Properties

Label 2016.2.da
Level 2016
Weight 2
Character orbit da
Rep. character \(\chi_{2016}(337,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 144
Sturm bound 768

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2016.da (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(768\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2016, [\chi])\).

Total New Old
Modular forms 800 144 656
Cusp forms 736 144 592
Eisenstein series 64 0 64

Trace form

\( 144q + O(q^{10}) \) \( 144q - 24q^{23} + 72q^{25} + 16q^{33} + 24q^{39} - 8q^{41} - 72q^{49} + 8q^{57} + 112q^{71} - 8q^{81} + 104q^{87} + 64q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2016, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2016, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2016, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 3}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database