Properties

Label 2008.1.bd.a.75.1
Level 2008
Weight 1
Character 2008.75
Analytic conductor 1.002
Analytic rank 0
Dimension 100
Projective image \(D_{125}\)
CM discriminant -8
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2008 = 2^{3} \cdot 251 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2008.bd (of order \(250\), degree \(100\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00212254537\)
Analytic rank: \(0\)
Dimension: \(100\)
Coefficient field: \(\Q(\zeta_{250})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{125}\)
Projective field Galois closure of \(\mathbb{Q}[x]/(x^{125} - \cdots)\)

Embedding invariants

Embedding label 75.1
Root \(0.837528 + 0.546394i\) of \(x^{100} - x^{75} + x^{50} - x^{25} + 1\)
Character \(\chi\) \(=\) 2008.75
Dual form 2008.1.bd.a.1419.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.187381 - 0.982287i) q^{2} +(-0.948035 + 1.67428i) q^{3} +(-0.929776 + 0.368125i) q^{4} +(1.82227 + 0.617513i) q^{6} +(0.535827 + 0.844328i) q^{8} +(-1.39001 - 2.31703i) q^{9} +O(q^{10})\) \(q+(-0.187381 - 0.982287i) q^{2} +(-0.948035 + 1.67428i) q^{3} +(-0.929776 + 0.368125i) q^{4} +(1.82227 + 0.617513i) q^{6} +(0.535827 + 0.844328i) q^{8} +(-1.39001 - 2.31703i) q^{9} +(-0.513630 + 0.0913066i) q^{11} +(0.265116 - 1.90570i) q^{12} +(0.728969 - 0.684547i) q^{16} +(0.356960 - 0.504525i) q^{17} +(-2.01552 + 1.79956i) q^{18} +(-1.96171 + 0.298082i) q^{19} +(0.185934 + 0.487424i) q^{22} +(-1.92163 + 0.0966728i) q^{24} +(-0.992115 - 0.125333i) q^{25} +(3.27369 - 0.0822941i) q^{27} +(-0.809017 - 0.587785i) q^{32} +(0.334067 - 0.946524i) q^{33} +(-0.562476 - 0.256098i) q^{34} +(2.14535 + 1.64262i) q^{36} +(0.660390 + 1.87111i) q^{38} +(-0.173626 - 0.642596i) q^{41} +(0.665917 - 0.993235i) q^{43} +(0.443949 - 0.273975i) q^{44} +(0.455037 + 1.86947i) q^{48} +(0.260842 - 0.965382i) q^{49} +(0.0627905 + 0.998027i) q^{50} +(0.506308 + 1.07596i) q^{51} +(-0.694264 - 3.20028i) q^{54} +(1.36070 - 3.56705i) q^{57} +(-0.543731 - 0.768508i) q^{59} +(-0.425779 + 0.904827i) q^{64} +(-0.992356 - 0.150788i) q^{66} +(-0.272426 + 0.177728i) q^{67} +(-0.146164 + 0.600501i) q^{68} +(1.21153 - 2.41515i) q^{72} +(0.197794 - 1.74142i) q^{73} +(1.15040 - 1.54226i) q^{75} +(1.71422 - 0.999304i) q^{76} +(-1.69395 + 3.17515i) q^{81} +(-0.598679 + 0.290961i) q^{82} +(1.49417 - 1.26804i) q^{83} +(-1.10042 - 0.468009i) q^{86} +(-0.352310 - 0.384748i) q^{88} +(1.90009 + 0.591084i) q^{89} +(1.75109 - 0.797282i) q^{96} +(-1.70145 - 1.05002i) q^{97} +(-0.997159 - 0.0753268i) q^{98} +(0.925511 + 1.06318i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100q + O(q^{10}) \) \( 100q - 25q^{22} - 25q^{32} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2008\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(503\) \(1005\)
\(\chi(n)\) \(e\left(\frac{13}{125}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.187381 0.982287i −0.187381 0.982287i
\(3\) −0.948035 + 1.67428i −0.948035 + 1.67428i −0.236499 + 0.971632i \(0.576000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(4\) −0.929776 + 0.368125i −0.929776 + 0.368125i
\(5\) 0 0 0.0627905 0.998027i \(-0.480000\pi\)
−0.0627905 + 0.998027i \(0.520000\pi\)
\(6\) 1.82227 + 0.617513i 1.82227 + 0.617513i
\(7\) 0 0 0.793990 0.607930i \(-0.208000\pi\)
−0.793990 + 0.607930i \(0.792000\pi\)
\(8\) 0.535827 + 0.844328i 0.535827 + 0.844328i
\(9\) −1.39001 2.31703i −1.39001 2.31703i
\(10\) 0 0
\(11\) −0.513630 + 0.0913066i −0.513630 + 0.0913066i −0.425779 0.904827i \(-0.640000\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(12\) 0.265116 1.90570i 0.265116 1.90570i
\(13\) 0 0 0.974527 0.224271i \(-0.0720000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.728969 0.684547i 0.728969 0.684547i
\(17\) 0.356960 0.504525i 0.356960 0.504525i −0.597905 0.801567i \(-0.704000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(18\) −2.01552 + 1.79956i −2.01552 + 1.79956i
