i \(0.888663\pi\)
\(678\) 0 0
\(679\) −9.50000 49.3634i −0.364577 1.89440i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.50000 2.59808i 0.0573959 0.0994126i −0.835900 0.548882i \(-0.815054\pi\)
0.893296 + 0.449469i \(0.148387\pi\)
\(684\) 0 0
\(685\) −66.0000 −2.52173
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.00000 8.66025i 0.190485 0.329929i
\(690\) 0 0
\(691\) −14.0000 24.2487i −0.532585 0.922464i −0.999276 0.0380440i \(-0.987887\pi\)
0.466691 0.884420i \(-0.345446\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −21.0000 36.3731i −0.796575 1.37971i
\(696\) 0 0
\(697\) −4.00000 + 6.92820i −0.151511 + 0.262424i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.0000 0.566542 0.283271 0.959040i \(-0.408580\pi\)
0.283271 + 0.959040i \(0.408580\pi\)
\(702\) 0 0
\(703\) −30.0000 + 51.9615i −1.13147 + 1.95977i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.0000 5.19615i −0.564133 0.195421i
\(708\) 0 0
\(709\) 5.00000 + 8.66025i 0.187779 + 0.325243i 0.944509 0.328484i \(-0.106538\pi\)
−0.756730 + 0.653727i \(0.773204\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.00000 −0.0749006
\(714\) 0 0
\(715\) 30.0000 1.12194
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.0000 + 25.9808i 0.559406 + 0.968919i 0.997546 + 0.0700124i \(0.0223039\pi\)
−0.438141 + 0.898906i \(0.644363\pi\)
\(720\) 0 0
\(721\) 16.0000 13.8564i 0.595871 0.516040i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.00000 3.46410i 0.0742781 0.128654i
\(726\) 0 0
\(727\) 17.0000 0.630495 0.315248 0.949009i \(-0.397912\pi\)
0.315248 + 0.949009i \(0.397912\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.00000 + 6.92820i −0.147945 + 0.256249i
\(732\) 0 0
\(733\) 2.00000 + 3.46410i 0.0738717 + 0.127950i 0.900595 0.434659i \(-0.143131\pi\)
−0.826723 + 0.562609i \(0.809798\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 35.0000 + 60.6218i 1.28924 + 2.23303i
\(738\) 0 0
\(739\) −25.0000 + 43.3013i −0.919640 + 1.59286i −0.119677 + 0.992813i \(0.538186\pi\)
−0.799962 + 0.600050i \(0.795147\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.0000 0.953847 0.476924 0.878945i \(-0.341752\pi\)
0.476924 + 0.878945i \(0.341752\pi\)
\(744\) 0 0
\(745\) −27.0000 + 46.7654i −0.989203 + 1.71335i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −26.0000 + 22.5167i −0.950019 + 0.822741i
\(750\) 0 0
\(751\) −7.50000 12.9904i −0.273679 0.474026i 0.696122 0.717923i \(-0.254907\pi\)
−0.969801 + 0.243898i \(0.921574\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 33.0000 1.20099
\(756\) 0 0
\(757\) −8.00000 −0.290765 −0.145382 0.989376i \(-0.546441\pi\)
−0.145382 + 0.989376i \(0.546441\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15.0000 + 25.9808i 0.543750 + 0.941802i 0.998684 + 0.0512772i \(0.0163292\pi\)
−0.454935 + 0.890525i \(0.650337\pi\)
\(762\) 0 0
\(763\) 25.0000 + 8.66025i 0.905061 + 0.313522i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.0000 22.5167i 0.469403 0.813029i
\(768\) 0 0
\(769\) 21.0000 0.757279 0.378640 0.925544i \(-0.376392\pi\)
0.378640 + 0.925544i \(0.376392\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 15.0000 25.9808i 0.539513 0.934463i −0.459418 0.888220i \(-0.651942\pi\)
0.998930 0.0462427i \(-0.0147248\pi\)
\(774\) 0 0
\(775\) −2.00000 3.46410i −0.0718421 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.0000 + 20.7846i 0.429945 + 0.744686i
\(780\) 0 0
\(781\) 30.0000 51.9615i 1.07348 1.85933i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 36.0000 1.28490
\(786\) 0 0
\(787\) −2.00000 + 3.46410i −0.0712923 + 0.123482i −0.899468 0.436987i \(-0.856046\pi\)
0.828176 + 0.560469i \(0.189379\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.00000 31.1769i −0.213335 1.10852i
\(792\) 0 0
\(793\) 8.00000 + 13.8564i 0.284088 + 0.492055i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −19.0000 −0.673015 −0.336507 0.941681i \(-0.609246\pi\)
−0.336507 + 0.941681i \(0.609246\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) 0