Properties

Label 2008.1.bd.a.459.1
Level 2008
Weight 1
Character 2008.459
Analytic conductor 1.002
Analytic rank 0
Dimension 100
Projective image \(D_{125}\)
CM discriminant -8
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2008 = 2^{3} \cdot 251 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2008.bd (of order \(250\), degree \(100\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00212254537\)
Analytic rank: \(0\)
Dimension: \(100\)
Coefficient field: \(\Q(\zeta_{250})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{125}\)
Projective field Galois closure of \(\mathbb{Q}[x]/(x^{125} - \cdots)\)

Embedding invariants

Embedding label 459.1
Root \(0.711536 + 0.702650i\) of \(x^{100} - x^{75} + x^{50} - x^{25} + 1\)
Character \(\chi\) \(=\) 2008.459
Dual form 2008.1.bd.a.35.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.535827 - 0.844328i) q^{2} +(0.811554 - 0.559018i) q^{3} +(-0.425779 - 0.904827i) q^{4} +(-0.0371420 - 0.984754i) q^{6} +(-0.992115 - 0.125333i) q^{8} +(-0.0102928 + 0.0269825i) q^{9} +O(q^{10})\) \(q+(0.535827 - 0.844328i) q^{2} +(0.811554 - 0.559018i) q^{3} +(-0.425779 - 0.904827i) q^{4} +(-0.0371420 - 0.984754i) q^{6} +(-0.992115 - 0.125333i) q^{8} +(-0.0102928 + 0.0269825i) q^{9} +(1.96732 - 0.198446i) q^{11} +(-0.851357 - 0.496298i) q^{12} +(-0.637424 + 0.770513i) q^{16} +(-1.51890 - 0.557644i) q^{17} +(0.0172669 + 0.0231485i) q^{18} +(0.256228 - 1.84182i) q^{19} +(0.886590 - 1.76740i) q^{22} +(-0.875218 + 0.452895i) q^{24} +(-0.929776 + 0.368125i) q^{25} +(0.239790 + 0.985151i) q^{27} +(0.309017 + 0.951057i) q^{32} +(1.48565 - 1.26082i) q^{33} +(-1.28470 + 0.983652i) q^{34} +(0.0287970 - 0.00217537i) q^{36} +(-1.41780 - 1.20323i) q^{38} +(1.50758 - 0.229077i) q^{41} +(-0.125694 + 1.10664i) q^{43} +(-1.01720 - 1.69559i) q^{44} +(-0.0865734 + 0.981645i) q^{48} +(0.988652 + 0.150226i) q^{49} +(-0.187381 + 0.982287i) q^{50} +(-1.54441 + 0.396536i) q^{51} +(0.960276 + 0.325409i) q^{54} +(-0.821665 - 1.63797i) q^{57} +(-1.40048 + 0.514167i) q^{59} +(0.968583 + 0.248690i) q^{64} +(-0.268490 - 1.92996i) q^{66} +(-0.987118 + 0.974791i) q^{67} +(0.142146 + 1.61178i) q^{68} +(0.0135935 - 0.0254797i) q^{72} +(-0.0357930 + 0.120372i) q^{73} +(-0.548776 + 0.818515i) q^{75} +(-1.77562 + 0.552365i) q^{76} +(0.723777 + 0.646223i) q^{81} +(0.614386 - 1.39564i) q^{82} +(-0.612542 + 0.260514i) q^{83} +(0.867013 + 0.699092i) q^{86} +(-1.97668 - 0.0496898i) q^{88} +(-1.11128 + 0.315299i) q^{89} +(0.782442 + 0.599088i) q^{96} +(0.243329 - 0.405608i) q^{97} +(0.656586 - 0.754251i) q^{98} +(-0.0148947 + 0.0551259i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100q + O(q^{10}) \) \( 100q - 25q^{22} - 25q^{32} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2008\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(503\) \(1005\)
\(\chi(n)\) \(e\left(\frac{61}{125}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.535827 0.844328i 0.535827 0.844328i
\(3\) 0.811554 0.559018i 0.811554 0.559018i −0.0878512 0.996134i \(-0.528000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(4\) −0.425779 0.904827i −0.425779 0.904827i
\(5\) 0 0 −0.187381 0.982287i \(-0.560000\pi\)
0.187381 + 0.982287i \(0.440000\pi\)
\(6\) −0.0371420 0.984754i −0.0371420 0.984754i
\(7\) 0 0 −0.997159 0.0753268i \(-0.976000\pi\)
0.997159 + 0.0753268i \(0.0240000\pi\)
\(8\) −0.992115 0.125333i −0.992115 0.125333i
\(9\) −0.0102928 + 0.0269825i −0.0102928 + 0.0269825i
\(10\) 0 0
\(11\) 1.96732 0.198446i 1.96732 0.198446i 0.968583 0.248690i \(-0.0800000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(12\) −0.851357 0.496298i −0.851357 0.496298i
\(13\) 0 0 0.837528 0.546394i \(-0.184000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.637424 + 0.770513i −0.637424 + 0.770513i
\(17\) −1.51890 0.557644i −1.51890 0.557644i −0.556876 0.830596i \(-0.688000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(18\) 0.0172669 + 0.0231485i 0.0172669 + 0.0231485i
\(19\) 0.256228 1.84182i 0.256228 1.84182i −0.236499 0.971632i \(-0.576000\pi\)
