Properties

Label 2008.1.bd.a.299.1
Level 2008
Weight 1
Character 2008.299
Analytic conductor 1.002
Analytic rank 0
Dimension 100
Projective image \(D_{125}\)
CM discriminant -8
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2008 = 2^{3} \cdot 251 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2008.bd (of order \(250\), degree \(100\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00212254537\)
Analytic rank: \(0\)
Dimension: \(100\)
Coefficient field: \(\Q(\zeta_{250})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{125}\)
Projective field Galois closure of \(\mathbb{Q}[x]/(x^{125} - \cdots)\)

Embedding invariants

Embedding label 299.1
Root \(-0.577573 - 0.816339i\) of \(x^{100} - x^{75} + x^{50} - x^{25} + 1\)
Character \(\chi\) \(=\) 2008.299
Dual form 2008.1.bd.a.1323.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.425779 + 0.904827i) q^{2} +(1.63239 + 1.06495i) q^{3} +(-0.637424 - 0.770513i) q^{4} +(-1.65863 + 1.02359i) q^{6} +(0.968583 - 0.248690i) q^{8} +(1.12766 + 2.56159i) q^{9} +O(q^{10})\) \(q+(-0.425779 + 0.904827i) q^{2} +(1.63239 + 1.06495i) q^{3} +(-0.637424 - 0.770513i) q^{4} +(-1.65863 + 1.02359i) q^{6} +(0.968583 - 0.248690i) q^{8} +(1.12766 + 2.56159i) q^{9} +(1.08831 - 0.495514i) q^{11} +(-0.219963 - 1.93660i) q^{12} +(-0.187381 + 0.982287i) q^{16} +(-0.616278 + 0.0465545i) q^{17} +(-2.79793 - 0.0703344i) q^{18} +(-0.811890 - 1.21096i) q^{19} +(-0.0150266 + 1.19572i) q^{22} +(1.84595 + 0.625536i) q^{24} +(0.728969 + 0.684547i) q^{25} +(-0.570202 + 3.45930i) q^{27} +(-0.809017 - 0.587785i) q^{32} +(2.30425 + 0.350130i) q^{33} +(0.220275 - 0.577447i) q^{34} +(1.25494 - 2.50169i) q^{36} +(1.44139 - 0.219019i) q^{38} +(-1.18224 - 1.58494i) q^{41} +(0.0415534 - 0.471169i) q^{43} +(-1.07552 - 0.522707i) q^{44} +(-1.35197 + 1.40392i) q^{48} +(-0.597905 + 0.801567i) q^{49} +(-0.929776 + 0.368125i) q^{50} +(-1.05558 - 0.580312i) q^{51} +(-2.88729 - 1.98883i) q^{54} +(-0.0357076 - 2.84137i) q^{57} +(1.34683 + 0.101741i) q^{59} +(0.876307 - 0.481754i) q^{64} +(-1.29791 + 1.93587i) q^{66} +(-1.11128 + 1.57068i) q^{67} +(0.428701 + 0.445175i) q^{68} +(1.72927 + 2.20067i) q^{72} +(-1.98172 - 0.0996963i) q^{73} +(0.460949 + 1.89376i) q^{75} +(-0.415540 + 1.39746i) q^{76} +(-2.72465 + 2.97552i) q^{81} +(1.93747 - 0.394887i) q^{82} +(-0.0718829 - 0.516707i) q^{83} +(0.408634 + 0.238213i) q^{86} +(0.930893 - 0.750600i) q^{88} +(-0.603082 - 1.46900i) q^{89} +(-0.694666 - 1.82106i) q^{96} +(0.292553 - 0.142183i) q^{97} +(-0.470704 - 0.882291i) q^{98} +(2.49655 + 2.22904i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100q + O(q^{10}) \) \( 100q - 25q^{22} - 25q^{32} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2008\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(503\) \(1005\)
\(\chi(n)\) \(e\left(\frac{103}{125}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.425779 + 0.904827i −0.425779 + 0.904827i
\(3\) 1.63239 + 1.06495i 1.63239 + 1.06495i 0.938734 + 0.344643i \(0.112000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(4\) −0.637424 0.770513i −0.637424 0.770513i
\(5\) 0 0 −0.929776 0.368125i \(-0.880000\pi\)
0.929776 + 0.368125i \(0.120000\pi\)
\(6\) −1.65863 + 1.02359i −1.65863 + 1.02359i
\(7\) 0 0 −0.448383 0.893841i \(-0.648000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(8\) 0.968583 0.248690i 0.968583 0.248690i
\(9\) 1.12766 + 2.56159i 1.12766 + 2.56159i
\(10\) 0 0
