Properties

Label 2016.2.s.h.865.1
Level $2016$
Weight $2$
Character 2016.865
Analytic conductor $16.098$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2016.865
Dual form 2016.2.s.h.289.1

$q$-expansion

\(f(q)\) \(=\) \(q+(2.50000 + 0.866025i) q^{7} +O(q^{10})\) \(q+(2.50000 + 0.866025i) q^{7} +(1.00000 - 1.73205i) q^{11} +1.00000 q^{13} +(-1.00000 + 1.73205i) q^{17} +(2.50000 + 4.33013i) q^{19} +(-3.00000 - 5.19615i) q^{23} +(2.50000 - 4.33013i) q^{25} +8.00000 q^{29} +(-1.50000 + 2.59808i) q^{31} +(4.50000 + 7.79423i) q^{37} -2.00000 q^{41} -1.00000 q^{43} +(-4.00000 - 6.92820i) q^{47} +(5.50000 + 4.33013i) q^{49} +(3.00000 - 5.19615i) q^{53} +(-3.00000 + 5.19615i) q^{59} +(1.00000 + 1.73205i) q^{61} +(-2.50000 + 4.33013i) q^{67} +4.00000 q^{71} +(5.50000 - 9.52628i) q^{73} +(4.00000 - 3.46410i) q^{77} +(-2.50000 - 4.33013i) q^{79} +(6.00000 + 10.3923i) q^{89} +(2.50000 + 0.866025i) q^{91} +18.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 5 q^{7} + 2 q^{11} + 2 q^{13} - 2 q^{17} + 5 q^{19} - 6 q^{23} + 5 q^{25} + 16 q^{29} - 3 q^{31} + 9 q^{37} - 4 q^{41} - 2 q^{43} - 8 q^{47} + 11 q^{49} + 6 q^{53} - 6 q^{59} + 2 q^{61} - 5 q^{67} + 8 q^{71} + 11 q^{73} + 8 q^{77} - 5 q^{79} + 12 q^{89} + 5 q^{91} + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) 2.50000 + 0.866025i 0.944911 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 + 1.73205i −0.242536 + 0.420084i −0.961436 0.275029i \(-0.911312\pi\)
0.718900 + 0.695113i \(0.244646\pi\)
\(18\) 0 0
\(19\) 2.50000 + 4.33013i 0.573539 + 0.993399i 0.996199 + 0.0871106i \(0.0277634\pi\)
−0.422659 + 0.906289i \(0.638903\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.00000 1.48556 0.742781 0.669534i \(-0.233506\pi\)
0.742781 + 0.669534i \(0.233506\pi\)
\(30\) 0 0
\(31\) −1.50000 + 2.59808i −0.269408 + 0.466628i −0.968709 0.248199i \(-0.920161\pi\)
0.699301 + 0.714827i \(0.253495\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.50000 + 7.79423i 0.739795 + 1.28136i 0.952587 + 0.304266i \(0.0984111\pi\)
−0.212792 + 0.977098i \(0.568256\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 6.92820i −0.583460 1.01058i −0.995066 0.0992202i \(-0.968365\pi\)
0.411606 0.911362i \(-0.364968\pi\)
\(48\) 0 0
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.00000 5.19615i 0.412082 0.713746i −0.583036 0.812447i \(-0.698135\pi\)
0.995117 + 0.0987002i \(0.0314685\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.00000 + 5.19615i −0.390567 + 0.676481i −0.992524 0.122047i \(-0.961054\pi\)
0.601958 + 0.798528i \(0.294388\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.73205i 0.128037 + 0.221766i 0.922916 0.385002i \(-0.125799\pi\)
−0.794879 + 0.606768i \(0.792466\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.50000 + 4.33013i −0.305424 + 0.529009i −0.977356 0.211604i \(-0.932131\pi\)
0.671932 + 0.740613i \(0.265465\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.00000 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(72\) 0 0
\(73\) 5.50000 9.52628i 0.643726 1.11497i −0.340868 0.940111i \(-0.610721\pi\)
0.984594 0.174855i \(-0.0559458\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000 3.46410i 0.455842 0.394771i
\(78\) 0 0
\(79\) −2.50000 4.33013i −0.281272 0.487177i 0.690426 0.723403i \(-0.257423\pi\)
−0.971698 + 0.236225i \(0.924090\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 + 10.3923i 0.635999 + 1.10158i 0.986303 + 0.164946i \(0.0527450\pi\)
