Properties

Label 2008.1.bd.a.403.1
Level 2008
Weight 1
Character 2008.403
Analytic conductor 1.002
Analytic rank 0
Dimension 100
Projective image \(D_{125}\)
CM discriminant -8
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2008 = 2^{3} \cdot 251 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2008.bd (of order \(250\), degree \(100\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00212254537\)
Analytic rank: \(0\)
Dimension: \(100\)
Coefficient field: \(\Q(\zeta_{250})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{125}\)
Projective field Galois closure of \(\mathbb{Q}[x]/(x^{125} - \cdots)\)

Embedding invariants

Embedding label 403.1
Root \(0.962028 - 0.272952i\) of \(x^{100} - x^{75} + x^{50} - x^{25} + 1\)
Character \(\chi\) \(=\) 2008.403
Dual form 2008.1.bd.a.1435.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.968583 - 0.248690i) q^{2} +(-0.253214 + 1.53620i) q^{3} +(0.876307 - 0.481754i) q^{4} +(0.136778 + 1.55090i) q^{6} +(0.728969 - 0.684547i) q^{8} +(-1.34868 - 0.457028i) q^{9} +O(q^{10})\) \(q+(0.968583 - 0.248690i) q^{2} +(-0.253214 + 1.53620i) q^{3} +(0.876307 - 0.481754i) q^{4} +(0.136778 + 1.55090i) q^{6} +(0.728969 - 0.684547i) q^{8} +(-1.34868 - 0.457028i) q^{9} +(-0.535114 + 1.79959i) q^{11} +(0.518175 + 1.46817i) q^{12} +(0.535827 - 0.844328i) q^{16} +(1.57682 - 0.362878i) q^{17} +(-1.41997 - 0.107266i) q^{18} +(-1.24917 + 0.254600i) q^{19} +(-0.0707621 + 1.87613i) q^{22} +(0.867013 + 1.29318i) q^{24} +(-0.637424 + 0.770513i) q^{25} +(0.310739 - 0.582452i) q^{27} +(0.309017 - 0.951057i) q^{32} +(-2.62903 - 1.27772i) q^{33} +(1.43703 - 0.743616i) q^{34} +(-1.40203 + 0.249235i) q^{36} +(-1.14660 + 0.557256i) q^{38} +(1.68860 - 0.619947i) q^{41} +(0.342530 - 1.26771i) q^{43} +(0.398037 + 1.83479i) q^{44} +(1.16137 + 1.03693i) q^{48} +(0.938734 + 0.344643i) q^{49} +(-0.425779 + 0.904827i) q^{50} +(0.158179 + 2.51419i) q^{51} +(0.156127 - 0.641431i) q^{54} +(-0.0748091 - 1.98343i) q^{57} +(-1.54753 - 0.356138i) q^{59} +(0.0627905 - 0.998027i) q^{64} +(-2.86419 - 0.583767i) q^{66} +(1.29938 + 0.368667i) q^{67} +(1.20696 - 1.07763i) q^{68} +(-1.29600 + 0.590077i) q^{72} +(-1.83845 - 0.279352i) q^{73} +(-1.02225 - 1.17431i) q^{75} +(-0.971998 + 0.824898i) q^{76} +(-0.314577 - 0.240861i) q^{81} +(1.48138 - 1.02041i) q^{82} +(-0.573365 - 1.30245i) q^{83} +(0.0165014 - 1.31307i) q^{86} +(0.841825 + 1.67816i) q^{88} +(-0.698970 - 0.297271i) q^{89} +(1.38276 + 0.715531i) q^{96} +(-0.199585 + 0.920008i) q^{97} +(0.994951 + 0.100362i) q^{98} +(1.54416 - 2.18252i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100q + O(q^{10}) \) \( 100q - 25q^{22} - 25q^{32} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2008\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(503\) \(1005\)
\(\chi(n)\) \(e\left(\frac{59}{125}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.968583 0.248690i 0.968583 0.248690i
\(3\) −0.253214 + 1.53620i −0.253214 + 1.53620i 0.492727 + 0.870184i \(0.336000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(4\) 0.876307 0.481754i 0.876307 0.481754i
\(5\) 0 0 −0.425779 0.904827i \(-0.640000\pi\)
0.425779 + 0.904827i \(0.360000\pi\)
\(6\) 0.136778 + 1.55090i 0.136778 + 1.55090i
\(7\) 0 0 −0.984564 0.175023i \(-0.944000\pi\)
0.984564 + 0.175023i \(0.0560000\pi\)
\(8\) 0.728969 0.684547i 0.728969 0.684547i
\(9\) −1.34868 0.457028i −1.34868 0.457028i
\(10\) 0 0
\(11\) −0.535114 + 1.79959i −0.535114 + 1.79959i 0.0627905 + 0.998027i \(0.480000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(12\) 0.518175 + 1.46817i 0.518175 + 1.46817i
\(13\) 0 0 0.954865 0.297042i \(-0.0960000\pi\)
−0.954865 + 0.297042i \(0.904000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.535827 0.844328i 0.535827 0.844328i
\(17\) 1.57682 0.362878i 1.57682 0.362878i 0.656586 0.754251i \(-0.272000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(18\) −1.41997 0.107266i −1.41997 0.107266i
