Properties

Label 2016.2.j
Level 2016
Weight 2
Character orbit j
Rep. character \(\chi_{2016}(1583,\cdot)\)
Character field \(\Q\)
Dimension 24
Newforms 1
Sturm bound 768
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2016.j (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 24 \)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(768\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2016, [\chi])\).

Total New Old
Modular forms 416 24 392
Cusp forms 352 24 328
Eisenstein series 64 0 64

Trace form

\( 24q + O(q^{10}) \) \( 24q - 32q^{19} + 24q^{25} + 64q^{43} - 24q^{49} - 16q^{67} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2016, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
2016.2.j.a \(24\) \(16.098\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(2016, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2016, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 2}\)