Properties

Label 201.2.j
Level 201
Weight 2
Character orbit j
Rep. character \(\chi_{201}(5,\cdot)\)
Character field \(\Q(\zeta_{22})\)
Dimension 200
Newforms 1
Sturm bound 45
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 201 = 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 201.j (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 201 \)
Character field: \(\Q(\zeta_{22})\)
Newforms: \( 1 \)
Sturm bound: \(45\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(201, [\chi])\).

Total New Old
Modular forms 240 240 0
Cusp forms 200 200 0
Eisenstein series 40 40 0

Trace form

\( 200q - 11q^{3} - 34q^{4} - 7q^{6} - 22q^{7} + 3q^{9} + O(q^{10}) \) \( 200q - 11q^{3} - 34q^{4} - 7q^{6} - 22q^{7} + 3q^{9} - 10q^{10} - 44q^{12} - 22q^{13} - 13q^{15} - 34q^{16} - 11q^{18} - 24q^{19} + 43q^{21} - 82q^{22} + 53q^{24} - 18q^{25} - 11q^{27} - 110q^{28} + 22q^{31} - 32q^{33} - 22q^{34} + 33q^{36} - 68q^{37} - 69q^{39} + 10q^{40} - 11q^{42} - 44q^{43} + 99q^{45} + 66q^{46} + 99q^{48} + 26q^{49} - 11q^{51} + 176q^{52} - 128q^{54} + 30q^{55} - 11q^{57} + 66q^{58} + 5q^{60} - 110q^{61} - 11q^{63} + 170q^{64} - 32q^{67} - 11q^{69} - 66q^{70} - 121q^{72} + 150q^{73} - 22q^{75} - 94q^{76} - 11q^{78} + 132q^{79} + 63q^{81} + 76q^{82} - 101q^{84} - 22q^{85} + 88q^{87} - 114q^{88} - 85q^{90} - 174q^{91} - 75q^{93} + 22q^{94} - 250q^{96} - 66q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(201, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
201.2.j.a \(200\) \(1.605\) None \(0\) \(-11\) \(0\) \(-22\)