0.492727 0.870184i \(-0.336000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.886590 1.76740i 0.886590 1.76740i
\(23\) 0 0 0.617860 0.786288i \(-0.288000\pi\)
−0.617860 + 0.786288i \(0.712000\pi\)
\(24\) −0.875218 + 0.452895i −0.875218 + 0.452895i
\(25\) −0.929776 + 0.368125i −0.929776 + 0.368125i
\(26\) 0 0
\(27\) 0.239790 + 0.985151i 0.239790 + 0.985151i
\(28\) 0 0
\(29\) 0 0 0.0125660 0.999921i \(-0.496000\pi\)
−0.0125660 + 0.999921i \(0.504000\pi\)
\(30\) 0 0
\(31\) 0 0 0.745941 0.666012i \(-0.232000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(32\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(33\) 1.48565 1.26082i 1.48565 1.26082i
\(34\) −1.28470 + 0.983652i −1.28470 + 0.983652i
\(35\) 0 0
\(36\) 0.0287970 0.00217537i 0.0287970 0.00217537i
\(37\) 0 0 −0.998737 0.0502443i \(-0.984000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(38\) −1.41780 1.20323i −1.41780 1.20323i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.50758 0.229077i 1.50758 0.229077i 0.656586 0.754251i \(-0.272000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(42\) 0 0
\(43\) −0.125694 + 1.10664i −0.125694 + 1.10664i 0.762443 + 0.647056i \(0.224000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(44\) −1.01720 1.69559i −1.01720 1.69559i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.637424 0.770513i \(-0.720000\pi\)
0.637424 + 0.770513i \(0.280000\pi\)
\(48\) −0.0865734 + 0.981645i −0.0865734 + 0.981645i
\(49\) 0.988652 + 0.150226i 0.988652 + 0.150226i
\(50\) −0.187381 + 0.982287i −0.187381 + 0.982287i
\(51\) −1.54441 + 0.396536i −1.54441 + 0.396536i
\(52\) 0 0
\(53\) 0 0 −0.675333 0.737513i \(-0.736000\pi\)
0.675333 + 0.737513i \(0.264000\pi\)
\(54\) 0.960276 + 0.325409i 0.960276 + 0.325409i
\(55\) 0 0
\(56\) 0 0
\(57\) −0.821665 1.63797i −0.821665 1.63797i
\(58\) 0 0
\(59\) −1.40048 + 0.514167i −1.40048 + 0.514167i −0.929776 0.368125i \(-0.880000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(60\) 0 0
\(61\) 0 0 0.492727 0.870184i \(-0.336000\pi\)
−0.492727 + 0.870184i \(0.664000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.968583 + 0.248690i 0.968583 + 0.248690i
\(65\) 0 0
\(66\) −0.268490 1.92996i −0.268490 1.92996i
\(67\) −0.987118 + 0.974791i −0.987118 + 0.974791i −0.999684 0.0251301i \(-0.992000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(68\) 0.142146 + 1.61178i 0.142146 + 1.61178i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.260842 0.965382i \(-0.584000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(72\) 0.0135935 0.0254797i 0.0135935 0.0254797i
\(73\) −0.0357930 + 0.120372i −0.0357930 + 0.120372i −0.974527 0.224271i \(-0.928000\pi\)
0.938734 + 0.344643i \(0.112000\pi\)
\(74\) 0 0
\(75\) −0.548776 + 0.818515i −0.548776 + 0.818515i
\(76\) −1.77562 + 0.552365i −1.77562 + 0.552365i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.947098 0.320944i \(-0.104000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(80\) 0 0
\(81\) 0.723777 + 0.646223i 0.723777 + 0.646223i
\(82\) 0.614386 1.39564i 0.614386 1.39564i
\(83\) −0.612542 + 0.260514i −0.612542 + 0.260514i −0.675333 0.737513i \(-0.736000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.867013 + 0.699092i 0.867013 + 0.699092i
\(87\) 0 0
\(88\) −1.97668 0.0496898i −1.97668 0.0496898i
\(89\) −1.11128 + 0.315299i −1.11128 + 0.315299i −0.778462 0.627691i \(-0.784000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0.782442 + 0.599088i 0.782442 + 0.599088i
\(97\) 0.243329 0.405608i 0.243329 0.405608i −0.711536 0.702650i \(-0.752000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(98\) 0.656586 0.754251i 0.656586 0.754251i
\(99\) −0.0148947 + 0.0551259i −0.0148947 + 0.0551259i
\(100\) 0.728969 + 0.684547i 0.728969 + 0.684547i
\(101\) 0 0 −0.402906 0.915241i \(-0.632000\pi\)
0.402906 + 0.915241i \(0.368000\pi\)
\(102\) −0.492727 + 1.51646i −0.492727 + 1.51646i
\(103\) 0 0 −0.379779 0.925077i \(-0.624000\pi\)