\(11\) 1.08831 0.495514i 1.08831 0.495514i 0.212007 0.977268i \(-0.432000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(12\) −0.219963 1.93660i −0.219963 1.93660i
\(13\) 0 0 0.994951 0.100362i \(-0.0320000\pi\)
−0.994951 + 0.100362i \(0.968000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.187381 + 0.982287i −0.187381 + 0.982287i
\(17\) −0.616278 + 0.0465545i −0.616278 + 0.0465545i −0.379779 0.925077i \(-0.624000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(18\) −2.79793 0.0703344i −2.79793 0.0703344i
\(19\) −0.811890 1.21096i −0.811890 1.21096i −0.974527 0.224271i \(-0.928000\pi\)
0.162637 0.986686i \(-0.448000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.0150266 + 1.19572i −0.0150266 + 1.19572i
\(23\) 0 0 0.762443 0.647056i \(-0.224000\pi\)
−0.762443 + 0.647056i \(0.776000\pi\)
\(24\) 1.84595 + 0.625536i 1.84595 + 0.625536i
\(25\) 0.728969 + 0.684547i 0.728969 + 0.684547i
\(26\) 0 0
\(27\) −0.570202 + 3.45930i −0.570202 + 3.45930i
\(28\) 0 0
\(29\) 0 0 −0.332820 0.942991i \(-0.608000\pi\)
0.332820 + 0.942991i \(0.392000\pi\)
\(30\) 0 0
\(31\) 0 0 −0.675333 0.737513i \(-0.736000\pi\)
0.675333 + 0.737513i \(0.264000\pi\)
\(32\) −0.809017 0.587785i −0.809017 0.587785i
\(33\) 2.30425 + 0.350130i 2.30425 + 0.350130i
\(34\) 0.220275 0.577447i 0.220275 0.577447i
\(35\) 0 0
\(36\) 1.25494 2.50169i 1.25494 2.50169i
\(37\) 0 0 0.212007 0.977268i \(-0.432000\pi\)
−0.212007 + 0.977268i \(0.568000\pi\)
\(38\) 1.44139 0.219019i 1.44139 0.219019i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.18224 1.58494i −1.18224 1.58494i −0.711536 0.702650i \(-0.752000\pi\)
−0.470704 0.882291i \(-0.656000\pi\)
\(42\) 0 0
\(43\) 0.0415534 0.471169i 0.0415534 0.471169i −0.947098 0.320944i \(-0.896000\pi\)
0.988652 0.150226i \(-0.0480000\pi\)
\(44\) −1.07552 0.522707i −1.07552 0.522707i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.187381 0.982287i \(-0.560000\pi\)
0.187381 + 0.982287i \(0.440000\pi\)
\(48\) −1.35197 + 1.40392i −1.35197 + 1.40392i
\(49\) −0.597905 + 0.801567i −0.597905 + 0.801567i
\(50\) −0.929776 + 0.368125i −0.929776 + 0.368125i
\(51\) −1.05558 0.580312i −1.05558 0.580312i
\(52\) 0 0
\(53\) 0 0 0.920232 0.391374i \(-0.128000\pi\)
−0.920232 + 0.391374i \(0.872000\pi\)
\(54\) −2.88729 1.98883i −2.88729 1.98883i
\(55\) 0 0
\(56\) 0 0
\(57\) −0.0357076 2.84137i −0.0357076 2.84137i
\(58\) 0 0
\(59\) 1.34683 + 0.101741i 1.34683 + 0.101741i 0.728969 0.684547i \(-0.240000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.974527 0.224271i \(-0.928000\pi\)
0.974527 + 0.224271i \(0.0720000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.876307 0.481754i 0.876307 0.481754i
\(65\) 0 0
\(66\) −1.29791 + 1.93587i −1.29791 + 1.93587i
\(67\) −1.11128 + 1.57068i −1.11128 + 1.57068i −0.332820 + 0.942991i \(0.608000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(68\) 0.428701 + 0.445175i 0.428701 + 0.445175i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.745941 0.666012i \(-0.232000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(72\) 1.72927 + 2.20067i 1.72927 + 2.20067i
\(73\) −1.98172 0.0996963i −1.98172 0.0996963i −0.984564 0.175023i \(-0.944000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(74\) 0 0
\(75\) 0.460949 + 1.89376i 0.460949 + 1.89376i
\(76\) −0.415540 + 1.39746i −0.415540 + 1.39746i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.823533 0.567269i \(-0.192000\pi\)
−0.823533 + 0.567269i \(0.808000\pi\)
\(80\) 0 0
\(81\) −2.72465 + 2.97552i −2.72465 + 2.97552i
\(82\) 1.93747 0.394887i 1.93747 0.394887i
