Properties

Label 2008.1.j
Level 2008
Weight 1
Character orbit j
Rep. character \(\chi_{2008}(219,\cdot)\)
Character field \(\Q(\zeta_{10})\)
Dimension 4
Newform subspaces 1
Sturm bound 252
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2008 = 2^{3} \cdot 251 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2008.j (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2008 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(252\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2008, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 4 4 0
Eisenstein series 8 8 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4q + 4q^{2} - 2q^{3} + 4q^{4} - 2q^{6} + 4q^{8} - 3q^{9} + O(q^{10}) \) \( 4q + 4q^{2} - 2q^{3} + 4q^{4} - 2q^{6} + 4q^{8} - 3q^{9} + 3q^{11} - 2q^{12} + 4q^{16} - 2q^{17} - 3q^{18} - 2q^{19} + 3q^{22} - 2q^{24} + 4q^{25} + q^{27} + 4q^{32} + q^{33} - 2q^{34} - 3q^{36} - 2q^{38} - 2q^{41} - 2q^{43} + 3q^{44} - 2q^{48} - q^{49} + 4q^{50} - 4q^{51} + q^{54} - 4q^{57} + 3q^{59} + 4q^{64} + q^{66} - 2q^{67} - 2q^{68} - 3q^{72} - 2q^{73} - 2q^{75} - 2q^{76} - 2q^{82} + 3q^{83} - 2q^{86} + 3q^{88} - 2q^{89} - 2q^{96} - 2q^{97} - q^{98} - q^{99} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(2008, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
2008.1.j.a \(4\) \(1.002\) \(\Q(\zeta_{10})\) \(D_{5}\) \(\Q(\sqrt{-2}) \) None \(4\) \(-2\) \(0\) \(0\) \(q+q^{2}+(-\zeta_{10}+\zeta_{10}^{2})q^{3}+q^{4}+(-\zeta_{10}+\cdots)q^{6}+\cdots\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T )^{4} \)
$3$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$5$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
$7$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$11$ \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$13$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$17$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$19$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$23$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$29$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$31$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$37$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$41$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$43$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$47$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
$53$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$59$ \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$61$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$67$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$71$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$73$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$79$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$83$ \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
$89$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$97$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
show more
show less