\(19\) −1.96171 + 0.298082i −1.96171 + 0.298082i −0.962028 + 0.272952i \(0.912000\pi\)
−0.999684 + 0.0251301i \(0.992000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.185934 + 0.487424i 0.185934 + 0.487424i
\(23\) 0 0 −0.0125660 0.999921i \(-0.504000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(24\) −1.92163 + 0.0966728i −1.92163 + 0.0966728i
\(25\) −0.992115 0.125333i −0.992115 0.125333i
\(26\) 0 0
\(27\) 3.27369 0.0822941i 3.27369 0.0822941i
\(28\) 0 0
\(29\) 0 0 0.402906 0.915241i \(-0.368000\pi\)
−0.402906 + 0.915241i \(0.632000\pi\)
\(30\) 0 0
\(31\) 0 0 −0.470704 0.882291i \(-0.656000\pi\)
0.470704 + 0.882291i \(0.344000\pi\)
\(32\) −0.809017 0.587785i −0.809017 0.587785i
\(33\) 0.334067 0.946524i 0.334067 0.946524i
\(34\) −0.562476 0.256098i −0.562476 0.256098i
\(35\) 0 0
\(36\) 2.14535 + 1.64262i 2.14535 + 1.64262i
\(37\) 0 0 0.0878512 0.996134i \(-0.472000\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(38\) 0.660390 + 1.87111i 0.660390 + 1.87111i
\(39\) 0 0
\(40\) 0 0
\(41\) −0.173626 0.642596i −0.173626 0.642596i −0.997159 0.0753268i \(-0.976000\pi\)
0.823533 0.567269i \(-0.192000\pi\)
\(42\) 0 0
\(43\) 0.665917 0.993235i 0.665917 0.993235i −0.332820 0.942991i \(-0.608000\pi\)
0.998737 0.0502443i \(-0.0160000\pi\)
\(44\) 0.443949 0.273975i 0.443949 0.273975i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.728969 0.684547i \(-0.760000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(48\) 0.455037 + 1.86947i 0.455037 + 1.86947i
\(49\) 0.260842 0.965382i 0.260842 0.965382i
\(50\) 0.0627905 + 0.998027i 0.0627905 + 0.998027i
\(51\) 0.506308 + 1.07596i 0.506308 + 1.07596i
\(52\) 0 0
\(53\) 0 0 0.617860 0.786288i \(-0.288000\pi\)
−0.617860 + 0.786288i \(0.712000\pi\)
\(54\) −0.694264 3.20028i −0.694264 3.20028i
\(55\) 0 0
\(56\) 0 0
\(57\) 1.36070 3.56705i 1.36070 3.56705i
\(58\) 0 0
\(59\) −0.543731 0.768508i −0.543731 0.768508i 0.448383 0.893841i \(-0.352000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(60\) 0 0
\(61\) 0 0 0.962028 0.272952i \(-0.0880000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.425779 + 0.904827i −0.425779 + 0.904827i
\(65\) 0 0
\(66\) −0.992356 0.150788i −0.992356 0.150788i
\(67\) −0.272426 + 0.177728i −0.272426 + 0.177728i −0.675333 0.737513i \(-0.736000\pi\)
0.402906 + 0.915241i \(0.368000\pi\)
\(68\) −0.146164 + 0.600501i −0.146164 + 0.600501i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.656586 0.754251i \(-0.272000\pi\)
−0.656586 + 0.754251i \(0.728000\pi\)
\(72\) 1.21153 2.41515i 1.21153 2.41515i
\(73\) 0.197794 1.74142i 0.197794 1.74142i −0.379779 0.925077i \(-0.624000\pi\)
0.577573 0.816339i \(-0.304000\pi\)
\(74\) 0 0
\(75\) 1.15040 1.54226i 1.15040 1.54226i
\(76\) 1.71422 0.999304i 1.71422 0.999304i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.212007 0.977268i \(-0.432000\pi\)
−0.212007 + 0.977268i \(0.568000\pi\)
\(80\) 0 0
\(81\) −1.69395 + 3.17515i −1.69395 + 3.17515i
\(82\) −0.598679 + 0.290961i −0.598679 + 0.290961i
\(83\) 1.49417 1.26804i 1.49417 1.26804i 0.617860 0.786288i \(-0.288000\pi\)
0.876307 0.481754i \(-0.160000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.10042 0.468009i −1.10042 0.468009i
\(87\) 0 0
\(88\) −0.352310 0.384748i −0.352310 0.384748i
\(89\) 1.90009 + 0.591084i 1.90009 + 0.591084i 0.979855 + 0.199710i \(0.0640000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 1.75109 0.797282i 1.75109 0.797282i
\(97\) −1.70145 1.05002i −1.70145 1.05002i −0.863923 0.503623i \(-0.832000\pi\)
−0.837528 0.546394i \(-0.816000\pi\)
\(98\) −0.997159 0.0753268i −0.997159 0.0753268i
\(99\) 0.925511 + 1.06318i 0.925511 + 1.06318i
\(100\) 0.968583 0.248690i 0.968583 0.248690i
\(101\) 0 0 −0.899405 0.437116i \(-0.856000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(102\) 0.962028 0.698954i 0.962028 0.698954i
\(103\) 0 0 −0.285019 0.958522i \(-0.592000\pi\)