\(83\) −0.0718829 0.516707i −0.0718829 0.516707i −0.992115 0.125333i \(-0.960000\pi\)
0.920232 0.391374i \(-0.128000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.408634 + 0.238213i 0.408634 + 0.238213i
\(87\) 0 0
\(88\) 0.930893 0.750600i 0.930893 0.750600i
\(89\) −0.603082 1.46900i −0.603082 1.46900i −0.863923 0.503623i \(-0.832000\pi\)
0.260842 0.965382i \(-0.416000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −0.694666 1.82106i −0.694666 1.82106i
\(97\) 0.292553 0.142183i 0.292553 0.142183i −0.285019 0.958522i \(-0.592000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(98\) −0.470704 0.882291i −0.470704 0.882291i
\(99\) 2.49655 + 2.22904i 2.49655 + 2.22904i
\(100\) 0.0627905 0.998027i 0.0627905 0.998027i
\(101\) 0 0 −0.979855 0.199710i \(-0.936000\pi\)
0.979855 + 0.199710i \(0.0640000\pi\)
\(102\) 0.974527 0.708035i 0.974527 0.708035i
\(103\) 0 0 0.888136 0.459580i \(-0.152000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.27972 + 0.294506i −1.27972 + 0.294506i −0.809017 0.587785i \(-0.800000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(108\) 3.02890 1.76569i 3.02890 1.76569i
\(109\) 0 0 −0.285019 0.958522i \(-0.592000\pi\)
0.285019 + 0.958522i \(0.408000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.525944 1.61869i 0.525944 1.61869i −0.236499 0.971632i \(-0.576000\pi\)
0.762443 0.647056i \(-0.224000\pi\)
\(114\) 2.58616 + 1.17749i 2.58616 + 1.17749i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.665510 + 1.17533i −0.665510 + 1.17533i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.282307 0.324299i 0.282307 0.324299i
\(122\) 0 0
\(123\) −0.241987 3.84627i −0.241987 3.84627i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.137790 0.990461i \(-0.456000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(128\) 0.0627905 + 0.998027i 0.0627905 + 0.998027i
\(129\) 0.569604 0.724878i 0.569604 0.724878i
\(130\) 0 0
\(131\) 0.817074 + 0.693420i 0.817074 + 0.693420i 0.954865 0.297042i \(-0.0960000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(132\) −1.19900 1.99864i −1.19900 1.99864i
\(133\) 0 0
\(134\) −0.948035 1.67428i −0.948035 1.67428i
\(135\) 0 0
\(136\) −0.585339 + 0.198354i −0.585339 + 0.198354i
\(137\) −1.67502 0.762643i −1.67502 0.762643i −0.999684 0.0251301i \(-0.992000\pi\)
−0.675333 0.737513i \(-0.736000\pi\)
\(138\) 0 0
\(139\) 1.61145 0.457210i 1.61145 0.457210i 0.656586 0.754251i \(-0.272000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −2.72752 + 0.627691i −2.72752 + 0.627691i
\(145\) 0 0
\(146\) 0.933985 1.75067i 0.933985 1.75067i
\(147\) −1.82964 + 0.671728i −1.82964 + 0.671728i
\(148\) 0 0
\(149\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(150\) −1.90979 0.389245i −1.90979 0.389245i
\(151\) 0 0 0.0627905 0.998027i \(-0.480000\pi\)
−0.0627905 + 0.998027i \(0.520000\pi\)
\(152\) −1.08754 0.971004i −1.08754 0.971004i
\(153\) −0.814205 1.52615i −0.814205 1.52615i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.968583 0.248690i \(-0.920000\pi\)
0.968583 + 0.248690i \(0.0800000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −1.53223 3.73225i −1.53223 3.73225i
\(163\) 0.518175 0.417816i 0.518175 0.417816i −0.332820 0.942991i \(-0.608000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(164\) −0.467630 + 1.92121i −0.467630 + 1.92121i
\(165\) 0 0
\(166\) 0.498137 + 0.154962i 0.498137 + 0.154962i
\(167\) 0 0 0.837528 0.546394i \(-0.184000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(168\) 0 0
\(169\) 0.979855 0.199710i 0.979855 0.199710i
\(170\) 0 0
