Properties

Label 2008.1.bd.a.443.1
Level 2008
Weight 1
Character 2008.443
Analytic conductor 1.002
Analytic rank 0
Dimension 100
Projective image \(D_{125}\)
CM discriminant -8
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2008 = 2^{3} \cdot 251 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2008.bd (of order \(250\), degree \(100\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00212254537\)
Analytic rank: \(0\)
Dimension: \(100\)
Coefficient field: \(\Q(\zeta_{250})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{125}\)
Projective field Galois closure of \(\mathbb{Q}[x]/(x^{125} - \cdots)\)

Embedding invariants

Embedding label 443.1
Root \(0.778462 - 0.627691i\) of \(x^{100} - x^{75} + x^{50} - x^{25} + 1\)
Character \(\chi\) \(=\) 2008.443
Dual form 2008.1.bd.a.1523.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.187381 - 0.982287i) q^{2} +(-0.834522 - 0.911359i) q^{3} +(-0.929776 + 0.368125i) q^{4} +(-0.738843 + 0.990512i) q^{6} +(0.535827 + 0.844328i) q^{8} +(-0.0462978 + 0.524964i) q^{9} +O(q^{10})\) \(q+(-0.187381 - 0.982287i) q^{2} +(-0.834522 - 0.911359i) q^{3} +(-0.929776 + 0.368125i) q^{4} +(-0.738843 + 0.990512i) q^{6} +(0.535827 + 0.844328i) q^{8} +(-0.0462978 + 0.524964i) q^{9} +(0.230806 - 1.65908i) q^{11} +(1.11141 + 0.540152i) q^{12} +(0.728969 - 0.684547i) q^{16} +(0.590139 + 0.183582i) q^{17} +(0.524341 - 0.0528908i) q^{18} +(1.41185 - 1.39422i) q^{19} +(-1.67294 + 0.0841621i) q^{22} +(0.322327 - 1.19294i) q^{24} +(-0.992115 - 0.125333i) q^{25} +(-0.464082 + 0.355331i) q^{27} +(-0.809017 - 0.587785i) q^{32} +(-1.70463 + 1.17419i) q^{33} +(0.0697491 - 0.614086i) q^{34} +(-0.150206 - 0.505143i) q^{36} +(-1.63408 - 1.12559i) q^{38} +(-1.37946 + 0.899947i) q^{41} +(1.08437 - 0.398113i) q^{43} +(0.396149 + 1.62754i) q^{44} +(-1.23221 - 0.0930828i) q^{48} +(-0.837528 - 0.546394i) q^{49} +(0.0627905 + 0.998027i) q^{50} +(-0.325175 - 0.691031i) q^{51} +(0.435997 + 0.389279i) q^{54} +(-2.44885 - 0.123197i) q^{57} +(-1.88025 + 0.584913i) q^{59} +(-0.425779 + 0.904827i) q^{64} +(1.47281 + 1.45441i) q^{66} +(-0.698099 - 0.562893i) q^{67} +(-0.616278 + 0.0465545i) q^{68} +(-0.468050 + 0.242200i) q^{72} +(1.71731 - 0.350014i) q^{73} +(0.713718 + 1.00877i) q^{75} +(-0.799459 + 1.81605i) q^{76} +(1.22999 + 0.218651i) q^{81} +(1.14249 + 1.18640i) q^{82} +(0.838616 + 0.517536i) q^{83} +(-0.594252 - 0.990568i) q^{86} +(1.52448 - 0.694102i) q^{88} +(-0.0217122 - 1.72771i) q^{89} +(0.139459 + 1.22782i) q^{96} +(-0.375556 + 1.54293i) q^{97} +(-0.379779 + 0.925077i) q^{98} +(0.860271 + 0.197977i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100q + O(q^{10}) \) \( 100q - 25q^{22} - 25q^{32} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2008\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(503\) \(1005\)
\(\chi(n)\) \(e\left(\frac{88}{125}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.187381 0.982287i −0.187381 0.982287i
\(3\) −0.834522 0.911359i −0.834522 0.911359i 0.162637 0.986686i \(-0.448000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(4\) −0.929776 + 0.368125i −0.929776 + 0.368125i
\(5\) 0 0 0.0627905 0.998027i \(-0.480000\pi\)
−0.0627905 + 0.998027i \(0.520000\pi\)
\(6\) −0.738843 + 0.990512i −0.738843 + 0.990512i
\(7\) 0 0 0.285019 0.958522i \(-0.408000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(8\) 0.535827 + 0.844328i 0.535827 + 0.844328i
\(9\) −0.0462978 + 0.524964i −0.0462978 + 0.524964i
\(10\) 0 0
\(11\) 0.230806 1.65908i 0.230806 1.65908i −0.425779 0.904827i \(-0.640000\pi\)
0.656586 0.754251i \(-0.272000\pi\)
\(12\) 1.11141 + 0.540152i 1.11141 + 0.540152i
\(13\) 0 0 −0.920232 0.391374i \(-0.872000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.728969 0.684547i 0.728969 0.684547i
\(17\) 0.590139 + 0.183582i 0.590139 + 0.183582i 0.577573 0.816339i \(-0.304000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(18\) 0.524341 0.0528908i 0.524341 0.0528908i