0.285019 + 0.958522i \(0.408000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.80618 0.512458i −1.80618 0.512458i −0.809017 0.587785i \(-0.800000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(108\) −3.01350 + 1.28164i −3.01350 + 1.28164i
\(109\) 0 0 −0.863923 0.503623i \(-0.832000\pi\)
0.863923 + 0.503623i \(0.168000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.585339 + 1.80149i −0.585339 + 1.80149i 0.0125660 + 0.999921i \(0.496000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(114\) −3.75884 0.668197i −3.75884 0.668197i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.653011 + 0.678105i −0.653011 + 0.678105i
\(119\) 0 0
\(120\) 0 0
\(121\) −0.683254 + 0.250847i −0.683254 + 0.250847i
\(122\) 0 0
\(123\) 1.24049 + 0.318504i 1.24049 + 0.318504i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.762443 0.647056i \(-0.776000\pi\)
0.762443 + 0.647056i \(0.224000\pi\)
\(128\) 0.968583 + 0.248690i 0.968583 + 0.248690i
\(129\) 1.03164 + 2.05655i 1.03164 + 2.05655i
\(130\) 0 0
\(131\) −0.0160198 + 1.27475i −0.0160198 + 1.27475i 0.762443 + 0.647056i \(0.224000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(132\) 0.0378314 + 1.00303i 0.0378314 + 1.00303i
\(133\) 0 0
\(134\) 0.225628 + 0.234298i 0.225628 + 0.234298i
\(135\) 0 0
\(136\) 0.617253 + 0.0310527i 0.617253 + 0.0310527i
\(137\) −1.21665 0.216279i −1.21665 0.216279i −0.470704 0.882291i \(-0.656000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(138\) 0 0
\(139\) 0.160272 0.972334i 0.160272 0.972334i −0.778462 0.627691i \(-0.784000\pi\)
0.938734 0.344643i \(-0.112000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −2.59939 0.737513i −2.59939 0.737513i
\(145\) 0 0
\(146\) −1.74763 + 0.132019i −1.74763 + 0.132019i
\(147\) 1.36903 + 1.35194i 1.36903 + 1.35194i
\(148\) 0 0
\(149\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(150\) −1.73051 0.841035i −1.73051 0.841035i
\(151\) 0 0 0.968583 0.248690i \(-0.0800000\pi\)
−0.968583 + 0.248690i \(0.920000\pi\)
\(152\) −1.30282 1.49661i −1.30282 1.49661i
\(153\) −1.66518 0.125790i −1.66518 0.125790i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.535827 0.844328i \(-0.320000\pi\)
−0.535827 + 0.844328i \(0.680000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 3.43632 + 1.06898i 3.43632 + 1.06898i
\(163\) −0.544192 0.594298i −0.544192 0.594298i 0.402906 0.915241i \(-0.368000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(164\) 0.397989 + 0.533554i 0.397989 + 0.533554i
\(165\) 0 0
\(166\) −1.52556 1.23009i −1.52556 1.23009i
\(167\) 0 0 −0.492727 0.870184i \(-0.664000\pi\)
0.492727 + 0.870184i \(0.336000\pi\)
\(168\) 0 0
\(169\) 0.899405 0.437116i 0.899405 0.437116i
\(170\) 0 0
\(171\) 3.41746 + 4.13100i 3.41746 + 4.13100i
\(172\) −0.253520 + 1.16863i −0.253520 + 1.16863i
\(173\) 0 0 −0.994951 0.100362i \(-0.968000\pi\)
0.994951 + 0.100362i \(0.0320000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.311917 + 0.418164i −0.311917 + 0.418164i
\(177\) 1.80218 0.181787i 1.80218 0.181787i
\(178\) 0.224573 1.97719i 0.224573 1.97719i
\(179\) −0.0787820 + 0.157050i −0.0787820 + 0.157050i −0.929776 0.368125i \(-0.880000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(180\) 0 0
\(181\) 0 0 0.711536 0.702650i \(-0.248000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.137279 + 0.291732i −0.137279 + 0.291732i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.979855 0.199710i \(-0.936000\pi\)
0.979855 + 0.199710i \(0.0640000\pi\)
\(192\) −1.11128 1.57068i −1.11128 1.57068i
\(193\) −1.75299 0.403421i −1.75299 0.403421i −0.778462 0.627691i \(-0.784000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(194\) −0.712599 + 1.86807i −0.712599 + 1.86807i
\(195\) 0 0
\(196\) 0.112856 + 0.993611i 0.112856 + 0.993611i
\(197\) 0 0 −0.212007 0.977268i \(-0.568000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(198\) 0.870924 1.10834i 0.870924 1.10834i
\(199\) 0 0 0.823533 0.567269i \(-0.192000\pi\)
−0.823533 + 0.567269i \(0.808000\pi\)
