Properties

Label 2008.1.bd.a.363.1
Level 2008
Weight 1
Character 2008.363
Analytic conductor 1.002
Analytic rank 0
Dimension 100
Projective image \(D_{125}\)
CM discriminant -8
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2008 = 2^{3} \cdot 251 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2008.bd (of order \(250\), degree \(100\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00212254537\)
Analytic rank: \(0\)
Dimension: \(100\)
Coefficient field: \(\Q(\zeta_{250})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{125}\)
Projective field Galois closure of \(\mathbb{Q}[x]/(x^{125} - \cdots)\)

Embedding invariants

Embedding label 363.1
Root \(-0.793990 + 0.607930i\) of \(x^{100} - x^{75} + x^{50} - x^{25} + 1\)
Character \(\chi\) \(=\) 2008.363
Dual form 2008.1.bd.a.1571.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.637424 + 0.770513i) q^{2} +(-1.95919 - 0.197625i) q^{3} +(-0.187381 - 0.982287i) q^{4} +(1.40111 - 1.38361i) q^{6} +(0.876307 + 0.481754i) q^{8} +(2.81950 + 0.574659i) q^{9} +O(q^{10})\) \(q+(-0.637424 + 0.770513i) q^{2} +(-1.95919 - 0.197625i) q^{3} +(-0.187381 - 0.982287i) q^{4} +(1.40111 - 1.38361i) q^{6} +(0.876307 + 0.481754i) q^{8} +(2.81950 + 0.574659i) q^{9} +(1.02855 - 1.71451i) q^{11} +(0.172990 + 1.96152i) q^{12} +(-0.929776 + 0.368125i) q^{16} +(-0.725499 + 1.44627i) q^{17} +(-2.24000 + 1.80616i) q^{18} +(-0.0296998 + 0.122019i) q^{19} +(0.665429 + 1.88539i) q^{22} +(-1.62164 - 1.11703i) q^{24} +(0.0627905 - 0.998027i) q^{25} +(-3.53011 - 1.09816i) q^{27} +(0.309017 - 0.951057i) q^{32} +(-2.35396 + 3.15578i) q^{33} +(-0.651916 - 1.48089i) q^{34} +(0.0361584 - 2.87724i) q^{36} +(-0.0750855 - 0.100662i) q^{38} +(1.19543 + 0.0300508i) q^{41} +(0.225628 - 0.234298i) q^{43} +(-1.87687 - 0.689068i) q^{44} +(1.89436 - 0.537477i) q^{48} +(-0.999684 + 0.0251301i) q^{49} +(0.728969 + 0.684547i) q^{50} +(1.70721 - 2.69013i) q^{51} +(3.09632 - 2.02001i) q^{54} +(0.0823014 - 0.233188i) q^{57} +(0.825233 + 1.64508i) q^{59} +(0.535827 + 0.844328i) q^{64} +(-0.931100 - 3.82533i) q^{66} +(-0.603082 - 0.461758i) q^{67} +(1.55659 + 0.441646i) q^{68} +(2.19390 + 1.86188i) q^{72} +(0.410693 - 1.89313i) q^{73} +(-0.320254 + 1.94291i) q^{75} +(0.125422 + 0.00630973i) q^{76} +(4.05119 + 1.72296i) q^{81} +(-0.785152 + 0.901941i) q^{82} +(0.830793 - 1.23915i) q^{83} +(0.0367093 + 0.323196i) q^{86} +(1.72730 - 1.00693i) q^{88} +(-0.633085 + 0.327599i) q^{89} +(-0.793375 + 1.80223i) q^{96} +(1.79273 - 0.658175i) q^{97} +(0.617860 - 0.786288i) q^{98} +(3.88527 - 4.24300i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100q + O(q^{10}) \) \( 100q - 25q^{22} - 25q^{32} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2008\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(503\) \(1005\)
\(\chi(n)\) \(e\left(\frac{94}{125}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.637424 + 0.770513i −0.637424 + 0.770513i
\(3\) −1.95919 0.197625i −1.95919 0.197625i −0.962028 0.272952i \(-0.912000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(4\) −0.187381 0.982287i −0.187381 0.982287i
\(5\) 0 0 0.728969 0.684547i \(-0.240000\pi\)
−0.728969 + 0.684547i \(0.760000\pi\)
\(6\) 1.40111 1.38361i 1.40111 1.38361i
\(7\) 0 0 −0.0125660 0.999921i \(-0.504000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(8\) 0.876307 + 0.481754i 0.876307 + 0.481754i
\(9\) 2.81950 + 0.574659i 2.81950 + 0.574659i
\(10\) 0 0
\(11\) 1.02855 1.71451i 1.02855 1.71451i 0.492727 0.870184i \(-0.336000\pi\)
0.535827 0.844328i \(-0.320000\pi\)
\(12\) 0.172990 + 1.96152i 0.172990 + 1.96152i
\(13\) 0 0 0.910106 0.414376i \(-0.136000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.929776 + 0.368125i −0.929776 + 0.368125i
\(17\) −0.725499 + 1.44627i −0.725499 + 1.44627i 0.162637 + 0.986686i \(0.448000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(18\) −2.24000 + 1.80616i −2.24000 + 1.80616i