\(19\) 1.41185 1.39422i 1.41185 1.39422i 0.617860 0.786288i \(-0.288000\pi\)
0.793990 0.607930i \(-0.208000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.67294 + 0.0841621i −1.67294 + 0.0841621i
\(23\) 0 0 0.947098 0.320944i \(-0.104000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(24\) 0.322327 1.19294i 0.322327 1.19294i
\(25\) −0.992115 0.125333i −0.992115 0.125333i
\(26\) 0 0
\(27\) −0.464082 + 0.355331i −0.464082 + 0.355331i
\(28\) 0 0
\(29\) 0 0 −0.212007 0.977268i \(-0.568000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(30\) 0 0
\(31\) 0 0 0.984564 0.175023i \(-0.0560000\pi\)
−0.984564 + 0.175023i \(0.944000\pi\)
\(32\) −0.809017 0.587785i −0.809017 0.587785i
\(33\) −1.70463 + 1.17419i −1.70463 + 1.17419i
\(34\) 0.0697491 0.614086i 0.0697491 0.614086i
\(35\) 0 0
\(36\) −0.150206 0.505143i −0.150206 0.505143i
\(37\) 0 0 0.656586 0.754251i \(-0.272000\pi\)
−0.656586 + 0.754251i \(0.728000\pi\)
\(38\) −1.63408 1.12559i −1.63408 1.12559i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.37946 + 0.899947i −1.37946 + 0.899947i −0.999684 0.0251301i \(-0.992000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(42\) 0 0
\(43\) 1.08437 0.398113i 1.08437 0.398113i 0.260842 0.965382i \(-0.416000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(44\) 0.396149 + 1.62754i 0.396149 + 1.62754i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.728969 0.684547i \(-0.760000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(48\) −1.23221 0.0930828i −1.23221 0.0930828i
\(49\) −0.837528 0.546394i −0.837528 0.546394i
\(50\) 0.0627905 + 0.998027i 0.0627905 + 0.998027i
\(51\) −0.325175 0.691031i −0.325175 0.691031i
\(52\) 0 0
\(53\) 0 0 0.0376902 0.999289i \(-0.488000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(54\) 0.435997 + 0.389279i 0.435997 + 0.389279i
\(55\) 0 0
\(56\) 0 0
\(57\) −2.44885 0.123197i −2.44885 0.123197i
\(58\) 0 0
\(59\) −1.88025 + 0.584913i −1.88025 + 0.584913i −0.888136 + 0.459580i \(0.848000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(60\) 0 0
\(61\) 0 0 0.617860 0.786288i \(-0.288000\pi\)
−0.617860 + 0.786288i \(0.712000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.425779 + 0.904827i −0.425779 + 0.904827i
\(65\) 0 0
\(66\) 1.47281 + 1.45441i 1.47281 + 1.45441i
\(67\) −0.698099 0.562893i −0.698099 0.562893i 0.212007 0.977268i \(-0.432000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(68\) −0.616278 + 0.0465545i −0.616278 + 0.0465545i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.974527 0.224271i \(-0.0720000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(72\) −0.468050 + 0.242200i −0.468050 + 0.242200i
\(73\) 1.71731 0.350014i 1.71731 0.350014i 0.762443 0.647056i \(-0.224000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(74\) 0 0
\(75\) 0.713718 + 1.00877i 0.713718 + 1.00877i
\(76\) −0.799459 + 1.81605i −0.799459 + 1.81605i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.745941 0.666012i \(-0.232000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(80\) 0 0
\(81\) 1.22999 + 0.218651i 1.22999 + 0.218651i
\(82\) 1.14249 + 1.18640i 1.14249 + 1.18640i
\(83\) 0.838616 + 0.517536i 0.838616 + 0.517536i 0.876307 0.481754i \(-0.160000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.594252 0.990568i −0.594252 0.990568i
\(87\) 0 0
\(88\) 1.52448 0.694102i 1.52448 0.694102i
\(89\) −0.0217122 1.72771i −0.0217122 1.72771i −0.514440 0.857527i \(-0.672000\pi\)
0.492727 0.870184i \(-0.336000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0.139459 + 1.22782i 0.139459 + 1.22782i
\(97\) −0.375556 + 1.54293i −0.375556 + 1.54293i 0.402906 + 0.915241i \(0.368000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(98\) −0.379779 + 0.925077i −0.379779 + 0.925077i
\(99\) 0.860271 + 0.197977i 0.860271 + 0.197977i
\(100\) 0.968583 0.248690i 0.968583 0.248690i
\(101\) 0 0 0.693653 0.720309i \(-0.256000\pi\)
−0.693653 + 0.720309i \(0.744000\pi\)
\(102\) −0.617860 + 0.448901i −0.617860 + 0.448901i