\(200\) −0.425779 0.904827i −0.425779 0.904827i
\(201\) −0.0392972 0.624611i −0.0392972 0.624611i
\(202\) 0 0
\(203\) 0 0
\(204\) −0.866840 0.814017i −0.866840 0.814017i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.980378 0.332221i 0.980378 0.332221i
\(210\) 0 0
\(211\) −1.30735 + 0.718720i −1.30735 + 0.718720i −0.974527 0.224271i \(-0.928000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −0.164938 + 1.87021i −0.164938 + 1.87021i
\(215\) 0 0
\(216\) 1.82361 + 2.71997i 1.82361 + 2.71997i
\(217\) 0 0
\(218\) 0 0
\(219\) 2.72811 + 1.98209i 2.72811 + 1.98209i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.514440 0.857527i \(-0.328000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(224\) 0 0
\(225\) 1.08865 + 2.47297i 1.08865 + 2.47297i
\(226\) 1.87926 + 0.237406i 1.87926 + 0.237406i
\(227\) 1.07030 0.0538445i 1.07030 0.0538445i 0.492727 0.870184i \(-0.336000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(228\) 0.0479742 + 3.81747i 0.0479742 + 3.81747i
\(229\) 0 0 −0.356412 0.934329i \(-0.616000\pi\)
0.356412 + 0.934329i \(0.384000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.42455 + 1.27190i −1.42455 + 1.27190i −0.514440 + 0.857527i \(0.672000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.788455 + 0.514380i 0.788455 + 0.514380i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.137790 0.990461i \(-0.456000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(240\) 0 0
\(241\) −1.30282 + 0.164584i −1.30282 + 0.164584i −0.745941 0.666012i \(-0.768000\pi\)
−0.556876 + 0.830596i \(0.688000\pi\)
\(242\) 0.374433 + 0.624148i 0.374433 + 0.624148i
\(243\) −1.95549 3.08136i −1.95549 3.08136i
\(244\) 0 0
\(245\) 0 0
\(246\) 0.0804175 1.27820i 0.0804175 1.27820i
\(247\) 0 0
\(248\) 0 0
\(249\) 0.706538 + 3.70380i 0.706538 + 3.70380i
\(250\) 0 0
\(251\) 0.793990 + 0.607930i 0.793990 + 0.607930i
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.0627905 0.998027i 0.0627905 0.998027i
\(257\) 1.86496 + 0.631979i 1.86496 + 0.631979i 0.988652 + 0.150226i \(0.0480000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(258\) 1.82682 1.39873i 1.82682 1.39873i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.25517 0.223128i 1.25517 0.223128i
\(263\) 0 0 0.137790 0.990461i \(-0.456000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(264\) 0.978178 0.225111i 0.978178 0.225111i
\(265\) 0 0
\(266\) 0 0
\(267\) −2.79099 + 2.62091i −2.79099 + 2.62091i
\(268\) 0.187870 0.265534i 0.187870 0.265534i
\(269\) 0 0 0.745941 0.666012i \(-0.232000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(272\) −0.0851591 0.612139i −0.0851591 0.612139i
\(273\) 0 0
\(274\) 0.0155281 + 1.23562i 0.0155281 + 1.23562i
\(275\) 0.521024 0.0262116i 0.521024 0.0262116i
\(276\) 0 0
\(277\) 0 0 −0.402906 0.915241i \(-0.632000\pi\)
0.402906 + 0.915241i \(0.368000\pi\)
\(278\) −0.985143 + 0.0247646i −0.985143 + 0.0247646i
\(279\) 0 0
\(280\) 0 0
\(281\) −0.625521 + 1.52366i −0.625521 + 1.52366i 0.212007 + 0.977268i \(0.432000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(282\) 0 0
\(283\) −1.06238 0.771863i −1.06238 0.771863i −0.0878512 0.996134i \(-0.528000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.237373 + 2.69154i −0.237373 + 2.69154i
\(289\) 0.205694 + 0.582800i 0.205694 + 0.582800i
\(290\) 0 0
\(291\) 3.37106 1.85326i 3.37106 1.85326i
\(292\) 0.457154 + 1.69194i 0.457154 + 1.69194i
\(293\) 0 0 0.947098 0.320944i \(-0.104000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(294\) 1.07146 1.59811i 1.07146 1.59811i
\(295\) 0 0
\(296\) 0 0
\(297\) −1.67395 + 0.341178i −1.67395 + 0.341178i
\(298\) 0 0
\(299\) 0 0
\(300\) −0.501873 + 1.85745i −0.501873 + 1.85745i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −1.22598 + 1.56018i −1.22598 + 1.56018i
\(305\) 0 0
\(306\) 0.188461 + 1.65925i 0.188461 + 1.65925i
\(307\) −1.82964 0.671728i −1.82964 0.671728i −0.992115 0.125333i \(-0.960000\pi\)