−0.350304 + 0.936636i \(0.613922\pi\)
\(90\) 0 0
\(91\) 2.50000 + 0.866025i 0.262071 + 0.0907841i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.00000 + 5.19615i −0.298511 + 0.517036i −0.975796 0.218685i \(-0.929823\pi\)
0.677284 + 0.735721i \(0.263157\pi\)
\(102\) 0 0
\(103\) −5.50000 9.52628i −0.541931 0.938652i −0.998793 0.0491146i \(-0.984360\pi\)
0.456862 0.889538i \(-0.348973\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.00000 + 15.5885i 0.870063 + 1.50699i 0.861931 + 0.507026i \(0.169255\pi\)
0.00813215 + 0.999967i \(0.497411\pi\)
\(108\) 0 0
\(109\) 1.50000 2.59808i 0.143674 0.248851i −0.785203 0.619238i \(-0.787442\pi\)
0.928877 + 0.370387i \(0.120775\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.0000 1.12887 0.564433 0.825479i \(-0.309095\pi\)
0.564433 + 0.825479i \(0.309095\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.00000 + 3.46410i −0.366679 + 0.317554i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −9.00000 −0.798621 −0.399310 0.916816i \(-0.630750\pi\)
−0.399310 + 0.916816i \(0.630750\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.00000 + 8.66025i 0.436852 + 0.756650i 0.997445 0.0714417i \(-0.0227600\pi\)
−0.560593 + 0.828092i \(0.689427\pi\)
\(132\) 0 0
\(133\) 2.50000 + 12.9904i 0.216777 + 1.12641i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 + 10.3923i −0.512615 + 0.887875i 0.487278 + 0.873247i \(0.337990\pi\)
−0.999893 + 0.0146279i \(0.995344\pi\)
\(138\) 0 0
\(139\) 15.0000 1.27228 0.636142 0.771572i \(-0.280529\pi\)
0.636142 + 0.771572i \(0.280529\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.00000 1.73205i 0.0836242 0.144841i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 17.3205i −0.819232 1.41895i −0.906249 0.422744i \(-0.861067\pi\)
0.0870170 0.996207i \(-0.472267\pi\)
\(150\) 0 0
\(151\) 8.00000 13.8564i 0.651031 1.12762i −0.331842 0.943335i \(-0.607670\pi\)
0.982873 0.184284i \(-0.0589965\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 11.0000 19.0526i 0.877896 1.52056i 0.0242497 0.999706i \(-0.492280\pi\)
0.853646 0.520854i \(-0.174386\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.00000 15.5885i −0.236433 1.22854i
\(162\) 0 0
\(163\) −10.0000 17.3205i −0.783260 1.35665i −0.930033 0.367477i \(-0.880222\pi\)
0.146772 0.989170i \(-0.453112\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.00000 + 15.5885i 0.684257 + 1.18517i 0.973670 + 0.227964i \(0.0732068\pi\)
−0.289412 + 0.957205i \(0.593460\pi\)
\(174\) 0 0
\(175\) 10.0000 8.66025i 0.755929 0.654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.00000 + 3.46410i −0.149487 + 0.258919i −0.931038 0.364922i \(-0.881096\pi\)
0.781551 + 0.623841i \(0.214429\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.00000 + 3.46410i 0.146254 + 0.253320i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.0000 17.3205i −0.723575 1.25327i −0.959558 0.281511i \(-0.909164\pi\)
0.235983 0.971757i \(-0.424169\pi\)
\(192\) 0 0
\(193\) −3.50000 + 6.06218i −0.251936 + 0.436365i −0.964059 0.265689i \(-0.914400\pi\)
0.712123 + 0.702055i \(0.247734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) 0 0
\(199\) −6.00000 + 10.3923i −0.425329 + 0.736691i −0.996451 0.0841740i \(-0.973175\pi\)