\(103\) 0 0 0.332820 0.942991i \(-0.392000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.18880 1.51286i −1.18880 1.51286i −0.809017 0.587785i \(-0.800000\pi\)
−0.379779 0.925077i \(-0.624000\pi\)
\(108\) 0.300686 0.501218i 0.300686 0.501218i
\(109\) 0 0 −0.402906 0.915241i \(-0.632000\pi\)
0.402906 + 0.915241i \(0.368000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.369526 + 1.13728i −0.369526 + 1.13728i 0.577573 + 0.816339i \(0.304000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(114\) 0.337855 + 2.42856i 0.337855 + 2.42856i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0.926877 + 1.73734i 0.926877 + 1.73734i
\(119\) 0 0
\(120\) 0 0
\(121\) −1.73724 0.492900i −1.73724 0.492900i
\(122\) 0 0
\(123\) 1.97137 + 0.506161i 1.97137 + 0.506161i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.850994 0.525175i \(-0.176000\pi\)
−0.850994 + 0.525175i \(0.824000\pi\)
\(128\) 0.968583 + 0.248690i 0.968583 + 0.248690i
\(129\) −1.26776 0.656021i −1.26776 0.656021i
\(130\) 0 0
\(131\) 1.20741 + 0.409154i 1.20741 + 0.409154i 0.850994 0.525175i \(-0.176000\pi\)
0.356412 + 0.934329i \(0.384000\pi\)
\(132\) 1.15268 1.71925i 1.15268 1.71925i
\(133\) 0 0
\(134\) −0.422111 + 0.791209i −0.422111 + 0.791209i
\(135\) 0 0
\(136\) 0.161209 + 0.596639i 0.161209 + 0.596639i
\(137\) 0.0103867 + 0.0746613i 0.0103867 + 0.0746613i 0.994951 0.100362i \(-0.0320000\pi\)
−0.984564 + 0.175023i \(0.944000\pi\)
\(138\) 0 0
\(139\) −0.605616 1.20728i −0.605616 1.20728i −0.962028 0.272952i \(-0.912000\pi\)
0.356412 0.934329i \(-0.384000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.325613 + 0.414376i 0.325613 + 0.414376i
\(145\) 0 0
\(146\) −0.665606 1.62130i −0.665606 1.62130i
\(147\) 0.200974 + 1.21927i 0.200974 + 1.21927i
\(148\) 0 0
\(149\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(150\) 0.857161 0.890100i 0.857161 0.890100i
\(151\) 0 0 0.968583 0.248690i \(-0.0800000\pi\)
−0.968583 + 0.248690i \(0.920000\pi\)
\(152\) 1.93368 + 0.445005i 1.93368 + 0.445005i
\(153\) −0.123696 + 0.301302i −0.123696 + 0.301302i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.535827 0.844328i \(-0.320000\pi\)
−0.535827 + 0.844328i \(0.680000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −0.0156984 1.24917i −0.0156984 1.24917i
\(163\) −0.385898 + 0.175701i −0.385898 + 0.175701i −0.597905 0.801567i \(-0.704000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(164\) 0.951300 1.34456i 0.951300 1.34456i
\(165\) 0 0
\(166\) 0.351228 0.920739i 0.351228 0.920739i
\(167\) 0 0 0.675333 0.737513i \(-0.264000\pi\)
−0.675333 + 0.737513i \(0.736000\pi\)
\(168\) 0 0
\(169\) 0.693653 + 0.720309i 0.693653 + 0.720309i
\(170\) 0 0
\(171\) 0.666550 + 0.805720i 0.666550 + 0.805720i
\(172\) −0.861670 + 0.769341i −0.861670 + 0.769341i
\(173\) 0 0 0.863923 0.503623i \(-0.168000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.967467 1.36741i −0.967467 1.36741i
\(177\) 2.10218 + 1.22546i 2.10218 + 1.22546i
\(178\) −1.69304 + 0.345068i −1.69304 + 0.345068i
\(179\) −1.16628 + 0.603507i −1.16628 + 0.603507i −0.929776 0.368125i \(-0.880000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(180\) 0 0
\(181\) 0 0 0.162637 0.986686i \(-0.448000\pi\)
−0.162637 + 0.986686i \(0.552000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.440784 0.936715i 0.440784 0.936715i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.492727 0.870184i \(-0.336000\pi\)
−0.492727 + 0.870184i \(0.664000\pi\)
\(192\) 1.17994 0.367060i 1.17994 0.367060i
\(193\) 1.27664 0.542955i 1.27664 0.542955i 0.356412 0.934329i \(-0.384000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(194\) 1.58598 + 0.0797870i 1.58598 + 0.0797870i
\(195\) 0 0
\(196\) 0.979855 + 0.199710i 0.979855 + 0.199710i
\(197\) 0 0 −0.745941 0.666012i \(-0.768000\pi\)
0.745941 + 0.666012i \(0.232000\pi\)
\(198\) 0.0332713 0.882131i 0.0332713 0.882131i
\(199\) 0 0 −0.999684 0.0251301i \(-0.992000\pi\)
0.999684 + 0.0251301i \(0.00800000\pi\)