\(19\) −1.24917 + 0.254600i −1.24917 + 0.254600i −0.778462 0.627691i \(-0.784000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.0707621 + 1.87613i −0.0707621 + 1.87613i
\(23\) 0 0 −0.514440 0.857527i \(-0.672000\pi\)
0.514440 + 0.857527i \(0.328000\pi\)
\(24\) 0.867013 + 1.29318i 0.867013 + 1.29318i
\(25\) −0.637424 + 0.770513i −0.637424 + 0.770513i
\(26\) 0 0
\(27\) 0.310739 0.582452i 0.310739 0.582452i
\(28\) 0 0
\(29\) 0 0 −0.850994 0.525175i \(-0.824000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(30\) 0 0
\(31\) 0 0 0.793990 0.607930i \(-0.208000\pi\)
−0.793990 + 0.607930i \(0.792000\pi\)
\(32\) 0.309017 0.951057i 0.309017 0.951057i
\(33\) −2.62903 1.27772i −2.62903 1.27772i
\(34\) 1.43703 0.743616i 1.43703 0.743616i
\(35\) 0 0
\(36\) −1.40203 + 0.249235i −1.40203 + 0.249235i
\(37\) 0 0 0.597905 0.801567i \(-0.296000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(38\) −1.14660 + 0.557256i −1.14660 + 0.557256i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.68860 0.619947i 1.68860 0.619947i 0.693653 0.720309i \(-0.256000\pi\)
0.994951 + 0.100362i \(0.0320000\pi\)
\(42\) 0 0
\(43\) 0.342530 1.26771i 0.342530 1.26771i −0.556876 0.830596i \(-0.688000\pi\)
0.899405 0.437116i \(-0.144000\pi\)
\(44\) 0.398037 + 1.83479i 0.398037 + 1.83479i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.535827 0.844328i \(-0.680000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(48\) 1.16137 + 1.03693i 1.16137 + 1.03693i
\(49\) 0.938734 + 0.344643i 0.938734 + 0.344643i
\(50\) −0.425779 + 0.904827i −0.425779 + 0.904827i
\(51\) 0.158179 + 2.51419i 0.158179 + 2.51419i
\(52\) 0 0
\(53\) 0 0 0.356412 0.934329i \(-0.384000\pi\)
−0.356412 + 0.934329i \(0.616000\pi\)
\(54\) 0.156127 0.641431i 0.156127 0.641431i
\(55\) 0 0
\(56\) 0 0
\(57\) −0.0748091 1.98343i −0.0748091 1.98343i
\(58\) 0 0
\(59\) −1.54753 0.356138i −1.54753 0.356138i −0.637424 0.770513i \(-0.720000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.778462 0.627691i \(-0.784000\pi\)
0.778462 + 0.627691i \(0.216000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.0627905 0.998027i 0.0627905 0.998027i
\(65\) 0 0
\(66\) −2.86419 0.583767i −2.86419 0.583767i
\(67\) 1.29938 + 0.368667i 1.29938 + 0.368667i 0.850994 0.525175i \(-0.176000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(68\) 1.20696 1.07763i 1.20696 1.07763i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.577573 0.816339i \(-0.696000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(72\) −1.29600 + 0.590077i −1.29600 + 0.590077i
\(73\) −1.83845 0.279352i −1.83845 0.279352i −0.863923 0.503623i \(-0.832000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(74\) 0 0
\(75\) −1.02225 1.17431i −1.02225 1.17431i
\(76\) −0.971998 + 0.824898i −0.971998 + 0.824898i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.236499 0.971632i \(-0.576000\pi\)
0.236499 + 0.971632i \(0.424000\pi\)
\(80\) 0 0
\(81\) −0.314577 0.240861i −0.314577 0.240861i
\(82\) 1.48138 1.02041i 1.48138 1.02041i
\(83\) −0.573365 1.30245i −0.573365 1.30245i −0.929776 0.368125i \(-0.880000\pi\)
0.356412 0.934329i \(-0.384000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.0165014 1.31307i 0.0165014 1.31307i
\(87\) 0 0
\(88\) 0.841825 + 1.67816i 0.841825 + 1.67816i
\(89\) −0.698970 0.297271i −0.698970 0.297271i 0.0125660 0.999921i \(-0.496000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 1.38276 + 0.715531i 1.38276 + 0.715531i
\(97\) −0.199585 + 0.920008i −0.199585 + 0.920008i 0.762443 + 0.647056i \(0.224000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(98\) 0.994951 + 0.100362i 0.994951 + 0.100362i
\(99\) 1.54416 2.18252i 1.54416 2.18252i
\(100\) −0.187381 + 0.982287i −0.187381 + 0.982287i
\(101\) 0 0 −0.823533 0.567269i \(-0.808000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(102\) 0.778462 + 2.39586i 0.778462 + 2.39586i
