Properties

Label 2016.2.q
Level 2016
Weight 2
Character orbit q
Rep. character \(\chi_{2016}(1537,\cdot)\)
Character field \(\Q(\zeta_{3})\)
Dimension 192
Sturm bound 768

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2016.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2016, [\chi])\).

Total New Old
Modular forms 800 192 608
Cusp forms 736 192 544
Eisenstein series 64 0 64

Trace form

\( 192q + O(q^{10}) \) \( 192q + 8q^{21} - 96q^{25} + 8q^{29} - 8q^{45} + 16q^{57} + 32q^{65} + 48q^{69} - 16q^{77} - 32q^{81} - 24q^{89} - 16q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2016, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2016, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2016, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1008, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database