0.571122 + 0.820865i \(0.306508\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 20.0000 + 6.92820i 1.40372 + 0.486265i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.0000 0.691714
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −6.00000 + 5.19615i −0.407307 + 0.352738i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.00000 + 1.73205i −0.0672673 + 0.116510i
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.0000 + 19.0526i −0.730096 + 1.26456i 0.226746 + 0.973954i \(0.427191\pi\)
−0.956842 + 0.290609i \(0.906142\pi\)
\(228\) 0 0
\(229\) −0.500000 0.866025i −0.0330409 0.0572286i 0.849032 0.528341i \(-0.177186\pi\)
−0.882073 + 0.471113i \(0.843853\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.00000 + 3.46410i 0.131024 + 0.226941i 0.924072 0.382219i \(-0.124840\pi\)
−0.793047 + 0.609160i \(0.791507\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −22.0000 −1.42306 −0.711531 0.702655i \(-0.751998\pi\)
−0.711531 + 0.702655i \(0.751998\pi\)
\(240\) 0 0
\(241\) −5.00000 + 8.66025i −0.322078 + 0.557856i −0.980917 0.194429i \(-0.937715\pi\)
0.658838 + 0.752285i \(0.271048\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.50000 + 4.33013i 0.159071 + 0.275519i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −16.0000 27.7128i −0.998053 1.72868i −0.553047 0.833150i \(-0.686535\pi\)
−0.445005 0.895528i \(-0.646798\pi\)
\(258\) 0 0
\(259\) 4.50000 + 23.3827i 0.279616 + 1.45293i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.00000 6.92820i 0.246651 0.427211i −0.715944 0.698158i \(-0.754003\pi\)
0.962594 + 0.270947i \(0.0873367\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.0000 + 22.5167i −0.792624 + 1.37287i 0.131713 + 0.991288i \(0.457952\pi\)
−0.924337 + 0.381577i \(0.875381\pi\)
\(270\) 0 0
\(271\) −4.00000 6.92820i −0.242983 0.420858i 0.718580 0.695444i \(-0.244792\pi\)
−0.961563 + 0.274586i \(0.911459\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.00000 8.66025i −0.301511 0.522233i
\(276\) 0 0
\(277\) 5.50000 9.52628i 0.330463 0.572379i −0.652140 0.758099i \(-0.726128\pi\)
0.982603 + 0.185720i \(0.0594618\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.0000 0.835170 0.417585 0.908638i \(-0.362877\pi\)
0.417585 + 0.908638i \(0.362877\pi\)
\(282\) 0 0
\(283\) −15.5000 + 26.8468i −0.921379 + 1.59588i −0.124096 + 0.992270i \(0.539603\pi\)
−0.797283 + 0.603606i \(0.793730\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.00000 1.73205i −0.295141 0.102240i
\(288\) 0 0
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −28.0000 −1.63578 −0.817889 0.575376i \(-0.804856\pi\)
−0.817889 + 0.575376i \(0.804856\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.00000 5.19615i −0.173494 0.300501i
\(300\) 0 0
\(301\) −2.50000 0.866025i −0.144098 0.0499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 25.0000 1.42683 0.713413 0.700744i \(-0.247149\pi\)
0.713413 + 0.700744i \(0.247149\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.00000 8.66025i 0.283524 0.491078i −0.688726 0.725022i \(-0.741830\pi\)
0.972250 + 0.233944i \(0.0751631\pi\)
\(312\) 0 0
\(313\) −15.5000 26.8468i −0.876112 1.51747i −0.855574 0.517681i \(-0.826795\pi\)
−0.0205381 0.999789i \(-0.506538\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000 + 3.46410i 0.112331 + 0.194563i 0.916710 0.399554i \(-0.130835\pi\)
−0.804379 + 0.594117i \(0.797502\pi\)
\(318\) 0 0
\(319\) 8.00000 13.8564i 0.447914 0.775810i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −10.0000 −0.556415