\(103\) 0 0 0.137790 0.990461i \(-0.456000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.30397 1.05142i 1.30397 1.05142i 0.309017 0.951057i \(-0.400000\pi\)
0.994951 0.100362i \(-0.0320000\pi\)
\(108\) −0.00829557 0.660106i −0.00829557 0.660106i
\(109\) 0 0 −0.762443 0.647056i \(-0.776000\pi\)
0.762443 + 0.647056i \(0.224000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.142146 0.103275i 0.142146 0.103275i −0.514440 0.857527i \(-0.672000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(114\) −0.565718 1.90251i −0.565718 1.90251i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.58748 + 0.0399061i −1.58748 + 0.0399061i
\(119\) 0 0
\(120\) 0 0
\(121\) −2.11466 1.37958i −2.11466 1.37958i
\(122\) 0 0
\(123\) 0.524782 + 2.75101i 0.524782 + 2.75101i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.402906 0.915241i \(-0.368000\pi\)
−0.402906 + 0.915241i \(0.632000\pi\)
\(128\) −0.187381 0.982287i −0.187381 0.982287i
\(129\) 1.86072 + 0.847195i 1.86072 + 0.847195i
\(130\) 0 0
\(131\) 1.02077 1.70153i 1.02077 1.70153i 0.402906 0.915241i \(-0.368000\pi\)
0.617860 0.786288i \(-0.288000\pi\)
\(132\) −2.91938 + 0.146868i −2.91938 + 0.146868i
\(133\) 0 0
\(134\) 1.35024 + 0.0339424i 1.35024 + 0.0339424i
\(135\) 0 0
\(136\) 0.901044 1.34393i 0.901044 1.34393i
\(137\) −0.203169 0.683257i −0.203169 0.683257i −0.997159 0.0753268i \(-0.976000\pi\)
0.793990 0.607930i \(-0.208000\pi\)
\(138\) 0 0
\(139\) −0.219668 + 0.239894i −0.219668 + 0.239894i −0.837528 0.546394i \(-0.816000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −1.10854 + 0.893841i −1.10854 + 0.893841i
\(145\) 0 0
\(146\) −1.85016 + 0.186628i −1.85016 + 0.186628i
\(147\) −0.767139 + 1.35481i −0.767139 + 1.35481i
\(148\) 0 0
\(149\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(150\) −1.28218 0.883195i −1.28218 0.883195i
\(151\) 0 0 0.187381 0.982287i \(-0.440000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(152\) −0.736317 + 1.04071i −0.736317 + 1.04071i
\(153\) −2.29247 0.231244i −2.29247 0.231244i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.728969 0.684547i \(-0.760000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −0.364594 0.155061i −0.364594 0.155061i
\(163\) 0.763143 + 1.52131i 0.763143 + 1.52131i 0.850994 + 0.525175i \(0.176000\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(164\) 1.18107 1.35676i 1.18107 1.35676i
\(165\) 0 0
\(166\) −0.879258 1.11894i −0.879258 1.11894i
\(167\) 0 0 −0.162637 0.986686i \(-0.552000\pi\)
0.162637 + 0.986686i \(0.448000\pi\)
\(168\) 0 0
\(169\) 0.823533 0.567269i 0.823533 0.567269i
\(170\) 0 0
\(171\) 1.80109 + 0.227530i 1.80109 + 0.227530i
\(172\) −0.310564 1.27592i −0.310564 1.27592i
\(173\) 0 0 −0.379779 0.925077i \(-0.624000\pi\)
0.379779 + 0.925077i \(0.376000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.23272 + 1.41608i 1.23272 + 1.41608i
\(177\) 0.938953 2.28713i 0.938953 2.28713i
\(178\) −0.750939 0.114105i −0.750939 0.114105i
\(179\) 1.08831 0.495514i 1.08831 0.495514i 0.212007 0.977268i \(-0.432000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(180\) 0 0
\(181\) 0 0 −0.492727 0.870184i \(-0.664000\pi\)
0.492727 + 0.870184i \(0.336000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.190745 + 3.03181i −0.190745 + 3.03181i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.711536 0.702650i \(-0.248000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(192\) 1.51726 + 0.349173i 1.51726 + 0.349173i
\(193\) 1.57272 + 0.489247i 1.57272 + 0.489247i 0.954865 0.297042i \(-0.0960000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(194\) 0.0354818 + 0.940739i 0.0354818 + 0.940739i
\(195\) 0 0
\(196\) 0.988652 0.150226i 0.988652 0.150226i
\(197\) 0 0 0.236499 0.971632i \(-0.424000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(198\) 0.952882 2.49797i 0.952882 2.49797i
\(199\) 0 0 0.693653 0.720309i \(-0.256000\pi\)
−0.693653 + 0.720309i \(0.744000\pi\)
\(200\) 0.0627905 + 0.998027i 0.0627905 + 0.998027i
\(201\) −0.895365 + 1.90275i −0.895365 + 1.90275i
