Properties

Label 2008.1.bd.a.395.1
Level 2008
Weight 1
Character 2008.395
Analytic conductor 1.002
Analytic rank 0
Dimension 100
Projective image \(D_{125}\)
CM discriminant -8
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2008 = 2^{3} \cdot 251 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2008.bd (of order \(250\), degree \(100\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00212254537\)
Analytic rank: \(0\)
Dimension: \(100\)
Coefficient field: \(\Q(\zeta_{250})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{125}\)
Projective field Galois closure of \(\mathbb{Q}[x]/(x^{125} - \cdots)\)

Embedding invariants

Embedding label 395.1
Root \(-0.448383 + 0.893841i\) of \(x^{100} - x^{75} + x^{50} - x^{25} + 1\)
Character \(\chi\) \(=\) 2008.395
Dual form 2008.1.bd.a.1947.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.535827 - 0.844328i) q^{2} +(-1.44523 - 1.10656i) q^{3} +(-0.425779 - 0.904827i) q^{4} +(-1.70869 + 0.627323i) q^{6} +(-0.992115 - 0.125333i) q^{8} +(0.603371 + 2.23309i) q^{9} +O(q^{10})\) \(q+(0.535827 - 0.844328i) q^{2} +(-1.44523 - 1.10656i) q^{3} +(-0.425779 - 0.904827i) q^{4} +(-1.70869 + 0.627323i) q^{6} +(-0.992115 - 0.125333i) q^{8} +(0.603371 + 2.23309i) q^{9} +(0.131055 + 0.297704i) q^{11} +(-0.385898 + 1.77884i) q^{12} +(-0.637424 + 0.770513i) q^{16} +(-0.999718 + 1.27224i) q^{17} +(2.20877 + 0.687108i) q^{18} +(-1.28989 + 1.33945i) q^{19} +(0.321583 + 0.0488645i) q^{22} +(1.29515 + 1.27897i) q^{24} +(-0.929776 + 0.368125i) q^{25} +(0.907767 - 2.21117i) q^{27} +(0.309017 + 0.951057i) q^{32} +(0.140024 - 0.575272i) q^{33} +(0.538513 + 1.52579i) q^{34} +(1.76366 - 1.49675i) q^{36} +(0.439782 + 1.80680i) q^{38} +(-0.0769271 + 0.466700i) q^{41} +(-0.948035 - 1.67428i) q^{43} +(0.213570 - 0.245339i) q^{44} +(1.77385 - 0.408220i) q^{48} +(0.162637 + 0.986686i) q^{49} +(-0.187381 + 0.982287i) q^{50} +(2.85264 - 0.732433i) q^{51} +(-1.38054 - 1.95126i) q^{54} +(3.34637 - 0.508481i) q^{57} +(-1.06757 - 1.35859i) q^{59} +(0.968583 + 0.248690i) q^{64} +(-0.410690 - 0.426472i) q^{66} +(-0.882924 - 1.76009i) q^{67} +(1.57682 + 0.362878i) q^{68} +(-0.318733 - 2.29111i) q^{72} +(0.103420 + 0.0712382i) q^{73} +(1.75109 + 0.496830i) q^{75} +(1.76118 + 0.596812i) q^{76} +(-1.76032 + 1.02618i) q^{81} +(0.352829 + 0.315022i) q^{82} +(0.175647 + 1.99164i) q^{83} +(-1.92163 - 0.0966728i) q^{86} +(-0.0927094 - 0.311783i) q^{88} +(-0.000947233 + 0.0251142i) q^{89} +(0.605802 - 1.71644i) q^{96} +(-0.498715 - 0.572898i) q^{97} +(0.920232 + 0.391374i) q^{98} +(-0.585727 + 0.472285i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100q + O(q^{10}) \) \( 100q - 25q^{22} - 25q^{32} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2008\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(503\) \(1005\)
\(\chi(n)\) \(e\left(\frac{111}{125}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.535827 0.844328i 0.535827 0.844328i
\(3\) −1.44523 1.10656i −1.44523 1.10656i −0.974527 0.224271i \(-0.928000\pi\)
−0.470704 0.882291i \(-0.656000\pi\)
\(4\) −0.425779 0.904827i −0.425779 0.904827i
\(5\) 0 0 −0.187381 0.982287i \(-0.560000\pi\)
0.187381 + 0.982287i \(0.440000\pi\)
\(6\) −1.70869 + 0.627323i −1.70869 + 0.627323i
\(7\) 0 0 −0.762443 0.647056i \(-0.776000\pi\)
0.762443 + 0.647056i \(0.224000\pi\)
\(8\) −0.992115 0.125333i −0.992115 0.125333i
\(9\) 0.603371 + 2.23309i 0.603371 + 2.23309i
\(10\) 0 0
\(11\) 0.131055 + 0.297704i 0.131055 + 0.297704i 0.968583 0.248690i \(-0.0800000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(12\) −0.385898 + 1.77884i −0.385898 + 1.77884i
\(13\) 0 0 0.356412 0.934329i \(-0.384000\pi\)
−0.356412 + 0.934329i \(0.616000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.637424 + 0.770513i −0.637424 + 0.770513i
\(17\) −0.999718 + 1.27224i −0.999718 + 1.27224i −0.0376902 + 0.999289i \(0.512000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(18\) 2.20877 + 0.687108i 2.20877 + 0.687108i