0.379779 + 0.925077i \(0.376000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.965603 + 1.70531i 0.965603 + 1.70531i 0.656586 + 0.754251i \(0.272000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(108\) 0.789294 0.636425i 0.789294 0.636425i
\(109\) 0 0 −0.954865 0.297042i \(-0.904000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.0609840 + 0.0443075i 0.0609840 + 0.0443075i 0.617860 0.786288i \(-0.288000\pi\)
−0.556876 + 0.830596i \(0.688000\pi\)
\(114\) −1.82325 0.183913i −1.82325 0.183913i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.316290 + 1.45797i −0.316290 + 1.45797i
\(119\) 0 0
\(120\) 0 0
\(121\) 2.85111 0.581102i 2.85111 0.581102i
\(122\) 0 0
\(123\) 1.09542 1.02867i 1.09542 1.02867i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.920232 0.391374i \(-0.872000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(128\) 0.728969 0.684547i 0.728969 0.684547i
\(129\) 0.516622 + 0.968360i 0.516622 + 0.968360i
\(130\) 0 0
\(131\) 1.08287 + 1.37806i 1.08287 + 1.37806i 0.920232 + 0.391374i \(0.128000\pi\)
0.162637 + 0.986686i \(0.448000\pi\)
\(132\) −1.77338 0.807429i −1.77338 0.807429i
\(133\) 0 0
\(134\) 0.294119 + 1.35577i 0.294119 + 1.35577i
\(135\) 0 0
\(136\) 1.43703 + 0.743616i 1.43703 + 0.743616i
\(137\) −1.34385 0.135555i −1.34385 0.135555i −0.597905 0.801567i \(-0.704000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(138\) 0 0
\(139\) 1.14249 1.18640i 1.14249 1.18640i 0.162637 0.986686i \(-0.448000\pi\)
0.979855 0.199710i \(-0.0640000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.0142295 0.0251301i −0.0142295 0.0251301i
\(145\) 0 0
\(146\) 0.0824547 + 0.0947197i 0.0824547 + 0.0947197i
\(147\) 0.886323 0.430758i 0.886323 0.430758i
\(148\) 0 0
\(149\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(150\) 0.397046 + 0.901929i 0.397046 + 0.901929i
\(151\) 0 0 −0.728969 0.684547i \(-0.760000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(152\) −0.485049 + 1.79518i −0.485049 + 1.79518i
\(153\) 0.0306805 0.0352441i 0.0306805 0.0352441i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.992115 0.125333i \(-0.0400000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.933443 0.264842i 0.933443 0.264842i
\(163\) −0.0251241 0.000631572i −0.0251241 0.000631572i 0.0125660 0.999921i \(-0.496000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(164\) −0.849171 1.26656i −0.849171 1.26656i
\(165\) 0 0
\(166\) −0.108258 + 0.656777i −0.108258 + 0.656777i
\(167\) 0 0 −0.823533 0.567269i \(-0.808000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(168\) 0 0
\(169\) 0.402906 0.915241i 0.402906 0.915241i
\(170\) 0 0
\(171\) 0.0470596 + 0.0258712i 0.0470596 + 0.0258712i
\(172\) 1.05483 0.357451i 1.05483 0.357451i
\(173\) 0 0 −0.577573 0.816339i \(-0.696000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.10111 + 1.64234i −1.10111 + 1.64234i
\(177\) −0.849137 + 1.20017i −0.849137 + 1.20017i
\(178\) −0.329239 + 1.10723i −0.329239 + 1.10723i
\(179\) −0.940219 + 1.76235i −0.940219 + 1.76235i −0.425779 + 0.904827i \(0.640000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(180\) 0 0
\(181\) 0 0 −0.899405 0.437116i \(-0.856000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3.09883 0.795645i −3.09883 0.795645i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.332820 0.942991i \(-0.392000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(192\) 0.925080 0.339630i 0.925080 0.339630i
\(193\) −0.674891 0.440292i −0.674891 0.440292i 0.162637 0.986686i \(-0.448000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(194\) −0.212084 0.422785i −0.212084 0.422785i
\(195\) 0 0
\(196\) −0.285019 0.958522i −0.285019 0.958522i
\(197\) 0 0 −0.947098 0.320944i \(-0.896000\pi\)
0.947098 + 0.320944i \(0.104000\pi\)
\(198\) 0.0385633 + 0.0421140i 0.0385633 + 0.0421140i
\(199\) 0 0 −0.850994 0.525175i \(-0.824000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(200\) 0.968583 0.248690i 0.968583 0.248690i
\(201\) −0.256174 + 1.34291i −0.256174 + 1.34291i
\(202\) 0 0
\(203\) 0 0