\(202\) 0 0
\(203\) 0 0
\(204\) 1.34983 + 2.12699i 1.34983 + 2.12699i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.210271 2.38423i 0.210271 2.38423i
\(210\) 0 0
\(211\) 1.85427 + 0.734157i 1.85427 + 0.734157i 0.954865 + 0.297042i \(0.0960000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.00152 1.34267i 1.00152 1.34267i
\(215\) 0 0
\(216\) −0.172197 0.637305i −0.172197 0.637305i
\(217\) 0 0
\(218\) 0 0
\(219\) 0.894661 2.75348i 0.894661 2.75348i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.947098 0.320944i \(-0.104000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(224\) 0 0
\(225\) 1.21183 0.747856i 1.21183 0.747856i
\(226\) 0.111997 0.135381i 0.111997 0.135381i
\(227\) −0.811890 1.21096i −0.811890 1.21096i −0.974527 0.224271i \(-0.928000\pi\)
0.162637 0.986686i \(-0.448000\pi\)
\(228\) −1.02108 1.70206i −1.02108 1.70206i
\(229\) 0 0 0.0376902 0.999289i \(-0.488000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.83523 0.138636i −1.83523 0.138636i −0.888136 0.459580i \(-0.848000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1.52768 + 0.433442i −1.52768 + 0.433442i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.332820 0.942991i \(-0.608000\pi\)
0.332820 + 0.942991i \(0.392000\pi\)
\(240\) 0 0
\(241\) −0.736317 0.890055i −0.736317 0.890055i 0.260842 0.965382i \(-0.416000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(242\) −2.39131 0.810346i −2.39131 0.810346i
\(243\) 0.930899 0.874172i 0.930899 0.874172i
\(244\) 0 0
\(245\) 0 0
\(246\) 1.19244 + 2.53407i 1.19244 + 2.53407i
\(247\) 0 0
\(248\) 0 0
\(249\) 2.14601 0.551001i 2.14601 0.551001i
\(250\) 0 0
\(251\) −0.984564 + 0.175023i −0.984564 + 0.175023i
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.425779 0.904827i −0.425779 0.904827i
\(257\) 0.0500786 + 0.567835i 0.0500786 + 0.567835i 0.979855 + 0.199710i \(0.0640000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(258\) 2.01295 + 0.357836i 2.01295 + 0.357836i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.565544 1.90193i 0.565544 1.90193i
\(263\) 0 0 −0.332820 0.942991i \(-0.608000\pi\)
0.332820 + 0.942991i \(0.392000\pi\)
\(264\) −2.79114 + 0.868275i −2.79114 + 0.868275i
\(265\) 0 0
\(266\) 0 0
\(267\) 0.633655 0.998481i 0.633655 0.998481i
\(268\) 1.31626 0.302915i 1.31626 0.302915i
\(269\) 0 0 −0.997159 0.0753268i \(-0.976000\pi\)
0.997159 + 0.0753268i \(0.0240000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(272\) 0.538513 1.52579i 0.538513 1.52579i
\(273\) 0 0
\(274\) −0.366705 0.611265i −0.366705 0.611265i
\(275\) −1.04552 1.55942i −1.04552 1.55942i
\(276\) 0 0
\(277\) 0 0 0.850994 0.525175i \(-0.176000\pi\)
−0.850994 + 0.525175i \(0.824000\pi\)
\(278\) −0.153108 + 0.286987i −0.153108 + 0.286987i
\(279\) 0 0
\(280\) 0 0
\(281\) −1.19853 + 0.698680i −1.19853 + 0.698680i −0.962028 0.272952i \(-0.912000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(282\) 0 0
\(283\) 0.356960 1.09861i 0.356960 1.09861i −0.597905 0.801567i \(-0.704000\pi\)
0.954865 0.297042i \(-0.0960000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.851425 + 1.14144i −0.851425 + 1.14144i
\(289\) 1.45527 0.707268i 1.45527 0.707268i
\(290\) 0 0
\(291\) −1.36277 0.539561i −1.36277 0.539561i
\(292\) −1.74563 + 0.640882i −1.74563 + 0.640882i
\(293\) 0 0 0.0878512 0.996134i \(-0.472000\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(294\) −0.406111 + 1.50303i −0.406111 + 1.50303i
\(295\) 0 0
\(296\) 0 0
\(297\) 0.881896 + 0.870882i 0.881896 + 0.870882i
\(298\) 0 0
\(299\) 0 0
\(300\) −1.46154 0.536583i −1.46154 0.536583i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −0.454371 + 1.19113i −0.454371 + 1.19113i
\(305\) 0 0
\(306\) −2.27796 + 0.346135i −2.27796 + 0.346135i
\(307\) −1.59945 + 1.04347i −1.59945 + 1.04347i −0.637424 + 0.770513i \(0.720000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.711536 0.702650i \(-0.248000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(312\) 0 0