\(19\) −1.28989 + 1.33945i −1.28989 + 1.33945i −0.379779 + 0.925077i \(0.624000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.321583 + 0.0488645i 0.321583 + 0.0488645i
\(23\) 0 0 −0.556876 0.830596i \(-0.688000\pi\)
0.556876 + 0.830596i \(0.312000\pi\)
\(24\) 1.29515 + 1.27897i 1.29515 + 1.27897i
\(25\) −0.929776 + 0.368125i −0.929776 + 0.368125i
\(26\) 0 0
\(27\) 0.907767 2.21117i 0.907767 2.21117i
\(28\) 0 0
\(29\) 0 0 0.597905 0.801567i \(-0.296000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(30\) 0 0
\(31\) 0 0 −0.863923 0.503623i \(-0.832000\pi\)
0.863923 + 0.503623i \(0.168000\pi\)
\(32\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(33\) 0.140024 0.575272i 0.140024 0.575272i
\(34\) 0.538513 + 1.52579i 0.538513 + 1.52579i
\(35\) 0 0
\(36\) 1.76366 1.49675i 1.76366 1.49675i
\(37\) 0 0 0.837528 0.546394i \(-0.184000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(38\) 0.439782 + 1.80680i 0.439782 + 1.80680i
\(39\) 0 0
\(40\) 0 0
\(41\) −0.0769271 + 0.466700i −0.0769271 + 0.466700i 0.920232 + 0.391374i \(0.128000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(42\) 0 0
\(43\) −0.948035 1.67428i −0.948035 1.67428i −0.711536 0.702650i \(-0.752000\pi\)
−0.236499 0.971632i \(-0.576000\pi\)
\(44\) 0.213570 0.245339i 0.213570 0.245339i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.637424 0.770513i \(-0.720000\pi\)
0.637424 + 0.770513i \(0.280000\pi\)
\(48\) 1.77385 0.408220i 1.77385 0.408220i
\(49\) 0.162637 + 0.986686i 0.162637 + 0.986686i
\(50\) −0.187381 + 0.982287i −0.187381 + 0.982287i
\(51\) 2.85264 0.732433i 2.85264 0.732433i
\(52\) 0 0
\(53\) 0 0 −0.112856 0.993611i \(-0.536000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(54\) −1.38054 1.95126i −1.38054 1.95126i
\(55\) 0 0
\(56\) 0 0
\(57\) 3.34637 0.508481i 3.34637 0.508481i
\(58\) 0 0
\(59\) −1.06757 1.35859i −1.06757 1.35859i −0.929776 0.368125i \(-0.880000\pi\)
−0.137790 0.990461i \(-0.544000\pi\)
\(60\) 0 0
\(61\) 0 0 0.910106 0.414376i \(-0.136000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.968583 + 0.248690i 0.968583 + 0.248690i
\(65\) 0 0
\(66\) −0.410690 0.426472i −0.410690 0.426472i
\(67\) −0.882924 1.76009i −0.882924 1.76009i −0.597905 0.801567i \(-0.704000\pi\)
−0.285019 0.958522i \(-0.592000\pi\)
\(68\) 1.57682 + 0.362878i 1.57682 + 0.362878i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.778462 0.627691i \(-0.784000\pi\)
0.778462 + 0.627691i \(0.216000\pi\)
\(72\) −0.318733 2.29111i −0.318733 2.29111i
\(73\) 0.103420 + 0.0712382i 0.103420 + 0.0712382i 0.617860 0.786288i \(-0.288000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(74\) 0 0
\(75\) 1.75109 + 0.496830i 1.75109 + 0.496830i
\(76\) 1.76118 + 0.596812i 1.76118 + 0.596812i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.577573 0.816339i \(-0.304000\pi\)
−0.577573 + 0.816339i \(0.696000\pi\)
\(80\) 0 0
\(81\) −1.76032 + 1.02618i −1.76032 + 1.02618i
\(82\) 0.352829 + 0.315022i 0.352829 + 0.315022i
\(83\) 0.175647 + 1.99164i 0.175647 + 1.99164i 0.112856 + 0.993611i \(0.464000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.92163 0.0966728i −1.92163 0.0966728i
\(87\) 0 0
\(88\) −0.0927094 0.311783i −0.0927094 0.311783i
\(89\) −0.000947233 0.0251142i −0.000947233 0.0251142i −0.999684 0.0251301i \(-0.992000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0.605802 1.71644i 0.605802 1.71644i
\(97\) −0.498715 0.572898i −0.498715 0.572898i 0.448383 0.893841i \(-0.352000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(98\) 0.920232 + 0.391374i 0.920232 + 0.391374i
\(99\) −0.585727 + 0.472285i −0.585727 + 0.472285i
\(100\) 0.728969 + 0.684547i 0.728969 + 0.684547i
\(101\) 0 0 0.745941 0.666012i \(-0.232000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(102\) 0.910106 2.80102i 0.910106 2.80102i
\(103\) 0 0 −0.850994 0.525175i \(-0.824000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.22925 + 0.559683i 1.22925 + 0.559683i 0.920232 0.391374i \(-0.128000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(108\) −2.38723 + 0.120097i −2.38723 + 0.120097i