\(19\) −0.0296998 + 0.122019i −0.0296998 + 0.122019i −0.984564 0.175023i \(-0.944000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.665429 + 1.88539i 0.665429 + 1.88539i
\(23\) 0 0 −0.988652 0.150226i \(-0.952000\pi\)
0.988652 + 0.150226i \(0.0480000\pi\)
\(24\) −1.62164 1.11703i −1.62164 1.11703i
\(25\) 0.0627905 0.998027i 0.0627905 0.998027i
\(26\) 0 0
\(27\) −3.53011 1.09816i −3.53011 1.09816i
\(28\) 0 0
\(29\) 0 0 −0.260842 0.965382i \(-0.584000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(30\) 0 0
\(31\) 0 0 0.920232 0.391374i \(-0.128000\pi\)
−0.920232 + 0.391374i \(0.872000\pi\)
\(32\) 0.309017 0.951057i 0.309017 0.951057i
\(33\) −2.35396 + 3.15578i −2.35396 + 3.15578i
\(34\) −0.651916 1.48089i −0.651916 1.48089i
\(35\) 0 0
\(36\) 0.0361584 2.87724i 0.0361584 2.87724i
\(37\) 0 0 0.492727 0.870184i \(-0.336000\pi\)
−0.492727 + 0.870184i \(0.664000\pi\)
\(38\) −0.0750855 0.100662i −0.0750855 0.100662i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.19543 + 0.0300508i 1.19543 + 0.0300508i 0.617860 0.786288i \(-0.288000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(42\) 0 0
\(43\) 0.225628 0.234298i 0.225628 0.234298i −0.597905 0.801567i \(-0.704000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(44\) −1.87687 0.689068i −1.87687 0.689068i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.929776 0.368125i \(-0.880000\pi\)
0.929776 + 0.368125i \(0.120000\pi\)
\(48\) 1.89436 0.537477i 1.89436 0.537477i
\(49\) −0.999684 + 0.0251301i −0.999684 + 0.0251301i
\(50\) 0.728969 + 0.684547i 0.728969 + 0.684547i
\(51\) 1.70721 2.69013i 1.70721 2.69013i
\(52\) 0 0
\(53\) 0 0 −0.137790 0.990461i \(-0.544000\pi\)
0.137790 + 0.990461i \(0.456000\pi\)
\(54\) 3.09632 2.02001i 3.09632 2.02001i
\(55\) 0 0
\(56\) 0 0
\(57\) 0.0823014 0.233188i 0.0823014 0.233188i
\(58\) 0 0
\(59\) 0.825233 + 1.64508i 0.825233 + 1.64508i 0.762443 + 0.647056i \(0.224000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.984564 0.175023i \(-0.944000\pi\)
0.984564 + 0.175023i \(0.0560000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.535827 + 0.844328i 0.535827 + 0.844328i
\(65\) 0 0
\(66\) −0.931100 3.82533i −0.931100 3.82533i
\(67\) −0.603082 0.461758i −0.603082 0.461758i 0.260842 0.965382i \(-0.416000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(68\) 1.55659 + 0.441646i 1.55659 + 0.441646i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.675333 0.737513i \(-0.736000\pi\)
0.675333 + 0.737513i \(0.264000\pi\)
\(72\) 2.19390 + 1.86188i 2.19390 + 1.86188i
\(73\) 0.410693 1.89313i 0.410693 1.89313i −0.0376902 0.999289i \(-0.512000\pi\)
0.448383 0.893841i \(-0.352000\pi\)
\(74\) 0 0
\(75\) −0.320254 + 1.94291i −0.320254 + 1.94291i
\(76\) 0.125422 + 0.00630973i 0.125422 + 0.00630973i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.837528 0.546394i \(-0.816000\pi\)
0.837528 + 0.546394i \(0.184000\pi\)
\(80\) 0 0
\(81\) 4.05119 + 1.72296i 4.05119 + 1.72296i
\(82\) −0.785152 + 0.901941i −0.785152 + 0.901941i
\(83\) 0.830793 1.23915i 0.830793 1.23915i −0.137790 0.990461i \(-0.544000\pi\)
0.968583 0.248690i \(-0.0800000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.0367093 + 0.323196i 0.0367093 + 0.323196i
\(87\) 0 0
\(88\) 1.72730 1.00693i 1.72730 1.00693i
\(89\) −0.633085 + 0.327599i −0.633085 + 0.327599i −0.745941 0.666012i \(-0.768000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −0.793375 + 1.80223i −0.793375 + 1.80223i
\(97\) 1.79273 0.658175i 1.79273 0.658175i 0.793990 0.607930i \(-0.208000\pi\)
0.998737 0.0502443i \(-0.0160000\pi\)
\(98\) 0.617860 0.786288i 0.617860 0.786288i
\(99\) 3.88527 4.24300i 3.88527 4.24300i
\(100\) −0.992115 + 0.125333i −0.992115 + 0.125333i
\(101\) 0 0 −0.656586 0.754251i \(-0.728000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(102\) 0.984564 + 3.03018i 0.984564 + 3.03018i
\(103\) 0 0 −0.947098 0.320944i \(-0.896000\pi\)