\(204\) 1.01637 + 1.22858i 1.01637 + 1.22858i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.138583 3.67429i 0.138583 3.67429i
\(210\) 0 0
\(211\) −0.0750855 1.19345i −0.0750855 1.19345i −0.837528 0.546394i \(-0.816000\pi\)
0.762443 0.647056i \(-0.224000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.95723 + 0.0984643i 1.95723 + 0.0984643i
\(215\) 0 0
\(216\) −0.114427 1.00744i −0.114427 1.00744i
\(217\) 0 0
\(218\) 0 0
\(219\) 0.0382422 + 0.117697i 0.0382422 + 0.117697i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.356412 0.934329i \(-0.616000\pi\)
0.356412 + 0.934329i \(0.384000\pi\)
\(224\) 0 0
\(225\) −0.000362896 0.0288768i −0.000362896 0.0288768i
\(226\) 0.0700869 0.0277494i 0.0700869 0.0277494i
\(227\) 1.76227 0.911912i 1.76227 0.911912i 0.823533 0.567269i \(-0.192000\pi\)
0.938734 0.344643i \(-0.112000\pi\)
\(228\) −1.13223 + 1.44088i −1.13223 + 1.44088i
\(229\) 0 0 0.448383 0.893841i \(-0.352000\pi\)
−0.448383 + 0.893841i \(0.648000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.15040 + 1.54226i 1.15040 + 1.54226i 0.793990 + 0.607930i \(0.208000\pi\)
0.356412 + 0.934329i \(0.384000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.06153 + 1.04827i 1.06153 + 1.04827i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.863923 0.503623i \(-0.832000\pi\)
0.863923 + 0.503623i \(0.168000\pi\)
\(240\) 0 0
\(241\) −0.485049 0.192044i −0.485049 0.192044i 0.112856 0.993611i \(-0.464000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(242\) 1.03706 2.71864i 1.03706 2.71864i
\(243\) −0.0572846 0.00723673i −0.0572846 0.00723673i
\(244\) 0 0
\(245\) 0 0
\(246\) −0.281579 1.47609i −0.281579 1.47609i
\(247\) 0 0
\(248\) 0 0
\(249\) −0.351479 + 0.553843i −0.351479 + 0.553843i
\(250\) 0 0
\(251\) −0.997159 + 0.0753268i −0.997159 + 0.0753268i
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.187381 0.982287i −0.187381 0.982287i
\(257\) −0.0749998 1.98849i −0.0749998 1.98849i −0.137790 0.990461i \(-0.544000\pi\)
0.0627905 0.998027i \(-0.480000\pi\)
\(258\) 1.09443 + 0.0826750i 1.09443 + 0.0826750i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.74376 0.175895i 1.74376 0.175895i
\(263\) 0 0 −0.863923 0.503623i \(-0.832000\pi\)
0.863923 + 0.503623i \(0.168000\pi\)
\(264\) −1.63196 + 1.06467i −1.63196 + 1.06467i
\(265\) 0 0
\(266\) 0 0
\(267\) −0.725607 + 0.877109i −0.725607 + 0.877109i
\(268\) 1.30231 + 0.478125i 1.30231 + 0.478125i
\(269\) 0 0 −0.597905 0.801567i \(-0.704000\pi\)
0.597905 + 0.801567i \(0.296000\pi\)
\(270\) 0 0
\(271\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(272\) 1.39786 0.814879i 1.39786 0.814879i
\(273\) 0 0
\(274\) −0.834522 + 1.06201i −0.834522 + 1.06201i
\(275\) −1.75612 + 0.908729i −1.75612 + 0.908729i
\(276\) 0 0
\(277\) 0 0 −0.0125660 0.999921i \(-0.504000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(278\) −0.389529 1.60034i −0.389529 1.60034i
\(279\) 0 0
\(280\) 0 0
\(281\) −1.65863 + 0.381706i −1.65863 + 0.381706i −0.947098 0.320944i \(-0.896000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(282\) 0 0
\(283\) 0.161209 + 0.496150i 0.161209 + 0.496150i 0.998737 0.0502443i \(-0.0160000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.0288426 0.00145101i −0.0288426 0.00145101i
\(289\) 1.23366 + 1.04696i 1.23366 + 1.04696i
\(290\) 0 0
\(291\) −0.0292678 0.465198i −0.0292678 0.465198i
\(292\) 0.124156 0.0188655i 0.124156 0.0188655i
\(293\) 0 0 0.0376902 0.999289i \(-0.488000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(294\) 0.111215 0.979159i 0.111215 0.979159i
\(295\) 0 0
\(296\) 0 0
\(297\) 0.667242 + 1.89052i 0.667242 + 1.89052i
\(298\) 0 0
\(299\) 0 0
\(300\) 0.974271 + 0.148041i 0.974271 + 0.148041i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1.25582 + 1.37144i 1.25582 + 1.37144i
\(305\) 0 0
\(306\) −0.0133182 0.0447891i −0.0133182 0.0447891i
\(307\) −1.64131 0.334525i −1.64131 0.334525i −0.711536 0.702650i \(-0.752000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.332820 0.942991i \(-0.392000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(312\) 0 0