\(109\) 0 0 0.947098 0.320944i \(-0.104000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.51890 1.10355i −1.51890 1.10355i −0.962028 0.272952i \(-0.912000\pi\)
−0.556876 0.830596i \(-0.688000\pi\)
\(114\) 1.36375 3.09789i 1.36375 3.09789i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.71912 + 0.173410i −1.71912 + 0.173410i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.603880 0.659482i 0.603880 0.659482i
\(122\) 0 0
\(123\) 0.627610 0.589365i 0.627610 0.589365i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.0878512 0.996134i \(-0.472000\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(128\) 0.728969 0.684547i 0.728969 0.684547i
\(129\) −0.482568 + 3.46878i −0.482568 + 3.46878i
\(130\) 0 0
\(131\) −0.975988 + 1.45571i −0.975988 + 1.45571i −0.0878512 + 0.996134i \(0.528000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(132\) −0.580141 + 0.118242i −0.580141 + 0.118242i
\(133\) 0 0
\(134\) −1.95919 0.197625i −1.95919 0.197625i
\(135\) 0 0
\(136\) 1.15129 1.13691i 1.15129 1.13691i
\(137\) 0.0909411 0.206582i 0.0909411 0.206582i −0.863923 0.503623i \(-0.832000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(138\) 0 0
\(139\) −1.56347 + 0.277933i −1.56347 + 0.277933i −0.888136 0.459580i \(-0.848000\pi\)
−0.675333 + 0.737513i \(0.736000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −2.10523 0.958522i −2.10523 0.958522i
\(145\) 0 0
\(146\) 0.115564 0.0491491i 0.115564 0.0491491i
\(147\) 0.856781 1.60596i 0.856781 1.60596i
\(148\) 0 0
\(149\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(150\) 1.35777 1.21228i 1.35777 1.21228i
\(151\) 0 0 −0.728969 0.684547i \(-0.760000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(152\) 1.44759 1.16723i 1.44759 1.16723i
\(153\) −3.44423 1.46483i −3.44423 1.46483i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.992115 0.125333i \(-0.0400000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −0.0767972 + 2.03614i −0.0767972 + 2.03614i
\(163\) 0.340829 + 1.14621i 0.340829 + 1.14621i 0.938734 + 0.344643i \(0.112000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(164\) 0.455037 0.129106i 0.455037 0.129106i
\(165\) 0 0
\(166\) 1.77571 + 0.918869i 1.77571 + 0.918869i
\(167\) 0 0 0.793990 0.607930i \(-0.208000\pi\)
−0.793990 + 0.607930i \(0.792000\pi\)
\(168\) 0 0
\(169\) −0.745941 0.666012i −0.745941 0.666012i
\(170\) 0 0
\(171\) −3.76940 2.07225i −3.76940 2.07225i
\(172\) −1.11128 + 1.57068i −1.11128 + 1.57068i
\(173\) 0 0 0.0125660 0.999921i \(-0.496000\pi\)
−0.0125660 + 0.999921i \(0.504000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.312923 0.0887843i −0.312923 0.0887843i
\(177\) 0.0395208 + 3.14480i 0.0395208 + 3.14480i
\(178\) 0.0206971 + 0.0142566i 0.0206971 + 0.0142566i
\(179\) 0.230806 + 1.65908i 0.230806 + 1.65908i 0.656586 + 0.754251i \(0.272000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(180\) 0 0
\(181\) 0 0 −0.470704 0.882291i \(-0.656000\pi\)
0.470704 + 0.882291i \(0.344000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.509770 0.130887i −0.509770 0.130887i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.999684 0.0251301i \(-0.992000\pi\)
0.999684 + 0.0251301i \(0.00800000\pi\)
\(192\) −1.12464 1.43121i −1.12464 1.43121i
\(193\) −0.531725 1.39391i −0.531725 1.39391i −0.888136 0.459580i \(-0.848000\pi\)
0.356412 0.934329i \(-0.384000\pi\)
\(194\) −0.750939 + 0.114105i −0.750939 + 0.114105i
\(195\) 0 0
\(196\) 0.823533 0.567269i 0.823533 0.567269i
\(197\) 0 0 −0.577573 0.816339i \(-0.696000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(198\) 0.0849149 + 0.747608i 0.0849149 + 0.747608i
\(199\) 0 0 0.997159 0.0753268i \(-0.0240000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(200\) 0.968583 0.248690i 0.968583 0.248690i
\(201\) −0.671618 + 3.52074i −0.671618 + 3.52074i
\(202\) 0 0
\(203\) 0 0