\(200\) −0.425779 0.904827i −0.425779 0.904827i
\(201\) 0.0695814 + 1.10596i 0.0695814 + 1.10596i
\(202\) 0 0
\(203\) 0 0
\(204\) 0.556725 + 0.522800i 0.556725 + 0.522800i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.98725 2.66416i −1.98725 2.66416i
\(210\) 0 0
\(211\) 1.74376 0.958643i 1.74376 0.958643i 0.823533 0.567269i \(-0.192000\pi\)
0.920232 0.391374i \(-0.128000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −1.26331 + 1.45122i −1.26331 + 1.45122i
\(215\) 0 0
\(216\) −0.548683 0.201441i −0.548683 0.201441i
\(217\) 0 0
\(218\) 0 0
\(219\) −1.75212 1.27299i −1.75212 1.27299i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.0878512 0.996134i \(-0.528000\pi\)
0.0878512 + 0.996134i \(0.472000\pi\)
\(224\) 0 0
\(225\) 0.111728 0.515022i 0.111728 0.515022i
\(226\) 1.18638 + 0.149875i 1.18638 + 0.149875i
\(227\) 0.279532 1.03455i 0.279532 1.03455i −0.675333 0.737513i \(-0.736000\pi\)
0.954865 0.297042i \(-0.0960000\pi\)
\(228\) 2.32224 0.786938i 2.32224 0.786938i
\(229\) 0 0 0.998737 0.0502443i \(-0.0160000\pi\)
−0.998737 + 0.0502443i \(0.984000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.0250052 0.00252230i 0.0250052 0.00252230i −0.0878512 0.996134i \(-0.528000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.53289 1.23601i 1.53289 1.23601i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.899405 0.437116i \(-0.856000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(240\) 0 0
\(241\) 1.93368 0.244281i 1.93368 0.244281i 0.938734 0.344643i \(-0.112000\pi\)
0.994951 + 0.100362i \(0.0320000\pi\)
\(242\) −0.158643 + 1.79883i −0.158643 + 1.79883i
\(243\) −0.513995 0.809926i −0.513995 0.809926i
\(244\) 0 0
\(245\) 0 0
\(246\) 0.127798 2.03129i 0.127798 2.03129i
\(247\) 0 0
\(248\) 0 0
\(249\) −0.228183 1.19618i −0.228183 1.19618i
\(250\) 0 0
\(251\) −0.285019 0.958522i −0.285019 0.958522i
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.0627905 0.998027i 0.0627905 0.998027i
\(257\) 0.164771 0.220896i 0.164771 0.220896i −0.711536 0.702650i \(-0.752000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(258\) −0.406847 + 1.36823i −0.406847 + 1.36823i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.175662 1.26269i 0.175662 1.26269i
\(263\) 0 0 −0.899405 0.437116i \(-0.856000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(264\) −1.90479 0.810104i −1.90479 0.810104i
\(265\) 0 0
\(266\) 0 0
\(267\) −1.55645 + 1.46160i −1.55645 + 1.46160i
\(268\) 0.856290 + 0.266377i 0.856290 + 0.266377i
\(269\) 0 0 0.994951 0.100362i \(-0.0320000\pi\)
−0.994951 + 0.100362i \(0.968000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(272\) 0.555863 0.270152i 0.555863 0.270152i
\(273\) 0 0
\(274\) 0.0713926 0.0241928i 0.0713926 0.0241928i
\(275\) −0.436924 + 1.61707i −0.436924 + 1.61707i
\(276\) 0 0
\(277\) 0 0 0.212007 0.977268i \(-0.432000\pi\)
−0.212007 + 0.977268i \(0.568000\pi\)
\(278\) −1.07242 + 0.821111i −1.07242 + 0.821111i
\(279\) 0 0
\(280\) 0 0
\(281\) −1.52440 1.29370i −1.52440 1.29370i −0.778462 0.627691i \(-0.784000\pi\)
−0.745941 0.666012i \(-0.768000\pi\)
\(282\) 0 0
\(283\) 1.57682 + 1.14563i 1.57682 + 1.14563i 0.920232 + 0.391374i \(0.128000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.346022 0.397492i 0.346022 0.397492i
\(289\) −0.508971 0.350591i −0.508971 0.350591i
\(290\) 0 0
\(291\) 1.71958 0.945344i 1.71958 0.945344i
\(292\) −1.46786 + 0.957618i −1.46786 + 0.957618i
\(293\) 0 0 −0.597905 0.801567i \(-0.704000\pi\)
0.597905 + 0.801567i \(0.296000\pi\)
\(294\) 1.16001 0.425882i 1.16001 0.425882i
\(295\) 0 0
\(296\) 0 0
\(297\) 0.482409 + 0.851960i 0.482409 + 0.851960i
\(298\) 0 0
\(299\) 0 0
\(300\) −1.03495 0.675190i −1.03495 0.675190i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0.0747860 1.98282i 0.0747860 1.98282i
\(305\) 0 0
\(306\) 0.319144 + 0.0650466i 0.319144 + 0.0650466i
\(307\) −1.77058 + 0.502358i −1.77058 + 0.502358i −0.992115 0.125333i \(-0.960000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.492727 0.870184i \(-0.336000\pi\)