−0.837528 0.546394i \(-0.816000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.979855 0.199710i \(-0.936000\pi\)
0.979855 + 0.199710i \(0.0640000\pi\)
\(312\) 0 0
\(313\) 1.16137 0.936442i 1.16137 0.936442i 0.162637 0.986686i \(-0.448000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.988652 0.150226i \(-0.952000\pi\)
0.988652 + 0.150226i \(0.0480000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 2.57032 2.53822i 2.57032 2.53822i
\(322\) 0 0
\(323\) −0.549862 + 1.09614i −0.549862 + 1.09614i
\(324\) 0.406143 3.57576i 0.406143 3.57576i
\(325\) 0 0
\(326\) −0.481800 + 0.645913i −0.481800 + 0.645913i
\(327\) 0 0
\(328\) 0.449528 0.490918i 0.449528 0.490918i
\(329\) 0 0
\(330\) 0 0
\(331\) −1.14660 1.38601i −1.14660 1.38601i −0.910106 0.414376i \(-0.864000\pi\)
−0.236499 0.971632i \(-0.576000\pi\)
\(332\) −0.922443 + 1.72904i −0.922443 + 1.72904i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.54144 0.655573i −1.54144 0.655573i −0.556876 0.830596i \(-0.688000\pi\)
−0.984564 + 0.175023i \(0.944000\pi\)
\(338\) −0.597905 0.801567i −0.597905 0.801567i
\(339\) −2.46128 2.68790i −2.46128 2.68790i
\(340\) 0 0
\(341\) 0 0
\(342\) 3.41746 4.13100i 3.41746 4.13100i
\(343\) 0 0
\(344\) 1.19543 + 0.0300508i 1.19543 + 0.0300508i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.250808 0.114194i 0.250808 0.114194i −0.285019 0.958522i \(-0.592000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.997159 0.0753268i \(-0.976000\pi\)
0.997159 + 0.0753268i \(0.0240000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.469204 + 0.228036i 0.469204 + 0.228036i
\(353\) 1.50441 1.09302i 1.50441 1.09302i 0.535827 0.844328i \(-0.320000\pi\)
0.968583 0.248690i \(-0.0800000\pi\)
\(354\) −0.516261 1.73619i −0.516261 1.73619i
\(355\) 0 0
\(356\) −1.98425 + 0.149893i −1.98425 + 0.149893i
\(357\) 0 0
\(358\) 0.169031 + 0.0479583i 0.169031 + 0.0479583i
\(359\) 0 0 0.920232 0.391374i \(-0.128000\pi\)
−0.920232 + 0.391374i \(0.872000\pi\)
\(360\) 0 0
\(361\) 2.80460 0.872461i 2.80460 0.872461i
\(362\) 0 0
\(363\) 0.227760 1.38177i 0.227760 1.38177i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.0376902 0.999289i \(-0.488000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(368\) 0 0
\(369\) −1.24757 + 1.29551i −1.24757 + 1.29551i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.448383 0.893841i \(-0.648000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(374\) 0.312288 + 0.0801821i 0.312288 + 0.0801821i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.37836 0.353903i −1.37836 0.353903i −0.514440 0.857527i \(-0.672000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.0376902 0.999289i \(-0.512000\pi\)
0.0376902 + 0.999289i \(0.488000\pi\)
\(384\) −1.33463 + 1.38591i −1.33463 + 1.38591i
\(385\) 0 0
\(386\) −0.0677975 + 1.79753i −0.0677975 + 1.79753i
\(387\) −3.22698 0.162343i −3.22698 0.162343i
\(388\) 1.96851 + 0.349936i 1.96851 + 0.349936i
\(389\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.954865 0.297042i 0.954865 0.297042i
\(393\) −2.11910 1.23533i −2.11910 1.23533i
\(394\) 0 0
\(395\) 0 0
\(396\) −1.25190 0.647815i −1.25190 0.647815i
\(397\) 0 0 0.997159 0.0753268i \(-0.0240000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(401\) −0.683151 0.332015i −0.683151 0.332015i 0.0627905 0.998027i \(-0.480000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(402\) −0.606184 + 0.155642i −0.606184 + 0.155642i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −0.637169 + 1.00402i −0.637169 + 1.00402i
\(409\) −0.225641 0.00567218i −0.225641 0.00567218i −0.0878512 0.996134i \(-0.528000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(410\) 0 0
\(411\) 1.51553 1.83197i 1.51553 1.83197i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.47602 + 1.19015i 1.47602 + 1.19015i
\(418\) −0.510041 0.900761i −0.510041 0.900761i
\(419\) 0.172093 0.146049i 0.172093 0.146049i −0.556876 0.830596i \(-0.688000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(420\) 0 0