\(324\) 0 0
\(325\) 2.50000 4.33013i 0.138675 0.240192i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.00000 20.7846i −0.220527 1.14589i
\(330\) 0 0
\(331\) −8.50000 14.7224i −0.467202 0.809218i 0.532096 0.846684i \(-0.321405\pi\)
−0.999298 + 0.0374662i \(0.988071\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −31.0000 −1.68868 −0.844339 0.535810i \(-0.820006\pi\)
−0.844339 + 0.535810i \(0.820006\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.00000 + 5.19615i 0.162459 + 0.281387i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.00000 15.5885i 0.483145 0.836832i −0.516667 0.856186i \(-0.672828\pi\)
0.999813 + 0.0193540i \(0.00616095\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.0000 + 20.7846i −0.638696 + 1.10625i 0.347024 + 0.937856i \(0.387192\pi\)
−0.985719 + 0.168397i \(0.946141\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −16.0000 27.7128i −0.844448 1.46263i −0.886100 0.463494i \(-0.846596\pi\)
0.0416523 0.999132i \(-0.486738\pi\)
\(360\) 0 0
\(361\) −3.00000 + 5.19615i −0.157895 + 0.273482i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −18.5000 + 32.0429i −0.965692 + 1.67263i −0.257948 + 0.966159i \(0.583046\pi\)
−0.707744 + 0.706469i \(0.750287\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000 10.3923i 0.623009 0.539542i
\(372\) 0 0
\(373\) 0.500000 + 0.866025i 0.0258890 + 0.0448411i 0.878680 0.477412i \(-0.158425\pi\)
−0.852791 + 0.522253i \(0.825092\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) 25.0000 1.28416 0.642082 0.766636i \(-0.278071\pi\)
0.642082 + 0.766636i \(0.278071\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.00000 + 1.73205i 0.0510976 + 0.0885037i 0.890443 0.455095i \(-0.150395\pi\)
−0.839345 + 0.543599i \(0.817061\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.00000 + 6.92820i −0.202808 + 0.351274i −0.949432 0.313972i \(-0.898340\pi\)
0.746624 + 0.665246i \(0.231673\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −7.50000 12.9904i −0.376414 0.651969i 0.614123 0.789210i \(-0.289510\pi\)
−0.990538 + 0.137241i \(0.956176\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11.0000 19.0526i −0.549314 0.951439i −0.998322 0.0579116i \(-0.981556\pi\)
0.449008 0.893528i \(-0.351777\pi\)
\(402\) 0 0
\(403\) −1.50000 + 2.59808i −0.0747203 + 0.129419i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.0000 0.892227
\(408\) 0 0
\(409\) −2.50000 + 4.33013i −0.123617 + 0.214111i −0.921192 0.389109i \(-0.872783\pi\)
0.797574 + 0.603220i \(0.206116\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −12.0000 + 10.3923i −0.590481 + 0.511372i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −34.0000 −1.66101 −0.830504 0.557012i \(-0.811948\pi\)
−0.830504 + 0.557012i \(0.811948\pi\)
\(420\) 0 0
\(421\) −11.0000 −0.536107 −0.268054 0.963404i \(-0.586380\pi\)
−0.268054 + 0.963404i \(0.586380\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.00000 + 8.66025i 0.242536 + 0.420084i
\(426\) 0 0
\(427\) 1.00000 + 5.19615i 0.0483934 + 0.251459i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 + 10.3923i −0.289010 + 0.500580i −0.973574 0.228373i \(-0.926659\pi\)
0.684564 + 0.728953i \(0.259993\pi\)
\(432\) 0 0
\(433\) −25.0000 −1.20142 −0.600712 0.799466i \(-0.705116\pi\)
−0.600712 + 0.799466i \(0.705116\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.0000 25.9808i 0.717547 1.24283i