−0.492727 + 0.870184i \(0.664000\pi\)
\(312\) 0 0
\(313\) 0.709225 + 1.85922i 0.709225 + 1.85922i 0.448383 + 0.893841i \(0.352000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.711536 0.702650i \(-0.752000\pi\)
0.711536 + 0.702650i \(0.248000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −0.386685 + 2.34594i −0.386685 + 2.34594i
\(322\) 0 0
\(323\) 1.08914 0.563593i 1.08914 0.563593i
\(324\) −1.22410 + 0.249492i −1.22410 + 0.249492i
\(325\) 0 0
\(326\) 0.244899 + 0.346139i 0.244899 + 0.346139i
\(327\) 0 0
\(328\) −1.49900 0.682504i −1.49900 0.682504i
\(329\) 0 0
\(330\) 0 0
\(331\) −0.884303 1.06894i −0.884303 1.06894i −0.997159 0.0753268i \(-0.976000\pi\)
0.112856 0.993611i \(-0.464000\pi\)
\(332\) −0.970244 0.172477i −0.970244 0.172477i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.800944 + 1.33510i 0.800944 + 1.33510i 0.938734 + 0.344643i \(0.112000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(338\) 0.577573 0.816339i 0.577573 0.816339i
\(339\) 1.34485 0.612317i 1.34485 0.612317i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.666550 0.805720i 0.666550 0.805720i
\(343\) 0 0
\(344\) 0.917174 + 0.702248i 0.917174 + 0.702248i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.203007 + 1.78732i 0.203007 + 1.78732i 0.535827 + 0.844328i \(0.320000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(348\) 0 0
\(349\) 0 0 0.379779 0.925077i \(-0.376000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.16191 + 1.20656i −1.16191 + 1.20656i
\(353\) 1.50441 1.09302i 1.50441 1.09302i 0.535827 0.844328i \(-0.320000\pi\)
0.968583 0.248690i \(-0.0800000\pi\)
\(354\) 0.809847 2.29457i 0.809847 2.29457i
\(355\) 0 0
\(356\) 0.656200 + 1.59839i 0.656200 + 1.59839i
\(357\) 0 0
\(358\) 0.811356 + 1.03253i 0.811356 + 1.03253i
\(359\) 0 0 0.514440 0.857527i \(-0.328000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(360\) 0 0
\(361\) 0.0369085 2.93693i 0.0369085 2.93693i
\(362\) 0 0
\(363\) 1.00056 + 1.99459i 1.00056 + 1.99459i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.556876 0.830596i \(-0.688000\pi\)
0.556876 + 0.830596i \(0.312000\pi\)
\(368\) 0 0
\(369\) −0.408574 0.765835i −0.408574 0.765835i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.888136 0.459580i \(-0.848000\pi\)
0.888136 + 0.459580i \(0.152000\pi\)
\(374\) −1.00272 0.257454i −1.00272 0.257454i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.315055 + 0.0808924i 0.315055 + 0.0808924i 0.402906 0.915241i \(-0.368000\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.556876 0.830596i \(-0.312000\pi\)
−0.556876 + 0.830596i \(0.688000\pi\)
\(384\) −0.581658 1.09026i −0.581658 1.09026i
\(385\) 0 0
\(386\) −0.772557 1.15229i −0.772557 1.15229i
\(387\) 0.158791 + 0.587690i 0.158791 + 0.587690i
\(388\) −0.218808 1.57283i −0.218808 1.57283i
\(389\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.0125660 0.999921i 0.0125660 0.999921i
\(393\) −0.634720 1.44183i −0.634720 1.44183i
\(394\) 0 0
\(395\) 0 0
\(396\) −0.872740 + 0.132613i −0.872740 + 0.132613i
\(397\) 0 0 −0.379779 0.925077i \(-0.624000\pi\)
0.379779 + 0.925077i \(0.376000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(401\) 1.05774 1.09839i 1.05774 1.09839i 0.0627905 0.998027i \(-0.480000\pi\)
0.994951 0.100362i \(-0.0320000\pi\)
\(402\) 1.07334 0.275586i 1.07334 0.275586i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0.409220 0.644827i 0.409220 0.644827i
\(409\) 1.55599 + 1.19137i 1.55599 + 1.19137i 0.899405 + 0.437116i \(0.144000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(410\) 0 0
\(411\) 0.0593754 0.0717725i 0.0593754 0.0717725i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.594867 + 1.55944i −0.594867 + 1.55944i
\(418\) −2.24460 + 2.45127i −2.24460 + 2.45127i
\(419\) 1.66770 + 1.02919i 1.66770 + 1.02919i 0.938734 + 0.344643i \(0.112000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(420\) 0 0
\(421\) 0 0 −0.984564 0.175023i \(-0.944000\pi\)