\(204\) −1.87732 2.26929i −1.87732 2.26929i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.567807 0.208462i −0.567807 0.208462i
\(210\) 0 0
\(211\) 0.119913 + 1.90596i 0.119913 + 1.90596i 0.356412 + 0.934329i \(0.384000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.13122 0.737996i 1.13122 0.737996i
\(215\) 0 0
\(216\) −1.17774 + 2.07996i −1.17774 + 2.07996i
\(217\) 0 0
\(218\) 0 0
\(219\) −0.0706364 0.217396i −0.0706364 0.217396i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.260842 0.965382i \(-0.416000\pi\)
−0.260842 + 0.965382i \(0.584000\pi\)
\(224\) 0 0
\(225\) −1.38306 1.85416i −1.38306 1.85416i
\(226\) −1.74563 + 0.691142i −1.74563 + 0.691142i
\(227\) 1.41185 + 1.39422i 1.41185 + 1.39422i 0.793990 + 0.607930i \(0.208000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(228\) −1.88490 2.81138i −1.88490 2.81138i
\(229\) 0 0 −0.988652 0.150226i \(-0.952000\pi\)
0.988652 + 0.150226i \(0.0480000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.0719780 0.0223911i −0.0719780 0.0223911i 0.260842 0.965382i \(-0.416000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.774738 + 1.54442i −0.774738 + 1.54442i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.212007 0.977268i \(-0.432000\pi\)
−0.212007 + 0.977268i \(0.568000\pi\)
\(240\) 0 0
\(241\) 1.44759 + 0.573142i 1.44759 + 0.573142i 0.954865 0.297042i \(-0.0960000\pi\)
0.492727 + 0.870184i \(0.336000\pi\)
\(242\) −0.233244 0.863241i −0.233244 0.863241i
\(243\) 1.30820 + 0.165264i 1.30820 + 0.165264i
\(244\) 0 0
\(245\) 0 0
\(246\) −0.161327 0.845707i −0.161327 0.845707i
\(247\) 0 0
\(248\) 0 0
\(249\) 1.95002 3.07274i 1.95002 3.07274i
\(250\) 0 0
\(251\) 0.762443 0.647056i 0.762443 0.647056i
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.187381 0.982287i −0.187381 0.982287i
\(257\) 0.756444 0.277718i 0.756444 0.277718i 0.0627905 0.998027i \(-0.480000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(258\) 2.67022 + 2.26611i 2.67022 + 2.26611i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.706139 + 1.60406i 0.706139 + 1.60406i
\(263\) 0 0 0.212007 0.977268i \(-0.432000\pi\)
−0.212007 + 0.977268i \(0.568000\pi\)
\(264\) −0.211020 + 0.553186i −0.211020 + 0.553186i
\(265\) 0 0
\(266\) 0 0
\(267\) 0.0291594 0.0352477i 0.0291594 0.0352477i
\(268\) −1.21665 + 1.54830i −1.21665 + 1.54830i
\(269\) 0 0 −0.954865 0.297042i \(-0.904000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(270\) 0 0
\(271\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(272\) −0.343035 1.58125i −0.343035 1.58125i
\(273\) 0 0
\(274\) −0.125694 0.187476i −0.125694 0.187476i
\(275\) −0.231444 0.228554i −0.231444 0.228554i
\(276\) 0 0
\(277\) 0 0 −0.597905 0.801567i \(-0.704000\pi\)
0.597905 + 0.801567i \(0.296000\pi\)
\(278\) −0.603082 + 1.46900i −0.603082 + 1.46900i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.02596 + 1.71018i 1.02596 + 1.71018i 0.577573 + 0.816339i \(0.304000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(282\) 0 0
\(283\) −0.481116 1.48072i −0.481116 1.48072i −0.837528 0.546394i \(-0.816000\pi\)
0.356412 0.934329i \(-0.384000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.93735 + 1.26390i −1.93735 + 1.26390i
\(289\) −0.382663 1.57213i −0.382663 1.57213i
\(290\) 0 0
\(291\) 0.0868115 + 1.37983i 0.0868115 + 1.37983i
\(292\) 0.0204241 0.123909i 0.0204241 0.123909i
\(293\) 0 0 −0.938734 0.344643i \(-0.888000\pi\)
0.938734 + 0.344643i \(0.112000\pi\)
\(294\) −0.896868 1.58392i −0.896868 1.58392i
\(295\) 0 0
\(296\) 0 0
\(297\) 0.777242 0.0195383i 0.777242 0.0195383i
\(298\) 0 0
\(299\) 0 0
\(300\) −0.296034 1.79598i −0.296034 1.79598i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −0.209862 1.84767i −0.209862 1.84767i
\(305\) 0 0
\(306\) −3.08231 + 2.12317i −3.08231 + 2.12317i
\(307\) −0.481393 0.525717i −0.481393 0.525717i 0.448383 0.893841i \(-0.352000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.999684 0.0251301i \(-0.992000\pi\)
0.999684 + 0.0251301i \(0.00800000\pi\)
\(312\) 0 0