\(421\) 0 0 0.470704 0.882291i \(-0.344000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(422\) 0.950962 + 1.14952i 0.950962 + 1.14952i
\(423\) 0 0
\(424\) 0 0
\(425\) −0.417379 + 0.455808i −0.417379 + 0.455808i
\(426\) 0 0
\(427\) 0 0
\(428\) 1.86799 0.188426i 1.86799 0.188426i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.656586 0.754251i \(-0.272000\pi\)
−0.656586 + 0.754251i \(0.728000\pi\)
\(432\) 2.33008 2.30098i 2.33008 2.30098i
\(433\) 1.69755 + 0.933237i 1.69755 + 0.933237i 0.968583 + 0.248690i \(0.0800000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 1.43578 3.05119i 1.43578 3.05119i
\(439\) 0 0 −0.929776 0.368125i \(-0.880000\pi\)
0.929776 + 0.368125i \(0.120000\pi\)
\(440\) 0 0
\(441\) −2.59939 + 0.737513i −2.59939 + 0.737513i
\(442\) 0 0
\(443\) −0.934532 1.32086i −0.934532 1.32086i −0.947098 0.320944i \(-0.896000\pi\)
0.0125660 0.999921i \(-0.496000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.12464 + 1.43121i −1.12464 + 1.43121i −0.236499 + 0.971632i \(0.576000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(450\) 2.22518 1.53275i 2.22518 1.53275i
\(451\) 0.147853 + 0.314204i 0.147853 + 0.314204i
\(452\) −0.118938 1.89046i −0.118938 1.89046i
\(453\) 0 0
\(454\) −0.253445 1.04125i −0.253445 1.04125i
\(455\) 0 0
\(456\) 3.74086 0.762446i 3.74086 0.762446i
\(457\) 0.332840 0.172233i 0.332840 0.172233i −0.285019 0.958522i \(-0.592000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(458\) 0 0
\(459\) 1.12705 1.68103i 1.12705 1.68103i
\(460\) 0 0
\(461\) 0 0 −0.260842 0.965382i \(-0.584000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(462\) 0 0
\(463\) 0 0 0.285019 0.958522i \(-0.408000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.51631 + 1.16098i 1.51631 + 1.16098i
\(467\) −0.849171 1.26656i −0.849171 1.26656i −0.962028 0.272952i \(-0.912000\pi\)
0.112856 0.993611i \(-0.464000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.357527 0.870875i 0.357527 0.870875i
\(473\) −0.251347 + 0.570958i −0.251347 + 0.570958i
\(474\) 0 0
\(475\) 1.98360 0.0498639i 1.98360 0.0498639i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.0125660 0.999921i \(-0.504000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0.405792 + 1.24890i 0.405792 + 1.24890i
\(483\) 0 0
\(484\) 0.542931 0.484755i 0.542931 0.484755i
\(485\) 0 0
\(486\) −2.66036 + 2.49824i −2.66036 + 2.49824i
\(487\) 0 0 −0.837528 0.546394i \(-0.816000\pi\)
0.837528 + 0.546394i \(0.184000\pi\)
\(488\) 0 0
\(489\) 1.51093 0.347716i 1.51093 0.347716i
\(490\) 0 0
\(491\) −1.56347 + 0.277933i −1.56347 + 0.277933i −0.888136 0.459580i \(-0.848000\pi\)
−0.675333 + 0.737513i \(0.736000\pi\)
\(492\) −1.27063 + 0.160518i −1.27063 + 0.160518i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 3.50581 1.38805i 3.50581 1.38805i
\(499\) −0.875218 + 1.54568i −0.875218 + 1.54568i −0.0376902 + 0.999289i \(0.512000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.448383 0.893841i 0.448383 0.893841i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.120812 + 1.92026i −0.120812 + 1.92026i
\(508\) 0 0
\(509\) 0 0 0.793990 0.607930i \(-0.208000\pi\)
−0.793990 + 0.607930i \(0.792000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.992115 + 0.125333i −0.992115 + 0.125333i
\(513\) −6.39750 + 1.13726i −6.39750 + 1.13726i
\(514\) 0.271327 1.95035i 0.271327 1.95035i
\(515\) 0 0
\(516\) −1.71626 1.53236i −1.71626 1.53236i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.173708 + 0.0263950i −0.173708 + 0.0263950i −0.236499 0.971632i \(-0.576000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(522\) 0 0
\(523\) 0.274798 + 1.97529i 0.274798 + 1.97529i 0.212007 + 0.977268i \(0.432000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(524\) −0.454371 1.19113i −0.454371 1.19113i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.404416 0.918671i −0.404416 0.918671i