\(313\) −1.23221 + 1.56811i −1.23221 + 1.56811i −0.556876 + 0.830596i \(0.688000\pi\)
−0.675333 + 0.737513i \(0.736000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.979855 0.199710i \(-0.936000\pi\)
0.979855 + 0.199710i \(0.0640000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 1.28500 + 2.26938i 1.28500 + 2.26938i
\(322\) 0 0
\(323\) −1.87732 + 0.854752i −1.87732 + 0.854752i
\(324\) −0.391702 0.0595190i −0.391702 0.0595190i
\(325\) 0 0
\(326\) 1.11750 + 1.28373i 1.11750 + 1.28373i
\(327\) 0 0
\(328\) 0.806556 1.60785i 0.806556 1.60785i
\(329\) 0 0
\(330\) 0 0
\(331\) −1.63408 0.206432i −1.63408 0.206432i −0.745941 0.666012i \(-0.768000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(332\) −1.12990 0.865128i −1.12990 0.865128i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.0241778 + 1.92390i −0.0241778 + 1.92390i 0.260842 + 0.965382i \(0.416000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(338\) 0.656586 0.754251i 0.656586 0.754251i
\(339\) 0.122658 + 0.244515i 0.122658 + 0.244515i
\(340\) 0 0
\(341\) 0 0
\(342\) 1.80109 0.227530i 1.80109 0.227530i
\(343\) 0 0
\(344\) −0.618115 1.15860i −0.618115 1.15860i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.591178 + 0.305914i 0.591178 + 0.305914i 0.728969 0.684547i \(-0.240000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.994951 0.100362i \(-0.968000\pi\)
0.994951 + 0.100362i \(0.0320000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.54616 + 1.06503i 1.54616 + 1.06503i
\(353\) 0.541587 + 1.66683i 0.541587 + 1.66683i 0.728969 + 0.684547i \(0.240000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(354\) 0.340668 2.44878i 0.340668 2.44878i
\(355\) 0 0
\(356\) −0.755723 + 0.0762306i −0.755723 + 0.0762306i
\(357\) 0 0
\(358\) 0.930893 0.750600i 0.930893 0.750600i
\(359\) 0 0 −0.0125660 0.999921i \(-0.504000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(360\) 0 0
\(361\) 0.575363 0.244701i 0.575363 0.244701i
\(362\) 0 0
\(363\) 2.65477 2.89921i 2.65477 2.89921i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.998737 0.0502443i \(-0.984000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(368\) 0 0
\(369\) −2.56072 + 0.0643715i −2.56072 + 0.0643715i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.910106 0.414376i \(-0.864000\pi\)
0.910106 + 0.414376i \(0.136000\pi\)
\(374\) 0.569228 + 2.98400i 0.569228 + 2.98400i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.184656 0.968000i −0.184656 0.968000i −0.947098 0.320944i \(-0.896000\pi\)
0.762443 0.647056i \(-0.224000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.998737 0.0502443i \(-0.0160000\pi\)
−0.998737 + 0.0502443i \(0.984000\pi\)
\(384\) 1.55643 0.0391257i 1.55643 0.0391257i
\(385\) 0 0
\(386\) 1.64498 + 0.0827557i 1.64498 + 0.0827557i
\(387\) −1.04134 + 1.55319i −1.04134 + 1.55319i
\(388\) 0.268319 + 0.902360i 0.268319 + 0.902360i
\(389\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.920232 0.391374i 0.920232 0.391374i
\(393\) 2.35541 + 1.99895i 2.35541 + 1.99895i
\(394\) 0 0
\(395\) 0 0
\(396\) 0.301726 2.65646i 0.301726 2.65646i
\(397\) 0 0 0.994951 0.100362i \(-0.0320000\pi\)
−0.994951 + 0.100362i \(0.968000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(401\) −1.42294 0.980154i −1.42294 0.980154i −0.997159 0.0753268i \(-0.976000\pi\)
−0.425779 0.904827i \(-0.640000\pi\)
\(402\) −0.394041 + 2.06564i −0.394041 + 2.06564i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 1.83639 + 1.72448i 1.83639 + 1.72448i
\(409\) −0.930725 1.74456i −0.930725 1.74456i −0.597905 0.801567i \(-0.704000\pi\)
−0.332820 0.942991i \(-0.608000\pi\)
\(410\) 0 0
\(411\) 1.10106 0.139096i 1.10106 0.139096i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.312901 0.398198i −0.312901 0.398198i
\(418\) −0.389270 2.36162i −0.389270 2.36162i
\(419\) 0.796668 + 1.80971i 0.796668 + 1.80971i 0.535827 + 0.844328i \(0.320000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(420\) 0 0