\(313\) −0.194483 1.17989i −0.194483 1.17989i −0.888136 0.459580i \(-0.848000\pi\)
0.693653 0.720309i \(-0.256000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.137790 0.990461i \(-0.544000\pi\)
0.137790 + 0.990461i \(0.456000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 1.73694 + 0.844160i 1.73694 + 0.844160i
\(322\) 0 0
\(323\) −1.41626 + 2.65466i −1.41626 + 2.65466i
\(324\) 0.276550 0.930041i 0.276550 0.930041i
\(325\) 0 0
\(326\) −0.0139954 + 0.0208746i −0.0139954 + 0.0208746i
\(327\) 0 0
\(328\) −1.52440 + 0.0383205i −1.52440 + 0.0383205i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.706139 + 0.388203i 0.706139 + 0.388203i 0.793990 0.607930i \(-0.208000\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(332\) 0.496528 + 0.443324i 0.496528 + 0.443324i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.10781 + 0.893250i 1.10781 + 0.893250i 0.994951 0.100362i \(-0.0320000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(338\) −0.556876 0.830596i −0.556876 0.830596i
\(339\) 0.0742605 + 0.00186676i 0.0742605 + 0.00186676i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.0470596 0.0258712i 0.0470596 0.0258712i
\(343\) 0 0
\(344\) 0.263401 1.08216i 0.263401 1.08216i
\(345\) 0 0
\(346\) 0 0
\(347\) −1.37189 1.05041i −1.37189 1.05041i −0.992115 0.125333i \(-0.960000\pi\)
−0.379779 0.925077i \(-0.624000\pi\)
\(348\) 0 0
\(349\) 0 0 0.656586 0.754251i \(-0.272000\pi\)
−0.656586 + 0.754251i \(0.728000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.796668 + 1.80971i 0.796668 + 1.80971i
\(353\) −0.263146 + 0.809880i −0.263146 + 0.809880i 0.728969 + 0.684547i \(0.240000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(354\) 0.558345 + 1.36003i 0.558345 + 1.36003i
\(355\) 0 0
\(356\) 0.758452 + 0.871270i 0.758452 + 0.871270i
\(357\) 0 0
\(358\) 0.984210 + 1.73817i 0.984210 + 1.73817i
\(359\) 0 0 0.778462 0.627691i \(-0.216000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(360\) 0 0
\(361\) −2.36460 0.670899i −2.36460 0.670899i
\(362\) 0 0
\(363\) 1.98899 2.06542i 1.98899 2.06542i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.910106 0.414376i \(-0.136000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(368\) 0 0
\(369\) −0.00933621 + 0.0430362i −0.00933621 + 0.0430362i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.470704 0.882291i \(-0.656000\pi\)
0.470704 + 0.882291i \(0.344000\pi\)
\(374\) −2.33222 + 2.19010i −2.33222 + 2.19010i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.31128 1.23137i 1.31128 1.23137i 0.356412 0.934329i \(-0.384000\pi\)
0.954865 0.297042i \(-0.0960000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.910106 0.414376i \(-0.864000\pi\)
0.910106 + 0.414376i \(0.136000\pi\)
\(384\) 0.208923 0.963053i 0.208923 0.963053i
\(385\) 0 0
\(386\) −0.733375 + 0.333909i −0.733375 + 0.333909i
\(387\) −0.0285661 0.0147820i −0.0285661 0.0147820i
\(388\) −0.470610 0.0474709i −0.470610 0.0474709i
\(389\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.962028 0.272952i −0.962028 0.272952i
\(393\) 1.64917 + 0.513027i 1.64917 + 0.513027i
\(394\) 0 0
\(395\) 0 0
\(396\) 0.0562213 0.00999429i 0.0562213 0.00999429i
\(397\) 0 0 −0.656586 0.754251i \(-0.728000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.309017 0.951057i 0.309017 0.951057i
\(401\) −0.785286 1.78385i −0.785286 1.78385i −0.597905 0.801567i \(-0.704000\pi\)
−0.187381 0.982287i \(-0.560000\pi\)
\(402\) 0.996593 + 0.935863i 0.996593 + 0.935863i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 1.58193 0.199844i 1.58193 0.199844i
\(409\) 0.134814 0.553868i 0.134814 0.553868i −0.863923 0.503623i \(-0.832000\pi\)
0.998737 0.0502443i \(-0.0160000\pi\)
\(410\) 0 0
\(411\) −1.16638 + 0.641224i −1.16638 + 0.641224i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.263978 1.60150i 0.263978 1.60150i
\(418\) −3.02805 2.08579i −3.02805 2.08579i
\(419\) −0.524568 + 0.223098i −0.524568 + 0.223098i −0.637424 0.770513i \(-0.720000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(420\) 0 0