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.0000 + 19.0526i 0.522626 + 0.905214i 0.999653 + 0.0263261i \(0.00838082\pi\)
−0.477028 + 0.878888i \(0.658286\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −24.0000 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(450\) 0 0
\(451\) −2.00000 + 3.46410i −0.0941763 + 0.163118i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.500000 0.866025i −0.0233890 0.0405110i 0.854094 0.520119i \(-0.174112\pi\)
−0.877483 + 0.479608i \(0.840779\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) −11.0000 −0.511213 −0.255607 0.966781i \(-0.582275\pi\)
−0.255607 + 0.966781i \(0.582275\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.0000 17.3205i −0.462745 0.801498i 0.536352 0.843995i \(-0.319802\pi\)
−0.999097 + 0.0424970i \(0.986469\pi\)
\(468\) 0 0
\(469\) −10.0000 + 8.66025i −0.461757 + 0.399893i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.00000 + 1.73205i −0.0459800 + 0.0796398i
\(474\) 0 0
\(475\) 25.0000 1.14708
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.00000 + 5.19615i −0.137073 + 0.237418i −0.926388 0.376571i \(-0.877103\pi\)
0.789314 + 0.613990i \(0.210436\pi\)
\(480\) 0 0
\(481\) 4.50000 + 7.79423i 0.205182 + 0.355386i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.50000 6.06218i 0.158600 0.274703i −0.775764 0.631023i \(-0.782635\pi\)
0.934364 + 0.356320i \(0.115969\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) −8.00000 + 13.8564i −0.360302 + 0.624061i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.0000 + 3.46410i 0.448561 + 0.155386i
\(498\) 0 0
\(499\) −11.5000 19.9186i −0.514811 0.891678i −0.999852 0.0171872i \(-0.994529\pi\)
0.485042 0.874491i \(-0.338804\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 42.0000 1.87269 0.936344 0.351085i \(-0.114187\pi\)
0.936344 + 0.351085i \(0.114187\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.0000 17.3205i −0.443242 0.767718i 0.554686 0.832060i \(-0.312839\pi\)
−0.997928 + 0.0643419i \(0.979505\pi\)
\(510\) 0 0
\(511\) 22.0000 19.0526i 0.973223 0.842836i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −16.0000 −0.703679
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(522\) 0 0
\(523\) −6.50000 11.2583i −0.284225 0.492292i 0.688196 0.725525i \(-0.258403\pi\)
−0.972421 + 0.233233i \(0.925070\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.00000 5.19615i −0.130682 0.226348i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.00000 −0.0866296
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13.0000 5.19615i 0.559950 0.223814i
\(540\) 0 0
\(541\) −12.5000 21.6506i −0.537417 0.930834i −0.999042 0.0437584i \(-0.986067\pi\)
0.461625 0.887075i \(-0.347267\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20.0000 + 34.6410i 0.852029 + 1.47576i
\(552\) 0 0
\(553\) −2.50000 12.9904i −0.106311 0.552407i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.0000 22.5167i 0.550828 0.954062i −0.447387 0.894340i \(-0.647645\pi\)
0.998215 0.0597213i \(-0.0190212\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.0000 + 17.3205i −0.421450 + 0.729972i −0.996082 0.0884397i \(-0.971812\pi\)
0.574632 + 0.818412i \(0.305145\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.0000 + 22.5167i 0.544988 + 0.943948i 0.998608 + 0.0527519i \(0.0167993\pi\)