\(421\) 0 0 −0.793990 0.607930i \(-0.792000\pi\)
0.793990 + 0.607930i \(0.208000\pi\)
\(422\) 1.97859 + 0.249954i 1.97859 + 0.249954i
\(423\) 0 0
\(424\) 0 0
\(425\) −0.725499 + 1.44627i −0.725499 + 1.44627i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.636151 1.54956i 0.636151 1.54956i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.577573 0.816339i \(-0.696000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(432\) −0.325278 0.574459i −0.325278 0.574459i
\(433\) 0.348445 0.137959i 0.348445 0.137959i −0.187381 0.982287i \(-0.560000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0.181790 2.88947i 0.181790 2.88947i
\(439\) 0 0 −0.876307 0.481754i \(-0.840000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(440\) 0 0
\(441\) −1.10854 0.893841i −1.10854 0.893841i
\(442\) 0 0
\(443\) −0.602291 0.138607i −0.602291 0.138607i −0.0878512 0.996134i \(-0.528000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.633085 + 1.65962i −0.633085 + 1.65962i 0.112856 + 0.993611i \(0.464000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(450\) 0.987772 1.02573i 0.987772 1.02573i
\(451\) 0.212057 + 3.37054i 0.212057 + 3.37054i
\(452\) 0.0748104 0.158980i 0.0748104 0.158980i
\(453\) 0 0
\(454\) −1.08754 0.971004i −1.08754 0.971004i
\(455\) 0 0
\(456\) −1.41229 1.39465i −1.41229 1.39465i
\(457\) 0.218622 + 1.92479i 0.218622 + 1.92479i 0.356412 + 0.934329i \(0.384000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(458\) 0 0
\(459\) 0.278620 1.03118i 0.278620 1.03118i
\(460\) 0 0
\(461\) 0 0 0.938734 0.344643i \(-0.112000\pi\)
−0.938734 + 0.344643i \(0.888000\pi\)
\(462\) 0 0
\(463\) 0 0 −0.137790 0.990461i \(-0.544000\pi\)
0.137790 + 0.990461i \(0.456000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −1.81205 + 0.322124i −1.81205 + 0.322124i
\(467\) 0.210189 + 0.777917i 0.210189 + 0.777917i 0.988652 + 0.150226i \(0.0480000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −1.37189 + 0.799744i −1.37189 + 0.799744i
\(473\) 2.09807 + 1.29479i 2.09807 + 1.29479i
\(474\) 0 0
\(475\) 0.600076 1.12479i 0.600076 1.12479i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.514440 0.857527i \(-0.672000\pi\)
0.514440 + 0.857527i \(0.328000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.934532 0.678977i −0.934532 0.678977i
\(483\) 0 0
\(484\) −2.51771 0.190192i −2.51771 0.190192i
\(485\) 0 0
\(486\) 0.684255 1.07821i 0.684255 1.07821i
\(487\) 0 0 0.962028 0.272952i \(-0.0880000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(488\) 0 0
\(489\) −2.53027 + 0.787121i −2.53027 + 0.787121i
\(490\) 0 0
\(491\) 0.561240 1.88745i 0.561240 1.88745i 0.112856 0.993611i \(-0.464000\pi\)
0.448383 0.893841i \(-0.352000\pi\)
\(492\) 1.78518 + 2.15791i 1.78518 + 2.15791i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 1.94156 1.06738i 1.94156 1.06738i
\(499\) 0.0367093 0.222708i 0.0367093 0.222708i −0.962028 0.272952i \(-0.912000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.910106 + 0.414376i −0.910106 + 0.414376i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.662906 + 1.40875i 0.662906 + 1.40875i
\(508\) 0 0
\(509\) 0 0 −0.984564 0.175023i \(-0.944000\pi\)
0.984564 + 0.175023i \(0.0560000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.637424 0.770513i −0.637424 0.770513i
\(513\) −0.239873 + 0.806693i −0.239873 + 0.806693i
\(514\) 0.189720 + 0.537541i 0.189720 + 0.537541i
\(515\) 0 0
\(516\) 2.03870 0.154006i 2.03870 0.154006i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.17172 + 0.238815i −1.17172 + 0.238815i −0.745941 0.666012i \(-0.768000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(522\) 0 0
\(523\) −0.662278 + 1.87646i −0.662278 + 1.87646i −0.236499 + 0.971632i \(0.576000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(524\) 0.0747860 1.98282i 0.0747860 1.98282i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −2.48752 + 1.53513i −2.48752 + 1.53513i