0.947098 + 0.320944i \(0.104000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.926877 0.164768i 0.926877 0.164768i 0.309017 0.951057i \(-0.400000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(108\) −0.417227 + 3.67336i −0.417227 + 3.67336i
\(109\) 0 0 0.998737 0.0502443i \(-0.0160000\pi\)
−0.998737 + 0.0502443i \(0.984000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.15129 0.836460i 1.15129 0.836460i 0.162637 0.986686i \(-0.448000\pi\)
0.988652 + 0.150226i \(0.0480000\pi\)
\(114\) 0.127213 + 0.212054i 0.127213 + 0.212054i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.79358 0.412762i −1.79358 0.412762i
\(119\) 0 0
\(120\) 0 0
\(121\) −1.41092 2.64464i −1.41092 2.64464i
\(122\) 0 0
\(123\) −2.33614 0.295123i −2.33614 0.295123i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.556876 0.830596i \(-0.688000\pi\)
0.556876 + 0.830596i \(0.312000\pi\)
\(128\) −0.992115 0.125333i −0.992115 0.125333i
\(129\) −0.488350 + 0.414444i −0.488350 + 0.414444i
\(130\) 0 0
\(131\) −0.841895 + 0.127926i −0.841895 + 0.127926i −0.556876 0.830596i \(-0.688000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(132\) 3.54097 + 1.72093i 3.54097 + 1.72093i
\(133\) 0 0
\(134\) 0.740210 0.170347i 0.740210 0.170347i
\(135\) 0 0
\(136\) −1.33250 + 0.917860i −1.33250 + 0.917860i
\(137\) 0.141770 + 0.236318i 0.141770 + 0.236318i 0.920232 0.391374i \(-0.128000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(138\) 0 0
\(139\) −0.755723 1.84081i −0.755723 1.84081i −0.470704 0.882291i \(-0.656000\pi\)
−0.285019 0.958522i \(-0.592000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −2.83305 + 0.503623i −2.83305 + 0.503623i
\(145\) 0 0
\(146\) 1.19690 + 1.52317i 1.19690 + 1.52317i
\(147\) 1.96353 + 0.148328i 1.96353 + 0.148328i
\(148\) 0 0
\(149\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(150\) −1.29290 1.48522i −1.29290 1.48522i
\(151\) 0 0 0.992115 0.125333i \(-0.0400000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(152\) −0.0848090 + 0.0926177i −0.0848090 + 0.0926177i
\(153\) −2.87666 + 3.66083i −2.87666 + 3.66083i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.876307 0.481754i \(-0.160000\pi\)
−0.876307 + 0.481754i \(0.840000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −3.90989 + 2.02323i −3.90989 + 2.02323i
\(163\) −0.450694 + 0.262732i −0.450694 + 0.262732i −0.711536 0.702650i \(-0.752000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(164\) −0.194483 1.17989i −0.194483 1.17989i
\(165\) 0 0
\(166\) 0.425215 + 1.43000i 0.425215 + 1.43000i
\(167\) 0 0 0.994951 0.100362i \(-0.0320000\pi\)
−0.994951 + 0.100362i \(0.968000\pi\)
\(168\) 0 0
\(169\) 0.656586 0.754251i 0.656586 0.754251i
\(170\) 0 0
\(171\) −0.153858 + 0.326964i −0.153858 + 0.326964i
\(172\) −0.272426 0.177728i −0.272426 0.177728i
\(173\) 0 0 0.356412 0.934329i \(-0.384000\pi\)
−0.356412 + 0.934329i \(0.616000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.325172 + 1.97275i −0.325172 + 1.97275i
\(177\) −1.29168 3.38611i −1.29168 3.38611i
\(178\) 0.151124 0.696620i 0.151124 0.696620i
\(179\) 0.751353 + 0.637644i 0.751353 + 0.637644i 0.938734 0.344643i \(-0.112000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(180\) 0 0
\(181\) 0 0 0.997159 0.0753268i \(-0.0240000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.73342 + 2.73144i 1.73342 + 2.73144i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.745941 0.666012i \(-0.768000\pi\)
0.745941 + 0.666012i \(0.232000\pi\)
\(192\) −0.882924 1.76009i −0.882924 1.76009i
\(193\) −1.19513 0.544146i −1.19513 0.544146i −0.285019 0.958522i \(-0.592000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(194\) −0.635595 + 1.80086i −0.635595 + 1.80086i
\(195\) 0 0
\(196\) 0.212007 + 0.977268i 0.212007 + 0.977268i
\(197\) 0 0 0.837528 0.546394i \(-0.184000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(198\) 0.792724 + 5.69824i 0.792724 + 5.69824i
\(199\) 0 0 −0.577573 0.816339i \(-0.696000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(200\) 0.535827 0.844328i 0.535827 0.844328i
\(201\) 1.09029 + 1.02386i 1.09029 + 1.02386i