\(529\) −0.999684 + 0.0251301i −0.999684 + 0.0251301i
\(530\) 0 0
\(531\) −1.02486 + 2.32807i −1.02486 + 2.32807i
\(532\) 0 0
\(533\) 0 0
\(534\) 3.09747 + 2.25044i 3.09747 + 2.25044i
\(535\) 0 0
\(536\) −0.296034 0.134786i −0.296034 0.134786i
\(537\) −0.188258 0.280792i −0.188258 0.280792i
\(538\) 0 0
\(539\) −0.0458305 + 0.519666i −0.0458305 + 0.519666i
\(540\) 0 0
\(541\) 0 0 0.285019 0.958522i \(-0.408000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.585339 + 0.198354i −0.585339 + 0.198354i
\(545\) 0 0
\(546\) 0 0
\(547\) 1.57757 0.816339i 1.57757 0.816339i 0.577573 0.816339i \(-0.304000\pi\)
1.00000 \(0\)
\(548\) 1.21083 0.246785i 1.21083 0.246785i
\(549\) 0 0
\(550\) −0.123378 0.506884i −0.123378 0.506884i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.208923 + 0.963053i 0.208923 + 0.963053i
\(557\) 0 0 −0.112856 0.993611i \(-0.536000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −0.358297 0.506416i −0.358297 0.506416i
\(562\) 1.61389 + 0.328935i 1.61389 + 0.328935i
\(563\) −1.03096 + 0.292510i −1.03096 + 0.292510i −0.745941 0.666012i \(-0.768000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.559121 + 1.18819i −0.559121 + 1.18819i
\(567\) 0 0
\(568\) 0 0
\(569\) 1.64920 1.07592i 1.64920 1.07592i 0.728969 0.684547i \(-0.240000\pi\)
0.920232 0.391374i \(-0.128000\pi\)
\(570\) 0 0
\(571\) 0.624652 + 0.343405i 0.624652 + 0.343405i 0.762443 0.647056i \(-0.224000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 2.68835 0.271176i 2.68835 0.271176i
\(577\) 0.850861 1.14069i 0.850861 1.14069i −0.137790 0.990461i \(-0.544000\pi\)
0.988652 0.150226i \(-0.0480000\pi\)
\(578\) 0.533934 0.311256i 0.533934 0.311256i
\(579\) 2.33733 2.55254i 2.33733 2.55254i
\(580\) 0 0
\(581\) 0 0
\(582\) −2.45210 2.96408i −2.45210 2.96408i
\(583\) 0 0
\(584\) 1.57631 0.766095i 1.57631 0.766095i
\(585\) 0 0
\(586\) 0 0
\(587\) −0.330079 0.266150i −0.330079 0.266150i 0.448383 0.893841i \(-0.352000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(588\) −1.77058 0.753025i −1.77058 0.753025i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.19674 + 1.44661i −1.19674 + 1.44661i −0.332820 + 0.942991i \(0.608000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(594\) 0.648802 + 1.58037i 0.648802 + 1.58037i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.850994 0.525175i \(-0.824000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(600\) 1.91859 + 0.144933i 1.91859 + 0.144933i
\(601\) −0.559121 0.642289i −0.559121 0.642289i 0.402906 0.915241i \(-0.368000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(602\) 0 0
\(603\) 0.790476 + 0.384176i 0.790476 + 0.384176i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.997159 0.0753268i \(-0.0240000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(608\) 1.76227 + 0.911912i 1.76227 + 0.911912i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 1.59455 0.496036i 1.59455 0.496036i
\(613\) 0 0 −0.823533 0.567269i \(-0.808000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(614\) −0.316989 + 1.92310i −0.316989 + 1.92310i
\(615\) 0 0
\(616\) 0 0
\(617\) 1.38555 + 0.0697043i 1.38555 + 0.0697043i 0.728969 0.684547i \(-0.240000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(618\) 0 0
\(619\) 1.32469 + 1.37560i 1.32469 + 1.37560i 0.876307 + 0.481754i \(0.160000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.968583 + 0.248690i 0.968583 + 0.248690i
\(626\) −1.13747 0.965331i −1.13747 0.965331i
\(627\) −0.373201 + 1.95639i −0.373201 + 1.95639i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.448383 0.893841i \(-0.648000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(632\) 0 0
\(633\) 0.0360704 2.87024i 0.0360704 2.87024i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.0204241 0.123909i 0.0204241 0.123909i −0.974527 0.224271i \(-0.928000\pi\)
0.994951 + 0.100362i \(0.0320000\pi\)
\(642\) −2.97489 2.04918i −2.97489 2.04918i
