Properties

Label 2016.2.fc
Level 2016
Weight 2
Character orbit fc
Rep. character \(\chi_{2016}(11,\cdot)\)
Character field \(\Q(\zeta_{24})\)
Dimension 3040
Sturm bound 768

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2016.fc (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 2016 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2016, [\chi])\).

Total New Old
Modular forms 3104 3104 0
Cusp forms 3040 3040 0
Eisenstein series 64 64 0

Trace form

\( 3040q - 4q^{3} - 8q^{4} - 12q^{5} - 16q^{6} - 4q^{7} - 4q^{9} + O(q^{10}) \) \( 3040q - 4q^{3} - 8q^{4} - 12q^{5} - 16q^{6} - 4q^{7} - 4q^{9} - 8q^{10} - 12q^{11} - 4q^{12} - 8q^{13} - 12q^{14} - 32q^{15} - 8q^{16} - 4q^{18} - 8q^{19} - 24q^{20} - 8q^{21} - 8q^{22} - 12q^{23} - 44q^{24} + 4q^{25} - 16q^{27} - 16q^{28} - 24q^{29} - 36q^{30} - 8q^{33} - 56q^{36} - 8q^{37} - 12q^{38} - 4q^{39} + 4q^{40} - 24q^{41} + 52q^{42} - 8q^{43} - 132q^{44} - 4q^{45} - 8q^{46} - 16q^{48} - 24q^{50} + 20q^{51} + 4q^{52} - 92q^{54} - 32q^{55} - 12q^{56} - 16q^{57} + 4q^{58} - 20q^{60} - 8q^{61} - 32q^{64} + 28q^{66} - 8q^{67} + 84q^{68} - 16q^{69} - 4q^{70} - 4q^{72} - 8q^{73} - 12q^{74} - 44q^{75} - 8q^{76} - 12q^{77} - 92q^{78} - 16q^{79} - 8q^{82} + 96q^{83} - 44q^{84} + 12q^{85} - 12q^{86} - 4q^{87} + 4q^{88} - 88q^{90} - 16q^{91} - 24q^{92} + 44q^{93} + 56q^{94} + 132q^{96} - 16q^{97} + 180q^{98} - 16q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2016, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database