\(202\) 0 0
\(203\) 0 0
\(204\) −2.96238 1.17289i −2.96238 1.17289i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.178654 + 0.176423i 0.178654 + 0.176423i
\(210\) 0 0
\(211\) −1.50801 + 0.387191i −1.50801 + 0.387191i −0.910106 0.414376i \(-0.864000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −0.463857 + 0.819198i −0.463857 + 0.819198i
\(215\) 0 0
\(216\) −2.56442 2.66296i −2.56442 2.66296i
\(217\) 0 0
\(218\) 0 0
\(219\) −1.17875 + 3.62783i −1.17875 + 3.62783i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.979855 0.199710i \(-0.0640000\pi\)
−0.979855 + 0.199710i \(0.936000\pi\)
\(224\) 0 0
\(225\) 0.750563 2.77785i 0.750563 2.77785i
\(226\) −0.0893554 + 1.42026i −0.0893554 + 1.42026i
\(227\) 1.44333 + 0.994203i 1.44333 + 0.994203i 0.994951 + 0.100362i \(0.0320000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(228\) −0.244479 0.0371486i −0.244479 0.0371486i
\(229\) 0 0 −0.332820 0.942991i \(-0.608000\pi\)
0.332820 + 0.942991i \(0.392000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.38276 1.11495i 1.38276 1.11495i 0.402906 0.915241i \(-0.368000\pi\)
0.979855 0.199710i \(-0.0640000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.46131 1.11887i 1.46131 1.11887i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.0878512 0.996134i \(-0.528000\pi\)
0.0878512 + 0.996134i \(0.472000\pi\)
\(240\) 0 0
\(241\) −0.0848090 1.34800i −0.0848090 1.34800i −0.778462 0.627691i \(-0.784000\pi\)
0.693653 0.720309i \(-0.256000\pi\)
\(242\) 2.93709 + 0.598625i 2.93709 + 0.598625i
\(243\) −4.35684 2.39519i −4.35684 2.39519i
\(244\) 0 0
\(245\) 0 0
\(246\) 1.71651 1.61191i 1.71651 1.61191i
\(247\) 0 0
\(248\) 0 0
\(249\) −1.87257 + 2.26354i −1.87257 + 2.26354i
\(250\) 0 0
\(251\) 0.0125660 0.999921i 0.0125660 0.999921i
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.728969 0.684547i 0.728969 0.684547i
\(257\) 0.732084 0.722942i 0.732084 0.722942i −0.236499 0.971632i \(-0.576000\pi\)
0.968583 + 0.248690i \(0.0800000\pi\)
\(258\) −0.00804864 0.640456i −0.00804864 0.640456i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.438075 0.730234i 0.438075 0.730234i
\(263\) 0 0 −0.0878512 0.996134i \(-0.528000\pi\)
0.0878512 + 0.996134i \(0.472000\pi\)
\(264\) −3.58310 + 1.63140i −3.58310 + 1.63140i
\(265\) 0 0
\(266\) 0 0
\(267\) 1.30507 0.516715i 1.30507 0.516715i
\(268\) −0.340573 + 0.678925i −0.340573 + 0.678925i
\(269\) 0 0 0.778462 0.627691i \(-0.216000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(272\) 0.142146 1.61178i 0.142146 1.61178i
\(273\) 0 0
\(274\) −0.272453 0.0413993i −0.272453 0.0413993i
\(275\) −1.64655 1.13418i −1.64655 1.13418i
\(276\) 0 0
\(277\) 0 0 0.260842 0.965382i \(-0.416000\pi\)
−0.260842 + 0.965382i \(0.584000\pi\)
\(278\) 1.90009 + 0.591084i 1.90009 + 0.591084i
\(279\) 0 0
\(280\) 0 0
\(281\) −0.0435376 + 1.15432i −0.0435376 + 1.15432i 0.793990 + 0.607930i \(0.208000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(282\) 0 0
\(283\) −0.417379 + 1.28456i −0.417379 + 1.28456i 0.492727 + 0.870184i \(0.336000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.41781 2.50393i 1.41781 2.50393i
\(289\) −0.967431 1.29696i −0.967431 1.29696i
\(290\) 0 0
\(291\) −3.64236 + 0.935199i −3.64236 + 0.935199i
\(292\) −1.93655 0.0486812i −1.93655 0.0486812i
\(293\) 0 0 −0.711536 0.702650i \(-0.752000\pi\)
0.711536 + 0.702650i \(0.248000\pi\)
\(294\) −1.36589 + 1.41838i −1.36589 + 1.41838i
\(295\) 0 0
\(296\) 0 0
\(297\) −5.51371 + 4.92290i −5.51371 + 4.92290i
\(298\) 0 0
\(299\) 0 0
\(300\) 1.96851 0.0494844i 1.96851 0.0494844i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −0.0173038 0.124383i −0.0173038 0.124383i
\(305\) 0 0
\(306\) −0.987071 4.55000i −0.987071 4.55000i
\(307\) 0.856781 1.60596i 0.856781 1.60596i 0.0627905 0.998027i \(-0.480000\pi\)
0.793990 0.607930i \(-0.208000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.745941 0.666012i \(-0.768000\pi\)
0.745941 + 0.666012i \(0.232000\pi\)