−0.453619 + 0.891196i \(0.649867\pi\)
\(570\) 0 0
\(571\) −3.50000 + 6.06218i −0.146470 + 0.253694i −0.929921 0.367760i \(-0.880125\pi\)
0.783450 + 0.621455i \(0.213458\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −30.0000 −1.25109
\(576\) 0 0
\(577\) 8.50000 14.7224i 0.353860 0.612903i −0.633062 0.774101i \(-0.718202\pi\)
0.986922 + 0.161198i \(0.0515357\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6.00000 10.3923i −0.248495 0.430405i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.0000 0.990586 0.495293 0.868726i \(-0.335061\pi\)
0.495293 + 0.868726i \(0.335061\pi\)
\(588\) 0 0
\(589\) −15.0000 −0.618064
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.00000 + 12.1244i 0.287456 + 0.497888i 0.973202 0.229953i \(-0.0738573\pi\)
−0.685746 + 0.727841i \(0.740524\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10.0000 + 17.3205i −0.408589 + 0.707697i −0.994732 0.102511i \(-0.967312\pi\)
0.586143 + 0.810208i \(0.300646\pi\)
\(600\) 0 0
\(601\) 3.00000 0.122373 0.0611863 0.998126i \(-0.480512\pi\)
0.0611863 + 0.998126i \(0.480512\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −6.50000 11.2583i −0.263827 0.456962i 0.703429 0.710766i \(-0.251651\pi\)
−0.967256 + 0.253804i \(0.918318\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.00000 6.92820i −0.161823 0.280285i
\(612\) 0 0
\(613\) −5.00000 + 8.66025i −0.201948 + 0.349784i −0.949156 0.314806i \(-0.898061\pi\)
0.747208 + 0.664590i \(0.231394\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −34.0000 −1.36879 −0.684394 0.729112i \(-0.739933\pi\)
−0.684394 + 0.729112i \(0.739933\pi\)
\(618\) 0 0
\(619\) −2.50000 + 4.33013i −0.100483 + 0.174042i −0.911884 0.410448i \(-0.865372\pi\)
0.811400 + 0.584491i \(0.198706\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.00000 + 31.1769i 0.240385 + 1.24908i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −18.0000 −0.717707
\(630\) 0 0
\(631\) −44.0000 −1.75161 −0.875806 0.482663i \(-0.839670\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 5.50000 + 4.33013i 0.217918 + 0.171566i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −19.0000 + 32.9090i −0.750455 + 1.29983i 0.197148 + 0.980374i \(0.436832\pi\)
−0.947602 + 0.319452i \(0.896501\pi\)
\(642\) 0 0
\(643\) −13.0000 −0.512670 −0.256335 0.966588i \(-0.582515\pi\)
−0.256335 + 0.966588i \(0.582515\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21.0000 + 36.3731i −0.825595 + 1.42997i 0.0758684 + 0.997118i \(0.475827\pi\)
−0.901464 + 0.432855i \(0.857506\pi\)
\(648\) 0 0
\(649\) 6.00000 + 10.3923i 0.235521 + 0.407934i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.0000 32.9090i −0.743527 1.28783i −0.950880 0.309561i \(-0.899818\pi\)
0.207352 0.978266i \(-0.433515\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) −7.50000 + 12.9904i −0.291716 + 0.505267i −0.974216 0.225619i \(-0.927560\pi\)
0.682499 + 0.730886i \(0.260893\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −24.0000 41.5692i −0.929284 1.60957i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) 35.0000 1.34915 0.674575 0.738206i \(-0.264327\pi\)
0.674575 + 0.738206i \(0.264327\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.0000 + 31.1769i 0.691796 + 1.19823i 0.971249 + 0.238067i \(0.0765137\pi\)
−0.279453 + 0.960159i \(0.590153\pi\)
\(678\) 0 0