\(643\) −0.451649 + 0.140500i −0.451649 + 0.140500i −0.514440 0.857527i \(-0.672000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.17975 + 0.334727i 1.17975 + 0.334727i
\(647\) 0 0 −0.888136 0.459580i \(-0.848000\pi\)
0.888136 + 0.459580i \(0.152000\pi\)
\(648\) −3.58853 + 0.271083i −3.58853 + 0.271083i
\(649\) 0.349447 + 0.345083i 0.349447 + 0.345083i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.724752 + 0.352234i 0.724752 + 0.352234i
\(653\) 0 0 0.968583 0.248690i \(-0.0800000\pi\)
−0.968583 + 0.248690i \(0.920000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.566455 0.349577i −0.566455 0.349577i
\(657\) −4.30985 + 1.96229i −4.30985 + 1.96229i
\(658\) 0 0
\(659\) −0.683098 + 1.07639i −0.683098 + 1.07639i 0.309017 + 0.951057i \(0.400000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(660\) 0 0
\(661\) 0 0 −0.379779 0.925077i \(-0.624000\pi\)
0.379779 + 0.925077i \(0.376000\pi\)
\(662\) −1.14660 + 1.38601i −1.14660 + 1.38601i
\(663\) 0 0
\(664\) 1.87126 + 0.582115i 1.87126 + 0.582115i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.10137 + 1.33133i 1.10137 + 1.33133i 0.938734 + 0.344643i \(0.112000\pi\)
0.162637 + 0.986686i \(0.448000\pi\)
\(674\) −0.355124 + 1.63698i −0.355124 + 1.63698i
\(675\) −3.25819 0.328657i −3.25819 0.328657i
\(676\) −0.675333 + 0.737513i −0.675333 + 0.737513i
\(677\) 0 0 0.863923 0.503623i \(-0.168000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(678\) −2.17909 + 2.92134i −2.17909 + 2.92134i
\(679\) 0 0
\(680\) 0 0
\(681\) −0.924531 + 1.84303i −0.924531 + 1.84303i
\(682\) 0 0
\(683\) 1.10781 1.09397i 1.10781 1.09397i 0.112856 0.993611i \(-0.464000\pi\)
0.994951 0.100362i \(-0.0320000\pi\)
\(684\) −4.69820 2.58286i −4.69820 2.58286i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.194483 1.17989i −0.194483 1.17989i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.443754 0.357808i 0.443754 0.357808i −0.379779 0.925077i \(-0.624000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.159168 0.224967i −0.159168 0.224967i
\(695\) 0 0
\(696\) 0 0
\(697\) −0.386183 0.141782i −0.386183 0.141782i
\(698\) 0 0
\(699\) −0.779004 3.59090i −0.779004 3.59090i
\(700\) 0 0
\(701\) 0 0 0.823533 0.567269i \(-0.192000\pi\)
−0.823533 + 0.567269i \(0.808000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.136077 0.503623i 0.136077 0.503623i
\(705\) 0 0
\(706\) −1.35556 1.27295i −1.35556 1.27295i
\(707\) 0 0
\(708\) −1.60870 + 0.832447i −1.60870 + 0.832447i
\(709\) 0 0 0.850994 0.525175i \(-0.176000\pi\)
−0.850994 + 0.525175i \(0.824000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.519049 + 1.92101i 0.519049 + 1.92101i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.0154357 0.175023i 0.0154357 0.175023i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.910106 0.414376i \(-0.864000\pi\)
0.910106 + 0.414376i \(0.136000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.38254 2.59144i −1.38254 2.59144i
\(723\) 0.959555 2.33731i 0.959555 2.33731i
\(724\) 0 0
\(725\) 0 0
\(726\) −1.39998 + 0.0351926i −1.39998 + 0.0351926i
\(727\) 0 0 −0.402906 0.915241i \(-0.632000\pi\)
0.402906 + 0.915241i \(0.368000\pi\)
\(728\) 0 0
\(729\) 3.41873 0.171989i 3.41873 0.171989i
\(730\) 0 0
\(731\) −0.263407 0.690517i −0.263407 0.690517i
\(732\) 0 0
\(733\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.123699 0.116161i 0.123699 0.116161i
\(738\) 1.50634 + 0.982717i 1.50634 + 0.982717i
\(739\) 1.16137 + 1.03693i 1.16137 + 1.03693i 0.998737 + 0.0502443i \(0.0160000\pi\)
0.162637 + 0.986686i \(0.448000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.992115 0.125333i \(-0.0400000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.01499 1.69943i −5.01499 1.69943i
\(748\) 0.0202448 0.321782i 0.0202448 0.321782i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.187381 0.982287i \(-0.560000\pi\)
0.187381 + 0.982287i \(0.440000\pi\)
\(752\) 0 0
\(753\) −1.77058 + 0.753025i −1.77058 + 0.753025i
\(754\) 0 0
\(755\) 0