\(312\) 0 0
\(313\) 0.443754 1.49235i 0.443754 1.49235i −0.379779 0.925077i \(-0.624000\pi\)
0.823533 0.567269i \(-0.192000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.236499 0.971632i \(-0.576000\pi\)
0.236499 + 0.971632i \(0.424000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1.84849 + 0.139637i −1.84849 + 0.139637i
\(322\) 0 0
\(323\) −0.154924 0.131478i −0.154924 0.131478i
\(324\) 0.933330 4.30228i 0.933330 4.30228i
\(325\) 0 0
\(326\) 0.0848450 0.514737i 0.0848450 0.514737i
\(327\) 0 0
\(328\) 1.03309 + 0.602238i 1.03309 + 0.602238i
\(329\) 0 0
\(330\) 0 0
\(331\) −0.559121 + 1.18819i −0.559121 + 1.18819i 0.402906 + 0.915241i \(0.368000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(332\) −1.37288 0.583883i −1.37288 0.583883i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.179214 + 1.57784i 0.179214 + 1.57784i 0.693653 + 0.720309i \(0.256000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(338\) 0.162637 + 0.986686i 0.162637 + 0.986686i
\(339\) −2.42090 + 1.41126i −2.42090 + 1.41126i
\(340\) 0 0
\(341\) 0 0
\(342\) −0.153858 0.326964i −0.153858 0.326964i
\(343\) 0 0
\(344\) 0.310593 0.0966200i 0.310593 0.0966200i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.0707916 + 0.160810i −0.0707916 + 0.160810i −0.947098 0.320944i \(-0.896000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(348\) 0 0
\(349\) 0 0 0.617860 0.786288i \(-0.288000\pi\)
−0.617860 + 0.786288i \(0.712000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.31276 1.50803i −1.31276 1.50803i
\(353\) −0.115808 0.356420i −0.115808 0.356420i 0.876307 0.481754i \(-0.160000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(354\) 3.43239 + 1.16313i 3.43239 + 1.16313i
\(355\) 0 0
\(356\) 0.440425 + 0.560485i 0.440425 + 0.560485i
\(357\) 0 0
\(358\) −0.970244 + 0.172477i −0.970244 + 0.172477i
\(359\) 0 0 0.112856 0.993611i \(-0.464000\pi\)
−0.112856 + 0.993611i \(0.536000\pi\)
\(360\) 0 0
\(361\) 0.874130 + 0.452332i 0.874130 + 0.452332i
\(362\) 0 0
\(363\) 2.24161 + 5.46019i 2.24161 + 5.46019i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.899405 0.437116i \(-0.144000\pi\)
−0.899405 + 0.437116i \(0.856000\pi\)
\(368\) 0 0
\(369\) 3.35325 + 0.771694i 3.35325 + 0.771694i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.762443 0.647056i \(-0.224000\pi\)
−0.762443 + 0.647056i \(0.776000\pi\)
\(374\) −3.20954 0.405459i −3.20954 0.405459i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.97859 + 0.249954i 1.97859 + 0.249954i 0.998737 + 0.0502443i \(0.0160000\pi\)
0.979855 + 0.199710i \(0.0640000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.899405 0.437116i \(-0.856000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(384\) 1.91897 + 0.441618i 1.91897 + 0.441618i
\(385\) 0 0
\(386\) 1.18107 0.574008i 1.18107 0.574008i
\(387\) 0.770799 0.530945i 0.770799 0.530945i
\(388\) −0.982440 1.63764i −0.982440 1.63764i
\(389\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.888136 0.459580i −0.888136 0.459580i
\(393\) 1.67471 0.0842511i 1.67471 0.0842511i
\(394\) 0 0
\(395\) 0 0
\(396\) −4.89587 3.02139i −4.89587 3.02139i
\(397\) 0 0 −0.617860 0.786288i \(-0.712000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(401\) −0.0494937 0.0568557i −0.0494937 0.0568557i 0.728969 0.684547i \(-0.240000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(402\) −1.48387 + 0.187457i −1.48387 + 0.187457i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 2.79202 1.53492i 2.79202 1.53492i
\(409\) 0.404876 0.125950i 0.404876 0.125950i −0.0878512 0.996134i \(-0.528000\pi\)
0.492727 + 0.870184i \(0.336000\pi\)
\(410\) 0 0
\(411\) −0.231051 0.491008i −0.231051 0.491008i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.11681 + 3.75585i 1.11681 + 3.75585i
\(418\) −0.249815 + 0.0251991i −0.249815 + 0.0251991i
\(419\) −0.236123 + 0.352184i −0.236123 + 0.352184i −0.929776 0.368125i \(-0.880000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(420\) 0 0