0.984564 + 0.175023i \(0.0560000\pi\)
\(422\) −1.26841 1.53325i −1.26841 1.53325i
\(423\) 0 0
\(424\) 0 0
\(425\) −0.562476 0.256098i −0.562476 0.256098i
\(426\) 0 0
\(427\) 0 0
\(428\) 1.66224 + 0.968999i 1.66224 + 0.968999i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.974527 0.224271i \(-0.0720000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(432\) −0.0950602 + 0.576711i −0.0950602 + 0.576711i
\(433\) 1.69755 + 0.933237i 1.69755 + 0.933237i 0.968583 + 0.248690i \(0.0800000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −0.922126 + 1.95962i −0.922126 + 1.95962i
\(439\) 0 0 −0.929776 0.368125i \(-0.880000\pi\)
0.929776 + 0.368125i \(0.120000\pi\)
\(440\) 0 0
\(441\) 0.325613 0.414376i 0.325613 0.414376i
\(442\) 0 0
\(443\) −1.54500 + 0.480623i −1.54500 + 0.480623i −0.947098 0.320944i \(-0.896000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.00850716 + 0.225552i −0.00850716 + 0.225552i 0.988652 + 0.150226i \(0.0480000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(450\) −0.526836 0.0132436i −0.526836 0.0132436i
\(451\) 1.17469 + 2.49635i 1.17469 + 2.49635i
\(452\) −0.0750855 1.19345i −0.0750855 1.19345i
\(453\) 0 0
\(454\) −1.06861 0.0807242i −1.06861 0.0807242i
\(455\) 0 0
\(456\) −1.20814 2.13365i −1.20814 2.13365i
\(457\) −0.370510 0.0562989i −0.370510 0.0562989i −0.0376902 0.999289i \(-0.512000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(458\) 0 0
\(459\) −0.339105 + 0.124498i −0.339105 + 0.124498i
\(460\) 0 0
\(461\) 0 0 0.837528 0.546394i \(-0.184000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(462\) 0 0
\(463\) 0 0 −0.332820 0.942991i \(-0.608000\pi\)
0.332820 + 0.942991i \(0.392000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.00716313 0.0240896i −0.00716313 0.0240896i
\(467\) 1.59771 + 0.586578i 1.59771 + 0.586578i 0.979855 0.199710i \(-0.0640000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −1.50135 1.27414i −1.50135 1.27414i
\(473\) −0.410220 1.89095i −0.410220 1.89095i
\(474\) 0 0
\(475\) −1.57546 + 1.20627i −1.57546 + 1.20627i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.947098 0.320944i \(-0.104000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.602291 1.85366i −0.602291 1.85366i
\(483\) 0 0
\(484\) 1.79670 0.181234i 1.79670 0.181234i
\(485\) 0 0
\(486\) −0.699267 + 0.656655i −0.699267 + 0.656655i
\(487\) 0 0 0.778462 0.627691i \(-0.216000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(488\) 0 0
\(489\) 0.482167 + 0.205065i 0.482167 + 0.205065i
\(490\) 0 0
\(491\) 0.0785458 0.564601i 0.0785458 0.564601i −0.910106 0.414376i \(-0.864000\pi\)
0.988652 0.150226i \(-0.0480000\pi\)
\(492\) −2.01926 + 0.255092i −2.01926 + 0.255092i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −1.13223 + 0.448282i −1.13223 + 0.448282i
\(499\) −1.33534 1.45829i −1.33534 1.45829i −0.778462 0.627691i \(-0.784000\pi\)
−0.556876 0.830596i \(-0.688000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.888136 + 0.459580i −0.888136 + 0.459580i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.0775915 1.23328i 0.0775915 1.23328i
\(508\) 0 0
\(509\) 0 0 0.285019 0.958522i \(-0.408000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.992115 + 0.125333i −0.992115 + 0.125333i
\(513\) −0.159805 + 1.14871i −0.159805 + 1.14871i
\(514\) −0.247859 0.120461i −0.247859 0.120461i
\(515\) 0 0
\(516\) 1.42023 + 0.143260i 1.42023 + 0.143260i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.934368 + 0.922700i −0.934368 + 0.922700i −0.997159 0.0753268i \(-0.976000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(522\) 0 0
\(523\) −0.683151 + 0.332015i −0.683151 + 0.332015i −0.745941 0.666012i \(-0.768000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(524\) −1.27324 + 0.0640539i −1.27324 + 0.0640539i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.438833 + 2.02285i −0.438833 + 2.02285i
\(529\) 0.793990 0.607930i 0.793990 0.607930i
\(530\) 0 0
\(531\) −0.220007 1.01415i −0.220007 1.01415i