\(421\) 0 0 −0.745941 0.666012i \(-0.768000\pi\)
0.745941 + 0.666012i \(0.232000\pi\)
\(422\) −1.04790 0.576086i −1.04790 0.576086i
\(423\) 0 0
\(424\) 0 0
\(425\) 1.61752 0.0406613i 1.61752 0.0406613i
\(426\) 0 0
\(427\) 0 0
\(428\) 1.13188 1.59979i 1.13188 1.59979i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.260842 0.965382i \(-0.584000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(432\) −0.911919 0.443198i −0.911919 0.443198i
\(433\) 0.0915446 1.45506i 0.0915446 1.45506i −0.637424 0.770513i \(-0.720000\pi\)
0.728969 0.684547i \(-0.240000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0.119866 + 0.0307765i 0.119866 + 0.0307765i
\(439\) 0 0 0.425779 0.904827i \(-0.360000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(440\) 0 0
\(441\) −0.0142295 + 0.0251301i −0.0142295 + 0.0251301i
\(442\) 0 0
\(443\) 0.580169 0.213001i 0.580169 0.213001i −0.0376902 0.999289i \(-0.512000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.07242 1.17116i −1.07242 1.17116i −0.984564 0.175023i \(-0.944000\pi\)
−0.0878512 0.996134i \(-0.528000\pi\)
\(450\) −0.0245759 0.0151666i −0.0245759 0.0151666i
\(451\) 2.92043 0.749840i 2.92043 0.749840i
\(452\) 0.0141249 0.0740452i 0.0141249 0.0740452i
\(453\) 0 0
\(454\) 0.174317 1.97656i 0.174317 1.97656i
\(455\) 0 0
\(456\) 0.609894 + 1.72804i 0.609894 + 1.72804i
\(457\) −1.05511 0.187564i −1.05511 0.187564i −0.379779 0.925077i \(-0.624000\pi\)
−0.675333 + 0.737513i \(0.736000\pi\)
\(458\) 0 0
\(459\) 0.185146 1.63007i 0.185146 1.63007i
\(460\) 0 0
\(461\) 0 0 0.988652 0.150226i \(-0.0480000\pi\)
−0.988652 + 0.150226i \(0.952000\pi\)
\(462\) 0 0
\(463\) 0 0 0.379779 0.925077i \(-0.376000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.91859 0.144933i 1.91859 0.144933i
\(467\) 0.207708 + 1.82871i 0.207708 + 1.82871i 0.492727 + 0.870184i \(0.336000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 1.45388 0.334586i 1.45388 0.334586i
\(473\) −0.0276732 + 2.20205i −0.0276732 + 2.20205i
\(474\) 0 0
\(475\) 0.439782 + 1.80680i 0.439782 + 1.80680i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.617860 0.786288i \(-0.288000\pi\)
−0.617860 + 0.786288i \(0.712000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.422050 + 0.306638i −0.422050 + 0.306638i
\(483\) 0 0
\(484\) −1.73974 2.33234i −1.73974 2.33234i
\(485\) 0 0
\(486\) −0.0368048 + 0.0444894i −0.0368048 + 0.0444894i
\(487\) 0 0 −0.711536 0.702650i \(-0.752000\pi\)
0.711536 + 0.702650i \(0.248000\pi\)
\(488\) 0 0
\(489\) −0.0207427 + 0.0135323i −0.0207427 + 0.0135323i
\(490\) 0 0
\(491\) −1.98425 + 0.200153i −1.98425 + 0.200153i −0.984564 + 0.175023i \(0.944000\pi\)
−0.999684 + 0.0251301i \(0.992000\pi\)
\(492\) −1.39718 0.553183i −1.39718 0.553183i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0.279293 + 0.593528i 0.279293 + 0.593528i
\(499\) −1.62164 + 1.11703i −1.62164 + 1.11703i −0.711536 + 0.702650i \(0.752000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.470704 + 0.882291i −0.470704 + 0.882291i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.184656 0.968000i −0.184656 0.968000i
\(508\) 0 0
\(509\) 0 0 −0.997159 0.0753268i \(-0.976000\pi\)
0.997159 + 0.0753268i \(0.0240000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.929776 0.368125i −0.929776 0.368125i
\(513\) 1.87591 0.189225i 1.87591 0.189225i
\(514\) −1.71912 1.00216i −1.71912 1.00216i
\(515\) 0 0
\(516\) 0.656231 0.879761i 0.656231 0.879761i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.275233 + 1.97842i −0.275233 + 1.97842i −0.0878512 + 0.996134i \(0.528000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(522\) 0 0
\(523\) −1.13448 + 0.661344i −1.13448 + 0.661344i −0.947098 0.320944i \(-0.896000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(524\) 0.785842 1.56656i 0.785842 1.56656i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0.0244855 + 1.94839i 0.0244855 + 1.94839i
\(529\) −0.236499 0.971632i −0.236499 0.971632i
\(530\) 0 0