\(421\) 0 0 −0.920232 0.391374i \(-0.872000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(422\) 0.662906 1.40875i 0.662906 1.40875i
\(423\) 0 0
\(424\) 0 0
\(425\) 1.39786 + 0.814879i 1.39786 + 0.814879i
\(426\) 0 0
\(427\) 0 0
\(428\) −0.335529 0.879585i −0.335529 0.879585i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.675333 0.737513i \(-0.736000\pi\)
0.675333 + 0.737513i \(0.264000\pi\)
\(432\) 3.68647 0.278481i 3.68647 0.278481i
\(433\) −1.92189 0.493458i −1.92189 0.493458i −0.992115 0.125333i \(-0.960000\pi\)
−0.929776 0.368125i \(-0.880000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −2.04393 3.22071i −2.04393 3.22071i
\(439\) 0 0 0.187381 0.982287i \(-0.440000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(440\) 0 0
\(441\) −2.83305 0.503623i −2.83305 0.503623i
\(442\) 0 0
\(443\) 0.277116 + 0.552424i 0.277116 + 0.552424i 0.988652 0.150226i \(-0.0480000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.111033 0.798127i −0.111033 0.798127i −0.962028 0.272952i \(-0.912000\pi\)
0.850994 0.525175i \(-0.176000\pi\)
\(450\) 1.66195 + 2.34899i 1.66195 + 2.34899i
\(451\) 1.28109 2.01867i 1.28109 2.01867i
\(452\) −1.03737 0.974159i −1.03737 0.974159i
\(453\) 0 0
\(454\) −1.68606 + 0.478379i −1.68606 + 0.478379i
\(455\) 0 0
\(456\) 0.184460 0.164695i 0.184460 0.164695i
\(457\) −1.08489 + 0.669518i −1.08489 + 0.669518i −0.947098 0.320944i \(-0.896000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(458\) 0 0
\(459\) 4.14932 4.30877i 4.14932 4.30877i
\(460\) 0 0
\(461\) 0 0 −0.999684 0.0251301i \(-0.992000\pi\)
0.999684 + 0.0251301i \(0.00800000\pi\)
\(462\) 0 0
\(463\) 0 0 0.947098 0.320944i \(-0.104000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.0223207 + 1.77613i −0.0223207 + 1.77613i
\(467\) −0.772557 0.802245i −0.772557 0.802245i 0.212007 0.977268i \(-0.432000\pi\)
−0.984564 + 0.175023i \(0.944000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.0693674 + 1.83916i −0.0693674 + 1.83916i
\(473\) −0.169637 0.627829i −0.169637 0.627829i
\(474\) 0 0
\(475\) 0.119913 + 0.0373028i 0.119913 + 0.0373028i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.988652 0.150226i \(-0.952000\pi\)
0.988652 + 0.150226i \(0.0480000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.09271 + 0.793901i 1.09271 + 0.793901i
\(483\) 0 0
\(484\) −2.33342 + 1.88149i −2.33342 + 1.88149i
\(485\) 0 0
\(486\) 4.62268 1.83025i 4.62268 1.83025i
\(487\) 0 0 0.793990 0.607930i \(-0.208000\pi\)
−0.793990 + 0.607930i \(0.792000\pi\)
\(488\) 0 0
\(489\) 0.934916 0.425672i 0.934916 0.425672i
\(490\) 0 0
\(491\) −0.0129289 + 0.0215514i −0.0129289 + 0.0215514i −0.863923 0.503623i \(-0.832000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(492\) 0.147853 + 2.35006i 0.147853 + 2.35006i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −0.550472 2.88567i −0.550472 2.88567i
\(499\) 1.69340 + 0.170815i 1.69340 + 0.170815i 0.899405 0.437116i \(-0.144000\pi\)
0.793990 + 0.607930i \(0.208000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.762443 + 0.647056i 0.762443 + 0.647056i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.43543 + 1.34796i −1.43543 + 1.34796i
\(508\) 0 0
\(509\) 0 0 −0.0125660 0.999921i \(-0.504000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.0627905 + 0.998027i 0.0627905 + 0.998027i
\(513\) 0.238839 0.398124i 0.238839 0.398124i
\(514\) 0.0903883 + 1.02490i 0.0903883 + 1.02490i
\(515\) 0 0
\(516\) 0.498611 + 0.402041i 0.498611 + 0.402041i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.233059 + 0.957499i −0.233059 + 0.957499i 0.728969 + 0.684547i \(0.240000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(522\) 0 0
\(523\) −0.108559 + 1.23094i −0.108559 + 1.23094i 0.728969 + 0.684547i \(0.240000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(524\) 0.283415 + 0.803012i 0.283415 + 0.803012i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 1.02694 3.80072i 1.02694 3.80072i