\(532\) 0 0
\(533\) 0 0
\(534\) 1.72736 + 1.25500i 1.72736 + 1.25500i
\(535\) 0 0
\(536\) 0.101206 0.891037i 0.101206 0.891037i
\(537\) 1.52329 + 0.559256i 1.52329 + 0.559256i
\(538\) 0 0
\(539\) −1.09982 + 1.26341i −1.09982 + 1.26341i
\(540\) 0 0
\(541\) 0 0 −0.332820 0.942991i \(-0.608000\pi\)
0.332820 + 0.942991i \(0.392000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.369526 0.495396i −0.369526 0.495396i
\(545\) 0 0
\(546\) 0 0
\(547\) 1.95486 + 0.297042i 1.95486 + 0.297042i 1.00000 \(0\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(548\) −0.0371420 0.0655948i −0.0371420 0.0655948i
\(549\) 0 0
\(550\) 1.67030 + 0.126177i 1.67030 + 0.126177i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 1.00752 + 0.899559i 1.00752 + 0.899559i
\(557\) 0 0 −0.979855 0.199710i \(-0.936000\pi\)
0.979855 + 0.199710i \(0.0640000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −1.22153 + 0.379996i −1.22153 + 0.379996i
\(562\) −0.985143 + 1.73982i −0.985143 + 1.73982i
\(563\) 0.662131 0.842629i 0.662131 0.842629i −0.332820 0.942991i \(-0.608000\pi\)
0.994951 + 0.100362i \(0.0320000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.829867 1.76356i 0.829867 1.76356i
\(567\) 0 0
\(568\) 0 0
\(569\) 0.214529 + 0.172980i 0.214529 + 0.172980i 0.728969 0.684547i \(-0.240000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(570\) 0 0
\(571\) 1.75040 + 0.962290i 1.75040 + 0.962290i 0.899405 + 0.437116i \(0.144000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.455289 0.265410i −0.455289 0.265410i
\(577\) 0.187870 + 0.265534i 0.187870 + 0.265534i 0.899405 0.437116i \(-0.144000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(578\) −0.249010 + 0.565650i −0.249010 + 0.565650i
\(579\) −1.56021 0.710373i −1.56021 0.710373i
\(580\) 0 0
\(581\) 0 0
\(582\) −1.25082 1.51198i −1.25082 1.51198i
\(583\) 0 0
\(584\) 1.21571 + 1.26242i 1.21571 + 1.26242i
\(585\) 0 0
\(586\) 0 0
\(587\) −0.531725 + 1.39391i −0.531725 + 1.39391i 0.356412 + 0.934329i \(0.384000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(588\) −0.635703 1.05966i −0.635703 1.05966i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.22644 1.48251i 1.22644 1.48251i 0.402906 0.915241i \(-0.368000\pi\)
0.823533 0.567269i \(-0.192000\pi\)
\(594\) 0.746475 0.633505i 0.746475 0.633505i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.236499 0.971632i \(-0.424000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(600\) −0.469300 + 1.14314i −0.469300 + 1.14314i
\(601\) 0.829867 + 0.190980i 0.829867 + 0.190980i 0.617860 0.786288i \(-0.288000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(602\) 0 0
\(603\) 0.327819 0.340416i 0.327819 0.340416i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.379779 0.925077i \(-0.624000\pi\)
0.379779 + 0.925077i \(0.376000\pi\)
\(608\) −1.96171 + 0.298082i −1.96171 + 0.298082i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0.00409282 0.325679i 0.00409282 0.325679i
\(613\) 0 0 0.999684 0.0251301i \(-0.00800000\pi\)
−0.999684 + 0.0251301i \(0.992000\pi\)
\(614\) 0.825233 + 1.64508i 0.825233 + 1.64508i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.245558 0.908818i −0.245558 0.908818i −0.974527 0.224271i \(-0.928000\pi\)
0.728969 0.684547i \(-0.240000\pi\)
\(618\) 0 0
\(619\) −0.0118298 + 0.0221738i −0.0118298 + 0.0221738i −0.888136 0.459580i \(-0.848000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.968583 + 0.248690i 0.968583 + 0.248690i
\(626\) 1.69340 1.04505i 1.69340 1.04505i
\(627\) −0.769604 + 4.03441i −0.769604 + 4.03441i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.888136 0.459580i \(-0.848000\pi\)
0.888136 + 0.459580i \(0.152000\pi\)
\(632\) 0 0
\(633\) −2.32888 0.789188i −2.32888 0.789188i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.0563084 + 0.112250i 0.0563084 + 0.112250i 0.920232 0.391374i \(-0.128000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(642\) 2.37684 0.0597491i 2.37684 0.0597491i