\(529\) −0.470704 + 0.882291i −0.470704 + 0.882291i
\(530\) 0 0
\(531\) 1.92436 + 1.18758i 1.92436 + 1.18758i
\(532\) 0 0
\(533\) 0 0
\(534\) 0.365436 1.12470i 0.365436 1.12470i
\(535\) 0 0
\(536\) 1.19958 0.620739i 1.19958 0.620739i
\(537\) 0.485631 + 1.79733i 0.485631 + 1.79733i
\(538\) 0 0
\(539\) −1.12255 + 1.50492i −1.12255 + 1.50492i
\(540\) 0 0
\(541\) 0 0 −0.137790 0.990461i \(-0.544000\pi\)
0.137790 + 0.990461i \(0.456000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.142146 1.61178i 0.142146 1.61178i
\(545\) 0 0
\(546\) 0 0
\(547\) 0.0254731 + 0.224271i 0.0254731 + 0.224271i 1.00000 \(0\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(548\) −0.507200 0.500866i −0.507200 0.500866i
\(549\) 0 0
\(550\) −1.40048 1.25042i −1.40048 1.25042i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −0.0769271 + 0.316047i −0.0769271 + 0.316047i
\(557\) 0 0 0.988652 0.150226i \(-0.0480000\pi\)
−0.988652 + 0.150226i \(0.952000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −4.60916 1.06072i −4.60916 1.06072i
\(562\) −0.987118 + 0.974791i −0.987118 + 0.974791i
\(563\) −1.13495 0.915135i −1.13495 0.915135i −0.137790 0.990461i \(-0.544000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.0725322 1.15287i 0.0725322 1.15287i
\(567\) 0 0
\(568\) 0 0
\(569\) 0.548393 + 0.155593i 0.548393 + 0.155593i 0.535827 0.844328i \(-0.320000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(570\) 0 0
\(571\) 0.0700869 0.0277494i 0.0700869 0.0277494i −0.332820 0.942991i \(-0.608000\pi\)
0.402906 + 0.915241i \(0.368000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.540811 + 1.31732i −0.540811 + 1.31732i
\(577\) 0.647036 + 0.743281i 0.647036 + 0.743281i 0.979855 0.199710i \(-0.0640000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(578\) 1.23366 1.04696i 1.23366 1.04696i
\(579\) −1.14981 + 2.29213i −1.14981 + 2.29213i
\(580\) 0 0
\(581\) 0 0
\(582\) −1.45414 0.183701i −1.45414 0.183701i
\(583\) 0 0
\(584\) −1.53140 + 1.05487i −1.53140 + 1.05487i
\(585\) 0 0
\(586\) 0 0
\(587\) −0.292246 0.371913i −0.292246 0.371913i 0.617860 0.786288i \(-0.288000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(588\) −0.0195644 + 1.55680i −0.0195644 + 1.55680i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.66185 0.209940i 1.66185 0.209940i 0.762443 0.647056i \(-0.224000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(594\) 1.07077 + 0.624204i 1.07077 + 0.624204i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.212007 0.977268i \(-0.432000\pi\)
−0.212007 + 0.977268i \(0.568000\pi\)
\(600\) −1.54906 0.156256i −1.54906 0.156256i
\(601\) 0.0725322 0.102517i 0.0725322 0.102517i −0.778462 0.627691i \(-0.784000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(602\) 0 0
\(603\) −1.58396 1.09107i −1.58396 1.09107i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.994951 0.100362i \(-0.0320000\pi\)
−0.994951 + 0.100362i \(0.968000\pi\)
\(608\) −0.143875 + 1.26670i −0.143875 + 1.26670i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −2.12031 + 0.901765i −2.12031 + 0.901765i
\(613\) 0 0 −0.693653 0.720309i \(-0.744000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(614\) −1.28970 + 1.40845i −1.28970 + 1.40845i
\(615\) 0 0
\(616\) 0 0
\(617\) 1.11340 1.66067i 1.11340 1.66067i 0.535827 0.844328i \(-0.320000\pi\)
0.577573 0.816339i \(-0.304000\pi\)
\(618\) 0 0
\(619\) −1.83988 0.0462510i −1.83988 0.0462510i −0.910106 0.414376i \(-0.864000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.187381 0.982287i −0.187381 0.982287i
\(626\) −0.803523 + 1.82528i −0.803523 + 1.82528i
\(627\) 3.60940 + 0.926737i 3.60940 + 0.926737i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.910106 0.414376i \(-0.864000\pi\)
0.910106 + 0.414376i \(0.136000\pi\)
\(632\) 0 0
\(633\) −1.59734 + 2.66262i −1.59734 + 2.66262i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.575085 0.628036i 0.575085 0.628036i −0.379779 0.925077i \(-0.624000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(642\) 1.80900 + 1.87852i 1.80900 + 1.87852i