\(529\) 0.954865 + 0.297042i 0.954865 + 0.297042i
\(530\) 0 0
\(531\) 1.38138 + 5.11254i 1.38138 + 5.11254i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.433749 + 1.33494i −0.433749 + 1.33494i
\(535\) 0 0
\(536\) −0.306031 0.695179i −0.306031 0.695179i
\(537\) −1.34603 1.39775i −1.34603 1.39775i
\(538\) 0 0
\(539\) −0.985143 + 1.73982i −0.985143 + 1.73982i
\(540\) 0 0
\(541\) 0 0 0.947098 0.320944i \(-0.104000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 1.15129 + 1.13691i 1.15129 + 1.13691i
\(545\) 0 0
\(546\) 0 0
\(547\) 1.44838 0.893841i 1.44838 0.893841i 0.448383 0.893841i \(-0.352000\pi\)
1.00000 \(0\)
\(548\) 0.205567 0.183540i 0.205567 0.183540i
\(549\) 0 0
\(550\) 1.92345 0.545731i 1.92345 0.545731i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.66660 + 1.08727i −1.66660 + 1.08727i
\(557\) 0 0 −0.212007 0.977268i \(-0.568000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −2.85630 5.69397i −2.85630 5.69397i
\(562\) −0.861670 0.769341i −0.861670 0.769341i
\(563\) −1.72556 0.306748i −1.72556 0.306748i −0.778462 0.627691i \(-0.784000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.723723 1.14040i −0.723723 1.14040i
\(567\) 0 0
\(568\) 0 0
\(569\) −0.816920 0.625487i −0.816920 0.625487i 0.112856 0.993611i \(-0.464000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(570\) 0 0
\(571\) −0.644727 0.165538i −0.644727 0.165538i −0.0878512 0.996134i \(-0.528000\pi\)
−0.556876 + 0.830596i \(0.688000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.02556 + 2.68850i 1.02556 + 2.68850i
\(577\) −0.324350 + 1.96777i −0.324350 + 1.96777i −0.0878512 + 0.996134i \(0.528000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(578\) 1.61599 + 0.0812970i 1.61599 + 0.0812970i
\(579\) 2.23394 + 1.30227i 2.23394 + 1.30227i
\(580\) 0 0
\(581\) 0 0
\(582\) 1.60114 3.40260i 1.60114 3.40260i
\(583\) 0 0
\(584\) 1.27192 1.46111i 1.27192 1.46111i
\(585\) 0 0
\(586\) 0 0
\(587\) 0.477423 + 1.60558i 0.477423 + 1.60558i 0.762443 + 0.647056i \(0.224000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(588\) −0.222229 1.95655i −0.222229 1.95655i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.400832 + 0.851811i 0.400832 + 0.851811i 0.998737 + 0.0502443i \(0.0160000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(594\) −0.278591 7.38636i −0.278591 7.38636i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.938734 0.344643i \(-0.112000\pi\)
−0.938734 + 0.344643i \(0.888000\pi\)
\(600\) −1.21665 + 1.54830i −1.21665 + 1.54830i
\(601\) −0.723723 + 0.790359i −0.723723 + 0.790359i −0.984564 0.175023i \(-0.944000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(602\) 0 0
\(603\) −1.43504 1.64849i −1.43504 1.64849i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.617860 0.786288i \(-0.712000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(608\) 0.106869 + 0.0659520i 0.106869 + 0.0659520i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 4.13502 + 2.13973i 4.13502 + 2.13973i
\(613\) 0 0 0.577573 0.816339i \(-0.304000\pi\)
−0.577573 + 0.816339i \(0.696000\pi\)
\(614\) 0.691278 + 1.68384i 0.691278 + 1.68384i
\(615\) 0 0
\(616\) 0 0
\(617\) −1.60511 + 1.10564i −1.60511 + 1.10564i −0.675333 + 0.737513i \(0.736000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(618\) 0 0
\(619\) 1.73103 0.398366i 1.73103 0.398366i 0.762443 0.647056i \(-0.224000\pi\)
0.968583 + 0.248690i \(0.0800000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.992115 0.125333i −0.992115 0.125333i
\(626\) 0.867013 + 1.29318i 0.867013 + 1.29318i
\(627\) −0.315152 0.380953i −0.315152 0.380953i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.762443 0.647056i \(-0.224000\pi\)
−0.762443 + 0.647056i \(0.776000\pi\)
\(632\) 0 0
\(633\) 3.03099 0.460559i 3.03099 0.460559i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.553694 1.34870i −0.553694 1.34870i −0.910106 0.414376i \(-0.864000\pi\)
0.356412 0.934329i \(-0.384000\pi\)