\(643\) −0.0250607 + 1.99416i −0.0250607 + 1.99416i 0.0627905 + 0.998027i \(0.480000\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.757694 0.964242i −0.757694 0.964242i
\(647\) 0 0 0.988652 0.150226i \(-0.0480000\pi\)
−0.988652 + 0.150226i \(0.952000\pi\)
\(648\) 0.474447 + 1.15567i 0.474447 + 1.15567i
\(649\) 0.536443 + 3.25449i 0.536443 + 3.25449i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.294119 0.305421i 0.294119 0.305421i
\(653\) 0 0 0.968583 0.248690i \(-0.0800000\pi\)
−0.968583 + 0.248690i \(0.920000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.389529 + 1.60034i −0.389529 + 1.60034i
\(657\) 0.104238 + 0.917730i 0.104238 + 0.917730i
\(658\) 0 0
\(659\) −0.683098 + 1.07639i −0.683098 + 1.07639i 0.309017 + 0.951057i \(0.400000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(660\) 0 0
\(661\) 0 0 0.762443 0.647056i \(-0.224000\pi\)
−0.762443 + 0.647056i \(0.776000\pi\)
\(662\) −0.884303 + 1.06894i −0.884303 + 1.06894i
\(663\) 0 0
\(664\) 0.0123833 + 0.985377i 0.0123833 + 0.985377i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.513644 0.620889i −0.513644 0.620889i 0.448383 0.893841i \(-0.352000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(674\) 1.16137 1.03693i 1.16137 1.03693i
\(675\) 0.504957 0.294364i 0.504957 0.294364i
\(676\) −0.910106 0.414376i −0.910106 0.414376i
\(677\) 0 0 0.402906 0.915241i \(-0.368000\pi\)
−0.402906 + 0.915241i \(0.632000\pi\)
\(678\) −0.853471 1.20629i −0.853471 1.20629i
\(679\) 0 0
\(680\) 0 0
\(681\) −1.17613 + 0.608605i −1.17613 + 0.608605i
\(682\) 0 0
\(683\) 0.115932 0.703333i 0.115932 0.703333i −0.863923 0.503623i \(-0.832000\pi\)
0.979855 0.199710i \(-0.0640000\pi\)
\(684\) −0.916348 0.503766i −0.916348 0.503766i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0.517948 1.03252i 0.517948 1.03252i
\(689\) 0 0
\(690\) 0 0
\(691\) −0.237242 0.621926i −0.237242 0.621926i 0.762443 0.647056i \(-0.224000\pi\)
−0.999684 + 0.0251301i \(0.992000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 1.71762 0.534322i 1.71762 0.534322i
\(695\) 0 0
\(696\) 0 0
\(697\) −0.979289 + 0.277849i −0.979289 + 0.277849i
\(698\) 0 0
\(699\) −0.0231661 0.0206838i −0.0231661 0.0206838i
\(700\) 0 0
\(701\) 0 0 −0.999684 0.0251301i \(-0.992000\pi\)
0.999684 + 0.0251301i \(0.00800000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.40291 + 0.915241i 1.40291 + 0.915241i
\(705\) 0 0
\(706\) −1.35556 1.27295i −1.35556 1.27295i
\(707\) 0 0
\(708\) −2.40568 0.365542i −2.40568 0.365542i
\(709\) 0 0 −0.236499 0.971632i \(-0.576000\pi\)
0.236499 + 0.971632i \(0.424000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.44712 0.944086i 1.44712 0.944086i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.862210 0.990461i 0.862210 0.990461i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.112856 0.993611i \(-0.464000\pi\)
−0.112856 + 0.993611i \(0.536000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −2.89183 + 0.514072i −2.89183 + 0.514072i
\(723\) −1.83633 1.55842i −1.83633 1.55842i
\(724\) 0 0
\(725\) 0 0
\(726\) 1.77177 1.35658i 1.77177 1.35658i
\(727\) 0 0 0.212007 0.977268i \(-0.432000\pi\)
−0.212007 + 0.977268i \(0.568000\pi\)
\(728\) 0 0
\(729\) 0.0166679 0.0616885i 0.0166679 0.0616885i
\(730\) 0 0
\(731\) 0.713017 0.0358704i 0.713017 0.0358704i
\(732\) 0 0
\(733\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.09501 + 1.02828i −1.09501 + 1.02828i
\(738\) −0.675710 + 0.544840i −0.675710 + 0.544840i
\(739\) 0.709225 + 0.0715402i 0.709225 + 0.0715402i 0.448383 0.893841i \(-0.352000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.992115 0.125333i \(-0.0400000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.310514 + 0.416283i −0.310514 + 0.416283i
\(748\) −0.0650034 + 1.03320i −0.0650034 + 1.03320i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.187381 0.982287i \(-0.560000\pi\)
0.187381 + 0.982287i \(0.440000\pi\)
\(752\) 0 0
\(753\) −0.635703 + 1.05966i −0.635703 + 1.05966i
\(754\) 0 0
\(755\) 0