\(313\) −1.69610 + 0.877673i −1.69610 + 0.877673i −0.711536 + 0.702650i \(0.752000\pi\)
−0.984564 + 0.175023i \(0.944000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.693653 0.720309i \(-0.744000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1.15722 2.16911i −1.15722 2.16911i
\(322\) 0 0
\(323\) −0.414586 2.98012i −0.414586 2.98012i
\(324\) 1.67802 + 1.15586i 1.67802 + 1.15586i
\(325\) 0 0
\(326\) 1.15040 + 0.326399i 1.15040 + 0.326399i
\(327\) 0 0
\(328\) 0.134814 0.453379i 0.134814 0.453379i
\(329\) 0 0
\(330\) 0 0
\(331\) −1.30735 0.718720i −1.30735 0.718720i −0.332820 0.942991i \(-0.608000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(332\) 1.72730 1.00693i 1.72730 1.00693i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.895634 + 0.0450574i 0.895634 + 0.0450574i 0.492727 0.870184i \(-0.336000\pi\)
0.402906 + 0.915241i \(0.368000\pi\)
\(338\) −0.962028 + 0.272952i −0.962028 + 0.272952i
\(339\) 0.974022 + 3.27564i 0.974022 + 3.27564i
\(340\) 0 0
\(341\) 0 0
\(342\) −3.76940 + 2.07225i −3.76940 + 2.07225i
\(343\) 0 0
\(344\) 0.730716 + 1.77990i 0.730716 + 1.77990i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.141120 + 0.399841i −0.141120 + 0.399841i −0.992115 0.125333i \(-0.960000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.920232 0.391374i \(-0.872000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.242636 + 0.216637i −0.242636 + 0.216637i
\(353\) −0.263146 + 0.809880i −0.263146 + 0.809880i 0.728969 + 0.684547i \(0.240000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(354\) 2.67642 + 1.65170i 2.67642 + 1.65170i
\(355\) 0 0
\(356\) 0.0231273 0.00983603i 0.0231273 0.00983603i
\(357\) 0 0
\(358\) 1.52448 + 0.694102i 1.52448 + 0.694102i
\(359\) 0 0 0.998737 0.0502443i \(-0.0160000\pi\)
−0.998737 + 0.0502443i \(0.984000\pi\)
\(360\) 0 0
\(361\) −0.0926401 2.45619i −0.0926401 2.45619i
\(362\) 0 0
\(363\) −1.60250 + 0.284872i −1.60250 + 0.284872i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.979855 0.199710i \(-0.936000\pi\)
0.979855 + 0.199710i \(0.0640000\pi\)
\(368\) 0 0
\(369\) −1.08860 + 0.109808i −1.08860 + 0.109808i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.137790 0.990461i \(-0.456000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(374\) −0.383660 + 0.360281i −0.383660 + 0.360281i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.686257 + 0.644438i −0.686257 + 0.644438i −0.947098 0.320944i \(-0.896000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.979855 0.199710i \(-0.0640000\pi\)
−0.979855 + 0.199710i \(0.936000\pi\)
\(384\) −1.81102 + 0.182680i −1.81102 + 0.182680i
\(385\) 0 0
\(386\) −1.46183 0.297944i −1.46183 0.297944i
\(387\) 3.16681 3.12726i 3.16681 3.12726i
\(388\) −0.306031 + 0.695179i −0.306031 + 0.695179i
\(389\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.0376902 0.999289i −0.0376902 0.999289i
\(393\) 3.02136 1.02385i 3.02136 1.02385i
\(394\) 0 0
\(395\) 0 0
\(396\) 0.676726 + 0.328893i 0.676726 + 0.328893i
\(397\) 0 0 0.920232 0.391374i \(-0.128000\pi\)
−0.920232 + 0.391374i \(0.872000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.309017 0.951057i 0.309017 0.951057i
\(401\) 0.767483 0.685246i 0.767483 0.685246i −0.187381 0.982287i \(-0.560000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(402\) 2.61279 + 2.45358i 2.61279 + 2.45358i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −2.92194 + 0.369127i −2.92194 + 0.369127i
\(409\) −0.625521 1.52366i −0.625521 1.52366i −0.837528 0.546394i \(-0.816000\pi\)
0.212007 0.977268i \(-0.432000\pi\)
\(410\) 0 0
\(411\) −0.360026 + 0.197926i −0.360026 + 0.197926i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.56712 + 1.32840i 2.56712 + 1.32840i
\(418\) −0.480257 + 0.367716i −0.480257 + 0.367716i
\(419\) −0.144697 1.64070i −0.144697 1.64070i −0.637424 0.770513i \(-0.720000\pi\)
0.492727 0.870184i \(-0.336000\pi\)
\(420\) 0 0
\(421\) 0 0 0.863923 0.503623i \(-0.168000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(422\) 1.67351 + 0.920019i 1.67351 + 0.920019i