\(642\) 1.07068 1.51329i 1.07068 1.51329i
\(643\) 1.70882 + 0.884257i 1.70882 + 0.884257i 0.979855 + 0.199710i \(0.0640000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.200058 0.0355637i 0.200058 0.0355637i
\(647\) 0 0 −0.850994 0.525175i \(-0.824000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(648\) 2.72004 + 3.46152i 2.72004 + 3.46152i
\(649\) 3.66931 + 0.277185i 3.66931 + 0.277185i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.342530 + 0.393480i 0.342530 + 0.393480i
\(653\) 0 0 0.992115 0.125333i \(-0.0400000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.12255 + 0.412127i −1.12255 + 0.412127i
\(657\) 2.24585 5.10168i 2.24585 5.10168i
\(658\) 0 0
\(659\) −0.746226 + 0.410241i −0.746226 + 0.410241i −0.809017 0.587785i \(-0.800000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(660\) 0 0
\(661\) 0 0 −0.0376902 0.999289i \(-0.512000\pi\)
0.0376902 + 0.999289i \(0.488000\pi\)
\(662\) −0.559121 1.18819i −0.559121 1.18819i
\(663\) 0 0
\(664\) 1.32500 0.685639i 1.32500 0.685639i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.850483 + 1.80737i −0.850483 + 1.80737i −0.379779 + 0.925077i \(0.624000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(674\) −1.32998 0.867664i −1.32998 0.867664i
\(675\) −1.31765 + 3.45419i −1.31765 + 3.45419i
\(676\) −0.863923 0.503623i −0.863923 0.503623i
\(677\) 0 0 −0.998737 0.0502443i \(-0.984000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(678\) 0.455744 2.76490i 0.455744 2.76490i
\(679\) 0 0
\(680\) 0 0
\(681\) −2.63128 2.23307i −2.63128 2.23307i
\(682\) 0 0
\(683\) 0.568419 0.0429392i 0.568419 0.0429392i 0.212007 0.977268i \(-0.432000\pi\)
0.356412 + 0.934329i \(0.384000\pi\)
\(684\) 0.350003 + 0.0898654i 0.350003 + 0.0898654i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.123532 + 0.300904i −0.123532 + 0.300904i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.539883 1.81563i 0.539883 1.81563i −0.0376902 0.999289i \(-0.512000\pi\)
0.577573 0.816339i \(-0.304000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.0787820 0.157050i −0.0787820 0.157050i
\(695\) 0 0
\(696\) 0 0
\(697\) −0.910747 + 1.70711i −0.910747 + 1.70711i
\(698\) 0 0
\(699\) −2.92943 + 1.91113i −2.92943 + 1.91113i
\(700\) 0 0
\(701\) 0 0 −0.577573 0.816339i \(-0.696000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.99874 0.0502443i 1.99874 0.0502443i
\(705\) 0 0
\(706\) 0.348445 + 0.137959i 0.348445 + 0.137959i
\(707\) 0 0
\(708\) −3.08410 + 1.90329i −3.08410 + 1.90329i
\(709\) 0 0 −0.938734 0.344643i \(-0.888000\pi\)
0.938734 + 0.344643i \(0.112000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.712599 0.0179133i −0.712599 0.0179133i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.485560 0.857527i 0.485560 0.857527i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.402906 0.915241i \(-0.632000\pi\)
0.402906 + 0.915241i \(0.368000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.905719 + 0.385201i −0.905719 + 0.385201i
\(723\) −0.100242 + 2.65774i −0.100242 + 2.65774i
\(724\) 0 0
\(725\) 0 0
\(726\) −5.63600 1.75326i −5.63600 1.75326i
\(727\) 0 0 0.260842 0.965382i \(-0.416000\pi\)
−0.260842 + 0.965382i \(0.584000\pi\)
\(728\) 0 0
\(729\) 4.43704 + 3.05634i 4.43704 + 3.05634i
\(730\) 0 0
\(731\) 0.175165 + 0.496301i 0.175165 + 0.496301i
\(732\) 0 0
\(733\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.41199 + 0.559047i −1.41199 + 0.559047i
\(738\) −2.73205 + 2.09183i −2.73205 + 2.09183i
\(739\) 0.443754 + 0.357808i 0.443754 + 0.357808i 0.823533 0.567269i \(-0.192000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.0627905 0.998027i \(-0.520000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.05451 3.01637i 3.05451 3.01637i
\(748\) 2.35825 2.21454i 2.35825 2.21454i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.637424 0.770513i \(-0.280000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(752\) 0 0
\(753\) −0.222229 + 1.95655i −0.222229 + 1.95655i
\(754\) 0 0
\(755\) 0 0