\(643\) −1.37288 + 0.583883i −1.37288 + 0.583883i −0.947098 0.320944i \(-0.896000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.60577 + 1.29477i −1.60577 + 1.29477i
\(647\) 0 0 0.112856 0.993611i \(-0.464000\pi\)
−0.112856 + 0.993611i \(0.536000\pi\)
\(648\) −0.394197 + 0.0397631i −0.394197 + 0.0397631i
\(649\) 1.46901 2.59435i 1.46901 2.59435i
\(650\) 0 0
\(651\) 0 0
\(652\) 1.40164 + 0.965485i 1.40164 + 0.965485i
\(653\) 0 0 0.187381 0.982287i \(-0.440000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.381361 1.75792i 0.381361 1.75792i
\(657\) 2.35181 + 1.21698i 2.35181 + 1.21698i
\(658\) 0 0
\(659\) −1.44644 1.35830i −1.44644 1.35830i −0.809017 0.587785i \(-0.800000\pi\)
−0.637424 0.770513i \(-0.720000\pi\)
\(660\) 0 0
\(661\) 0 0 −0.863923 0.503623i \(-0.832000\pi\)
0.863923 + 0.503623i \(0.168000\pi\)
\(662\) −1.63408 + 0.206432i −1.63408 + 0.206432i
\(663\) 0 0
\(664\) −1.30956 0.556953i −1.30956 0.556953i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.51286 0.191119i −1.51286 0.191119i −0.675333 0.737513i \(-0.736000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(674\) 0.455037 + 1.86947i 0.455037 + 1.86947i
\(675\) 0.250714 + 0.610697i 0.250714 + 0.610697i
\(676\) 0.448383 0.893841i 0.448383 0.893841i
\(677\) 0 0 0.762443 0.647056i \(-0.224000\pi\)
−0.762443 + 0.647056i \(0.776000\pi\)
\(678\) 0.179613 + 0.206330i 0.179613 + 0.206330i
\(679\) 0 0
\(680\) 0 0
\(681\) 2.06585 0.940590i 2.06585 0.940590i
\(682\) 0 0
\(683\) 0.608873 + 1.07530i 0.608873 + 1.07530i 0.988652 + 0.150226i \(0.0480000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(684\) 1.68792 0.668294i 1.68792 0.668294i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.886828 0.968481i −0.886828 0.968481i
\(689\) 0 0
\(690\) 0 0
\(691\) −0.170270 + 0.216686i −0.170270 + 0.216686i −0.863923 0.503623i \(-0.832000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.648683 + 0.149283i 0.648683 + 0.149283i
\(695\) 0 0
\(696\) 0 0
\(697\) 2.43766 1.59030i 2.43766 1.59030i
\(698\) 0 0
\(699\) 0.677679 2.78417i 0.677679 2.78417i
\(700\) 0 0
\(701\) 0 0 0.693653 0.720309i \(-0.256000\pi\)
−0.693653 + 0.720309i \(0.744000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.76244 + 0.647056i 1.76244 + 0.647056i
\(705\) 0 0
\(706\) 0.939097 + 1.47978i 0.939097 + 1.47978i
\(707\) 0 0
\(708\) −0.279022 2.45657i −0.279022 2.45657i
\(709\) 0 0 −0.212007 0.977268i \(-0.568000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.713023 + 0.261776i −0.713023 + 0.261776i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.714981 0.958522i 0.714981 0.958522i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.888136 0.459580i \(-0.152000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.496432 0.380101i 0.496432 0.380101i
\(723\) 1.55374 0.905753i 1.55374 0.905753i
\(724\) 0 0
\(725\) 0 0
\(726\) 1.85036 3.46834i 1.85036 3.46834i
\(727\) 0 0 0.850994 0.525175i \(-0.176000\pi\)
−0.850994 + 0.525175i \(0.824000\pi\)
\(728\) 0 0
\(729\) 0.886550 + 1.32232i 0.886550 + 1.32232i
\(730\) 0 0
\(731\) 0.0800824 2.12325i 0.0800824 2.12325i
\(732\) 0 0
\(733\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.35877 + 2.14107i −1.35877 + 2.14107i
\(738\) −2.46426 + 0.699175i −2.46426 + 0.699175i
\(739\) −1.23221 + 0.0930828i −1.23221 + 0.0930828i −0.675333 0.737513i \(-0.736000\pi\)
−0.556876 + 0.830596i \(0.688000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.637424 0.770513i \(-0.720000\pi\)
0.637424 + 0.770513i \(0.280000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.178028 + 2.01864i 0.178028 + 2.01864i
\(748\) 1.29344 + 2.74869i 1.29344 + 2.74869i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.968583 0.248690i \(-0.0800000\pi\)
−0.968583 + 0.248690i \(0.920000\pi\)
\(752\) 0 0
\(753\) −0.0195644 1.55680i −0.0195644 1.55680i
\(754\) 0 0
\(755\) 0 0