\(423\) 0 0
\(424\) 0 0
\(425\) 0.461171 1.55092i 0.461171 1.55092i
\(426\) 0 0
\(427\) 0 0
\(428\) −0.0169725 1.35056i −0.0169725 1.35056i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.778462 0.627691i \(-0.784000\pi\)
0.778462 + 0.627691i \(0.216000\pi\)
\(432\) 1.12510 + 2.10890i 1.12510 + 2.10890i
\(433\) 0.0915446 1.45506i 0.0915446 1.45506i −0.637424 0.770513i \(-0.720000\pi\)
0.728969 0.684547i \(-0.240000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −0.221403 0.0568466i −0.221403 0.0568466i
\(439\) 0 0 0.425779 0.904827i \(-0.360000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(440\) 0 0
\(441\) −2.10523 + 0.958522i −2.10523 + 0.958522i
\(442\) 0 0
\(443\) 0.381858 + 0.485953i 0.381858 + 0.485953i 0.938734 0.344643i \(-0.112000\pi\)
−0.556876 + 0.830596i \(0.688000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.0751216 0.661387i −0.0751216 0.661387i −0.974527 0.224271i \(-0.928000\pi\)
0.899405 0.437116i \(-0.144000\pi\)
\(450\) −2.30660 + 0.174244i −2.30660 + 0.174244i
\(451\) −0.149020 + 0.0382620i −0.149020 + 0.0382620i
\(452\) −0.351802 + 1.84421i −0.351802 + 1.84421i
\(453\) 0 0
\(454\) 1.93368 0.445005i 1.93368 0.445005i
\(455\) 0 0
\(456\) −3.38371 + 0.0850599i −3.38371 + 0.0850599i
\(457\) 0.963851 0.468437i 0.963851 0.468437i 0.112856 0.993611i \(-0.464000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(458\) 0 0
\(459\) 1.90563 + 3.36544i 1.90563 + 3.36544i
\(460\) 0 0
\(461\) 0 0 0.162637 0.986686i \(-0.448000\pi\)
−0.162637 + 0.986686i \(0.552000\pi\)
\(462\) 0 0
\(463\) 0 0 0.850994 0.525175i \(-0.176000\pi\)
−0.850994 + 0.525175i \(0.824000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.0574732 + 0.0487753i −0.0574732 + 0.0487753i
\(467\) −0.0865734 + 0.152893i −0.0865734 + 0.152893i −0.910106 0.414376i \(-0.864000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.888873 + 1.48167i 0.888873 + 1.48167i
\(473\) 0.374196 0.501657i 0.374196 0.501657i
\(474\) 0 0
\(475\) 0.706219 1.72023i 0.706219 1.72023i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.556876 0.830596i \(-0.688000\pi\)
0.556876 + 0.830596i \(0.312000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.25958 0.915137i 1.25958 0.915137i
\(483\) 0 0
\(484\) −0.853837 0.265614i −0.853837 0.265614i
\(485\) 0 0
\(486\) 0.840505 1.01600i 0.840505 1.01600i
\(487\) 0 0 0.448383 0.893841i \(-0.352000\pi\)
−0.448383 + 0.893841i \(0.648000\pi\)
\(488\) 0 0
\(489\) 0.775776 2.03369i 0.775776 2.03369i
\(490\) 0 0
\(491\) 0.614386 + 1.39564i 0.614386 + 1.39564i 0.899405 + 0.437116i \(0.144000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(492\) −0.800497 0.316939i −0.800497 0.316939i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −1.54953 3.29291i −1.54953 3.29291i
\(499\) 1.42824 + 1.09355i 1.42824 + 1.09355i 0.979855 + 0.199710i \(0.0640000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.137790 0.990461i −0.137790 0.990461i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.341074 + 1.78797i 0.341074 + 1.78797i
\(508\) 0 0
\(509\) 0 0 −0.762443 0.647056i \(-0.776000\pi\)
0.762443 + 0.647056i \(0.224000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.929776 0.368125i −0.929776 0.368125i
\(513\) 1.79084 + 4.06806i 1.79084 + 4.06806i
\(514\) 0.170838 0.787495i 0.170838 0.787495i
\(515\) 0 0
\(516\) 3.34412 1.04030i 3.34412 1.04030i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.16191 + 1.20656i −1.16191 + 1.20656i −0.187381 + 0.982287i \(0.560000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(522\) 0 0
\(523\) 0.390191 + 1.79863i 0.390191 + 1.79863i 0.577573 + 0.816339i \(0.304000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(524\) 1.73272 + 0.263287i 1.73272 + 0.263287i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0.354001 + 0.474582i 0.354001 + 0.474582i
\(529\) −0.379779 + 0.925077i −0.379779 + 0.925077i
\(530\) 0 0