\(531\) 0.000541397 0.0430808i 0.000541397 0.0430808i
\(532\) 0 0
\(533\) 0 0
\(534\) 0.351767 + 1.08263i 0.351767 + 1.08263i
\(535\) 0 0
\(536\) 1.10151 0.843386i 1.10151 0.843386i
\(537\) 0.222149 + 1.95584i 0.222149 + 1.95584i
\(538\) 0 0
\(539\) 1.97481 + 0.0993483i 1.97481 + 0.0993483i
\(540\) 0 0
\(541\) 0 0 0.379779 0.925077i \(-0.376000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.0609840 1.61688i 0.0609840 1.61688i
\(545\) 0 0
\(546\) 0 0
\(547\) 1.93873 + 0.344643i 1.93873 + 0.344643i 1.00000 \(0\)
0.938734 + 0.344643i \(0.112000\pi\)
\(548\) 0.449528 + 1.27366i 0.449528 + 1.27366i
\(549\) 0 0
\(550\) −0.173708 + 1.96966i −0.173708 + 1.96966i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.55993 0.528615i −1.55993 0.528615i
\(557\) 0 0 −0.285019 0.958522i \(-0.592000\pi\)
0.285019 + 0.958522i \(0.408000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −2.95965 + 1.08659i −2.95965 + 1.08659i
\(562\) −0.566455 + 1.60496i −0.566455 + 1.60496i
\(563\) −0.977684 + 1.72664i −0.977684 + 1.72664i −0.379779 + 0.925077i \(0.624000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.505293 + 0.129737i 0.505293 + 0.129737i
\(567\) 0 0
\(568\) 0 0
\(569\) −1.41589 + 1.39820i −1.41589 + 1.39820i −0.637424 + 0.770513i \(0.720000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(570\) 0 0
\(571\) 0.0563084 0.894997i 0.0563084 0.894997i −0.863923 0.503623i \(-0.832000\pi\)
0.920232 0.391374i \(-0.128000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.0166798 + 0.0235751i −0.0166798 + 0.0235751i
\(577\) −1.00171 + 1.49408i −1.00171 + 1.49408i −0.137790 + 0.990461i \(0.544000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(578\) 1.54500 0.480623i 1.54500 0.480623i
\(579\) −0.793841 + 0.0199556i −0.793841 + 0.0199556i
\(580\) 0 0
\(581\) 0 0
\(582\) −0.408462 0.224554i −0.408462 0.224554i
\(583\) 0 0
\(584\) 0.0505974 0.114937i 0.0505974 0.114937i
\(585\) 0 0
\(586\) 0 0
\(587\) −0.308067 + 1.86898i −0.308067 + 1.86898i 0.162637 + 0.986686i \(0.448000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(588\) −0.767139 0.618561i −0.767139 0.618561i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.71731 0.944098i 1.71731 0.944098i 0.762443 0.647056i \(-0.224000\pi\)
0.954865 0.297042i \(-0.0960000\pi\)
\(594\) 1.95375 + 0.449621i 1.95375 + 0.449621i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.514440 0.857527i \(-0.328000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(600\) 0.647036 0.743281i 0.647036 0.743281i
\(601\) 0.505293 1.87010i 0.505293 1.87010i 0.0125660 0.999921i \(-0.496000\pi\)
0.492727 0.870184i \(-0.336000\pi\)
\(602\) 0 0
\(603\) −0.0161421 0.0366683i −0.0161421 0.0366683i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.656586 0.754251i \(-0.728000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(608\) 1.83085 0.325465i 1.83085 0.325465i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.0449530 0.0127543i −0.0449530 0.0127543i
\(613\) 0 0 0.850994 0.525175i \(-0.176000\pi\)
−0.850994 + 0.525175i \(0.824000\pi\)
\(614\) −1.16191 + 1.20656i −1.16191 + 1.20656i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.376582 0.194868i −0.376582 0.194868i 0.260842 0.965382i \(-0.416000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(618\) 0 0
\(619\) −0.407913 1.88032i −0.407913 1.88032i −0.470704 0.882291i \(-0.656000\pi\)
0.0627905 0.998027i \(-0.480000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.728969 0.684547i 0.728969 0.684547i
\(626\) −1.10042 0.468009i −1.10042 0.468009i
\(627\) −1.94152 3.05935i −1.94152 3.05935i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.470704 0.882291i \(-0.656000\pi\)
0.470704 + 0.882291i \(0.344000\pi\)
\(632\) 0 0
\(633\) −0.728096 0.926575i −0.728096 0.926575i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.259955 + 0.269945i −0.259955 + 0.269945i −0.837528 0.546394i \(-0.816000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(642\) 1.64345 1.01422i 1.64345 1.01422i