\(679\) 45.0000 + 15.5885i 1.72694 + 0.598230i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.00000 15.5885i 0.344375 0.596476i −0.640865 0.767654i \(-0.721424\pi\)
0.985240 + 0.171178i \(0.0547574\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.00000 5.19615i 0.114291 0.197958i
\(690\) 0 0
\(691\) −14.5000 25.1147i −0.551606 0.955410i −0.998159 0.0606524i \(-0.980682\pi\)
0.446553 0.894757i \(-0.352651\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.00000 3.46410i 0.0757554 0.131212i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 14.0000 0.528773 0.264386 0.964417i \(-0.414831\pi\)
0.264386 + 0.964417i \(0.414831\pi\)
\(702\) 0 0
\(703\) −22.5000 + 38.9711i −0.848604 + 1.46982i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.0000 + 10.3923i −0.451306 + 0.390843i
\(708\) 0 0
\(709\) −5.00000 8.66025i −0.187779 0.325243i 0.756730 0.653727i \(-0.226796\pi\)
−0.944509 + 0.328484i \(0.893462\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.0000 0.674105
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.0000 25.9808i −0.559406 0.968919i −0.997546 0.0700124i \(-0.977696\pi\)
0.438141 0.898906i \(-0.355637\pi\)
\(720\) 0 0
\(721\) −5.50000 28.5788i −0.204831 1.06433i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 20.0000 34.6410i 0.742781 1.28654i
\(726\) 0 0
\(727\) 17.0000 0.630495 0.315248 0.949009i \(-0.397912\pi\)
0.315248 + 0.949009i \(0.397912\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.00000 1.73205i 0.0369863 0.0640622i
\(732\) 0 0
\(733\) 19.5000 + 33.7750i 0.720249 + 1.24751i 0.960900 + 0.276896i \(0.0893058\pi\)
−0.240651 + 0.970612i \(0.577361\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.00000 + 8.66025i 0.184177 + 0.319005i
\(738\) 0 0
\(739\) 16.5000 28.5788i 0.606962 1.05129i −0.384776 0.923010i \(-0.625721\pi\)
0.991738 0.128279i \(-0.0409454\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 54.0000 1.98107 0.990534 0.137268i \(-0.0438322\pi\)
0.990534 + 0.137268i \(0.0438322\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.00000 + 46.7654i 0.328853 + 1.70877i
\(750\) 0 0
\(751\) −15.5000 26.8468i −0.565603 0.979653i −0.996993 0.0774878i \(-0.975310\pi\)
0.431390 0.902165i \(-0.358023\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −25.0000 43.3013i −0.906249 1.56967i −0.819231 0.573463i \(-0.805600\pi\)
−0.0870179 0.996207i \(-0.527734\pi\)
\(762\) 0 0
\(763\) 6.00000 5.19615i 0.217215 0.188113i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.00000 + 5.19615i −0.108324 + 0.187622i
\(768\) 0 0
\(769\) 23.0000 0.829401 0.414701 0.909958i \(-0.363886\pi\)
0.414701 + 0.909958i \(0.363886\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 21.0000 36.3731i 0.755318 1.30825i −0.189899 0.981804i \(-0.560816\pi\)
0.945216 0.326445i \(-0.105851\pi\)
\(774\) 0 0
\(775\) 7.50000 + 12.9904i 0.269408 + 0.466628i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.00000 8.66025i −0.179144 0.310286i
\(780\) 0 0
\(781\) 4.00000 6.92820i 0.143131 0.247911i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −4.00000 + 6.92820i −0.142585 + 0.246964i −0.928469 0.371409i \(-0.878875\pi\)
0.785885 + 0.618373i \(0.212208\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 30.0000 + 10.3923i 1.06668 + 0.369508i
\(792\) 0 0
\(793\) 1.00000 + 1.73205i 0.0355110 + 0.0615069i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −11.0000 19.0526i −0.388182 0.672350i