\(531\) 2.38971 3.20371i 2.38971 3.20371i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.0141362 0.0435068i −0.0141362 0.0435068i
\(535\) 0 0
\(536\) 0.655365 + 1.85687i 0.655365 + 1.85687i
\(537\) 1.50230 2.65315i 1.50230 2.65315i
\(538\) 0 0
\(539\) −0.272426 + 0.177728i −0.272426 + 0.177728i
\(540\) 0 0
\(541\) 0 0 0.850994 0.525175i \(-0.176000\pi\)
−0.850994 + 0.525175i \(0.824000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −1.51890 0.557644i −1.51890 0.557644i
\(545\) 0 0
\(546\) 0 0
\(547\) 1.61786 0.786288i 1.61786 0.786288i 0.617860 0.786288i \(-0.288000\pi\)
1.00000 \(0\)
\(548\) −0.225641 + 0.00567218i −0.225641 + 0.00567218i
\(549\) 0 0
\(550\) −0.316989 + 0.0729495i −0.316989 + 0.0729495i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.917174 + 1.29633i 0.917174 + 1.29633i
\(557\) 0 0 0.823533 0.567269i \(-0.192000\pi\)
−0.823533 + 0.567269i \(0.808000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.591901 + 0.753254i 0.591901 + 0.753254i
\(562\) 1.99369 + 0.0501174i 1.99369 + 0.0501174i
\(563\) 1.80586 0.822216i 1.80586 0.822216i 0.850994 0.525175i \(-0.176000\pi\)
0.954865 0.297042i \(-0.0960000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.50801 0.387191i −1.50801 0.387191i
\(567\) 0 0
\(568\) 0 0
\(569\) 0.361313 + 0.720269i 0.361313 + 0.720269i 0.998737 0.0502443i \(-0.0160000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(570\) 0 0
\(571\) 0.124156 1.97340i 0.124156 1.97340i −0.0878512 0.996134i \(-0.528000\pi\)
0.212007 0.977268i \(-0.432000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.0290674 + 2.31299i 0.0290674 + 2.31299i
\(577\) 0.905660 + 0.256959i 0.905660 + 0.256959i 0.693653 0.720309i \(-0.256000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(578\) −1.53244 0.519298i −1.53244 0.519298i
\(579\) −0.773982 + 2.60291i −0.773982 + 2.60291i
\(580\) 0 0
\(581\) 0 0
\(582\) 1.21154 + 0.666052i 1.21154 + 0.666052i
\(583\) 0 0
\(584\) −0.0936761 0.0836385i −0.0936761 0.0836385i
\(585\) 0 0
\(586\) 0 0
\(587\) −1.02593 0.530882i −1.02593 0.530882i −0.137790 0.990461i \(-0.544000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(588\) −1.81791 0.0914553i −1.81791 0.0914553i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.18360 + 0.650688i −1.18360 + 0.650688i −0.947098 0.320944i \(-0.896000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(594\) 0.399970 0.666716i 0.399970 0.666716i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.656586 0.754251i \(-0.728000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(600\) −1.67502 0.712383i −1.67502 0.712383i
\(601\) −1.50801 + 1.21594i −1.50801 + 1.21594i −0.597905 + 0.801567i \(0.704000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(602\) 0 0
\(603\) 3.39771 3.03364i 3.39771 3.03364i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.920232 0.391374i \(-0.128000\pi\)
−0.920232 + 0.391374i \(0.872000\pi\)
\(608\) −1.67249 0.812840i −1.67249 0.812840i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0.141066 + 3.74013i 0.141066 + 3.74013i
\(613\) 0 0 −0.997159 0.0753268i \(-0.976000\pi\)
0.997159 + 0.0753268i \(0.0240000\pi\)
\(614\) −0.701821 + 0.124761i −0.701821 + 0.124761i
\(615\) 0 0
\(616\) 0 0
\(617\) −1.41589 + 1.39820i −1.41589 + 1.39820i −0.637424 + 0.770513i \(0.720000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(618\) 0 0
\(619\) −0.0749998 0.00756530i −0.0749998 0.00756530i 0.0627905 0.998027i \(-0.480000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.728969 0.684547i 0.728969 0.684547i
\(626\) −0.167772 + 1.90235i −0.167772 + 1.90235i
\(627\) 0.589936 + 0.929590i 0.589936 + 0.929590i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.137790 0.990461i \(-0.456000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(632\) 0 0
\(633\) 1.93576 2.88724i 1.93576 2.88724i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.368978 0.0655921i 0.368978 0.0655921i 0.0125660 0.999921i \(-0.496000\pi\)
0.356412 + 0.934329i \(0.384000\pi\)
\(642\) −2.45151 0.185191i −2.45151 0.185191i