\(643\) 0.169031 + 0.0479583i 0.169031 + 0.0479583i 0.356412 0.934329i \(-0.384000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.48253 + 2.61823i 1.48253 + 2.61823i
\(647\) 0 0 0.984564 0.175023i \(-0.0560000\pi\)
−0.984564 + 0.175023i \(0.944000\pi\)
\(648\) −0.637077 0.731840i −0.637077 0.731840i
\(649\) −2.65316 + 1.28945i −2.65316 + 1.28945i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.0101259 + 0.0230019i 0.0101259 + 0.0230019i
\(653\) 0 0 −0.728969 0.684547i \(-0.760000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.784461 + 1.30763i −0.784461 + 1.30763i
\(657\) −0.00287954 0.00220476i −0.00287954 0.00220476i
\(658\) 0 0
\(659\) −1.73879 + 0.219661i −1.73879 + 0.219661i −0.929776 0.368125i \(-0.880000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(660\) 0 0
\(661\) 0 0 −0.974527 0.224271i \(-0.928000\pi\)
0.974527 + 0.224271i \(0.0720000\pi\)
\(662\) 0.706139 0.388203i 0.706139 0.388203i
\(663\) 0 0
\(664\) 0.640363 0.181687i 0.640363 0.181687i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.67351 + 0.920019i 1.67351 + 0.920019i 0.979855 + 0.199710i \(0.0640000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(674\) 1.34779 0.456726i 1.34779 0.456726i
\(675\) −0.585609 0.827698i −0.585609 0.827698i
\(676\) −0.999684 + 0.0251301i −0.999684 + 0.0251301i
\(677\) 0 0 0.954865 0.297042i \(-0.0960000\pi\)
−0.954865 + 0.297042i \(0.904000\pi\)
\(678\) 0.0413669 0.0616999i 0.0413669 0.0616999i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.920399 1.72520i 0.920399 1.72520i
\(682\) 0 0
\(683\) 0.292553 + 0.142183i 0.292553 + 0.142183i 0.577573 0.816339i \(-0.304000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(684\) 0.00337199 0.0535962i 0.00337199 0.0535962i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.772557 0.802245i −0.772557 0.802245i
\(689\) 0 0
\(690\) 0 0
\(691\) −0.123532 0.749445i −0.123532 0.749445i −0.974527 0.224271i \(-0.928000\pi\)
0.850994 0.525175i \(-0.176000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.62199 + 0.595490i −1.62199 + 0.595490i
\(695\) 0 0
\(696\) 0 0
\(697\) −2.41761 0.492748i −2.41761 0.492748i
\(698\) 0 0
\(699\) 1.79576 + 0.608531i 1.79576 + 0.608531i
\(700\) 0 0
\(701\) 0 0 −0.850994 0.525175i \(-0.824000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.95486 + 0.297042i 1.95486 + 0.297042i
\(705\) 0 0
\(706\) 0.542804 + 0.656137i 0.542804 + 0.656137i
\(707\) 0 0
\(708\) 1.44749 + 0.257316i 1.44749 + 0.257316i
\(709\) 0 0 −0.514440 0.857527i \(-0.672000\pi\)
0.514440 + 0.857527i \(0.328000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.14204 0.173532i 1.14204 0.173532i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 1.99495 + 0.100362i 1.99495 + 0.100362i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.793990 0.607930i \(-0.208000\pi\)
−0.793990 + 0.607930i \(0.792000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.83348 + 1.63702i −1.83348 + 1.63702i
\(723\) −0.500999 + 0.115296i −0.500999 + 0.115296i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.678139 2.78606i −0.678139 2.78606i
\(727\) 0 0 −0.0125660 0.999921i \(-0.504000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(728\) 0 0
\(729\) −0.912282 + 0.472074i −0.912282 + 0.472074i
\(730\) 0 0
\(731\) 0.808026 1.61078i 0.808026 1.61078i
\(732\) 0 0
\(733\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.74853 + 2.11362i −1.74853 + 2.11362i
\(738\) 0.0313341 + 0.0309428i 0.0313341 + 0.0309428i
\(739\) −0.194483 + 0.260729i −0.194483 + 0.260729i −0.888136 0.459580i \(-0.848000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.929776 0.368125i \(-0.880000\pi\)
0.929776 + 0.368125i \(0.120000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.000724520 0.0192094i −0.000724520 0.0192094i
\(748\) 0.599497 + 3.14268i 0.599497 + 3.14268i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.535827 0.844328i \(-0.320000\pi\)
−0.535827 + 0.844328i \(0.680000\pi\)
\(752\) 0 0
\(753\) −0.767139 + 0.618561i −0.767139 + 0.618561i
\(754\) 0 0
\(755\)