\(643\) 0.0734602 + 1.94767i 0.0734602 + 1.94767i 0.260842 + 0.965382i \(0.416000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.73834 1.24678i −2.73834 1.24678i
\(647\) 0 0 −0.899405 0.437116i \(-0.856000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(648\) 1.87506 0.797459i 1.87506 0.797459i
\(649\) 0.264547 0.495869i 0.264547 0.495869i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.892004 0.796424i 0.892004 0.796424i
\(653\) 0 0 −0.728969 0.684547i \(-0.760000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.310564 0.356759i −0.310564 0.356759i
\(657\) −0.0966809 + 0.273930i −0.0966809 + 0.273930i
\(658\) 0 0
\(659\) −1.73879 + 0.219661i −1.73879 + 0.219661i −0.929776 0.368125i \(-0.880000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(660\) 0 0
\(661\) 0 0 0.514440 0.857527i \(-0.328000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(662\) −1.30735 + 0.718720i −1.30735 + 0.718720i
\(663\) 0 0
\(664\) 0.0753566 1.99795i 0.0753566 1.99795i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.65990 0.912536i −1.65990 0.912536i −0.984564 0.175023i \(-0.944000\pi\)
−0.675333 0.737513i \(-0.736000\pi\)
\(674\) 0.517948 0.732066i 0.517948 0.732066i
\(675\) −0.0300360 + 2.39006i −0.0300360 + 2.39006i
\(676\) −0.285019 + 0.958522i −0.285019 + 0.958522i
\(677\) 0 0 −0.947098 0.320944i \(-0.896000\pi\)
0.947098 + 0.320944i \(0.104000\pi\)
\(678\) 3.28762 + 0.932783i 3.28762 + 0.932783i
\(679\) 0 0
\(680\) 0 0
\(681\) −0.497660 3.57727i −0.497660 3.57727i
\(682\) 0 0
\(683\) 0.836099 + 1.56719i 0.836099 + 1.56719i 0.823533 + 0.567269i \(0.192000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(684\) −0.270091 + 4.29298i −0.270091 + 4.29298i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 1.89436 + 0.336754i 1.89436 + 0.336754i
\(689\) 0 0
\(690\) 0 0
\(691\) −1.51160 + 0.782200i −1.51160 + 0.782200i −0.997159 0.0753268i \(-0.976000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.261981 + 0.333397i 0.261981 + 0.333397i
\(695\) 0 0
\(696\) 0 0
\(697\) −0.516850 0.564439i −0.516850 0.564439i
\(698\) 0 0
\(699\) 0.0792477 + 0.112008i 0.0792477 + 0.112008i
\(700\) 0 0
\(701\) 0 0 0.997159 0.0753268i \(-0.0240000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.0529017 + 0.320944i 0.0529017 + 0.320944i
\(705\) 0 0
\(706\) 0.542804 + 0.656137i 0.542804 + 0.656137i
\(707\) 0 0
\(708\) 2.82867 1.37475i 2.82867 1.37475i
\(709\) 0 0 0.656586 0.754251i \(-0.272000\pi\)
−0.656586 + 0.754251i \(0.728000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.00408741 0.0247975i 0.00408741 0.0247975i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 1.40291 0.915241i 1.40291 0.915241i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.332820 0.942991i \(-0.608000\pi\)
0.332820 + 0.942991i \(0.392000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −2.12347 1.23787i −2.12347 1.23787i
\(723\) −1.45789 2.43017i −1.45789 2.43017i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.618139 + 1.50568i −0.618139 + 1.50568i
\(727\) 0 0 −0.597905 0.801567i \(-0.704000\pi\)
0.597905 + 0.801567i \(0.296000\pi\)
\(728\) 0 0
\(729\) −0.257956 0.254735i −0.257956 0.254735i
\(730\) 0 0
\(731\) 3.07786 + 0.467680i 3.07786 + 0.467680i
\(732\) 0 0
\(733\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.408275 0.493519i 0.408275 0.493519i
\(738\) −0.490588 + 0.977975i −0.490588 + 0.977975i
\(739\) −1.69610 + 0.527627i −1.69610 + 0.527627i −0.984564 0.175023i \(-0.944000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.929776 0.368125i \(-0.880000\pi\)
0.929776 + 0.368125i \(0.120000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −4.34153 + 1.59393i −4.34153 + 1.59393i
\(748\) 0.0986197 + 0.516983i 0.0986197 + 0.516983i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.535827 0.844328i \(-0.320000\pi\)
−0.535827 + 0.844328i \(0.680000\pi\)
\(752\) 0 0
\(753\) −1.81791 + 0.0914553i −1.81791 + 0.0914553i
\(754\) 0 0
\(755\) 0