\(171\) 2.18644 3.44527i 2.18644 3.44527i
\(172\) −0.389529 + 0.268317i −0.389529 + 0.268317i
\(173\) 0 0 0.793990 0.607930i \(-0.208000\pi\)
−0.793990 + 0.607930i \(0.792000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.282808 + 1.16189i 0.282808 + 1.16189i
\(177\) 2.09020 + 1.60039i 2.09020 + 1.60039i
\(178\) 1.58598 + 0.0797870i 1.58598 + 0.0797870i
\(179\) 0.261981 + 0.333397i 0.261981 + 0.333397i 0.899405 0.437116i \(-0.144000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(180\) 0 0
\(181\) 0 0 −0.938734 0.344643i \(-0.888000\pi\)
0.938734 + 0.344643i \(0.112000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.647636 + 0.356041i −0.647636 + 0.356041i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.260842 0.965382i \(-0.416000\pi\)
−0.260842 + 0.965382i \(0.584000\pi\)
\(192\) 1.94352 + 0.146816i 1.94352 + 0.146816i
\(193\) 1.94982 + 0.196680i 1.94982 + 0.196680i 0.994951 0.100362i \(-0.0320000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(194\) 0.00408741 + 0.325249i 0.00408741 + 0.325249i
\(195\) 0 0
\(196\) 0.998737 0.0502443i 0.998737 0.0502443i
\(197\) 0 0 −0.823533 0.567269i \(-0.808000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(198\) −3.07987 + 1.30987i −3.07987 + 1.30987i
\(199\) 0 0 −0.711536 0.702650i \(-0.752000\pi\)
0.711536 + 0.702650i \(0.248000\pi\)
\(200\) 0.876307 + 0.481754i 0.876307 + 0.481754i
\(201\) −3.48674 + 1.38050i −3.48674 + 1.38050i
\(202\) 0 0
\(203\) 0 0
\(204\) 0.225716 + 1.18325i 0.225716 + 1.18325i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.48364 0.915598i −1.48364 0.915598i
\(210\) 0 0
\(211\) 1.98360 + 0.250587i 1.98360 + 0.250587i 0.994951 + 0.100362i \(0.0320000\pi\)
0.988652 + 0.150226i \(0.0480000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.278402 1.28332i 0.278402 1.28332i
\(215\) 0 0
\(216\) 0.308004 + 3.49242i 0.308004 + 3.49242i
\(217\) 0 0
\(218\) 0 0
\(219\) −3.12877 2.27318i −3.12877 2.27318i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.402906 0.915241i \(-0.368000\pi\)
−0.402906 + 0.915241i \(0.632000\pi\)
\(224\) 0 0
\(225\) −0.931499 + 2.63925i −0.931499 + 2.63925i
\(226\) 1.24070 + 1.16509i 1.24070 + 1.16509i
\(227\) −1.83469 0.621721i −1.83469 0.621721i −0.997159 0.0753268i \(-0.976000\pi\)
−0.837528 0.546394i \(-0.816000\pi\)
\(228\) −2.16656 + 1.83867i −2.16656 + 1.83867i
\(229\) 0 0 0.0125660 0.999921i \(-0.496000\pi\)
−0.0125660 + 0.999921i \(0.504000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.759318 + 0.0190878i 0.759318 + 0.0190878i 0.402906 0.915241i \(-0.368000\pi\)
0.356412 + 0.934329i \(0.384000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.780108 1.10260i −0.780108 1.10260i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.112856 0.993611i \(-0.536000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(240\) 0 0
\(241\) −1.08754 + 1.02126i −1.08754 + 1.02126i −0.0878512 + 0.996134i \(0.528000\pi\)
−0.999684 + 0.0251301i \(0.992000\pi\)
\(242\) 0.173234 + 0.393518i 0.173234 + 0.393518i
\(243\) −4.22064 + 1.08368i −4.22064 + 1.08368i
\(244\) 0 0
\(245\) 0 0
\(246\) 3.58324 + 1.41870i 3.58324 + 1.41870i
\(247\) 0 0
\(248\) 0 0
\(249\) 0.432927 0.920017i 0.432927 0.920017i
\(250\) 0 0
\(251\) 0.448383 0.893841i 0.448383 0.893841i
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.929776 0.368125i −0.929776 0.368125i
\(257\) −1.54899 + 0.955929i −1.54899 + 0.955929i −0.556876 + 0.830596i \(0.688000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(258\) 0.413364 + 0.824031i 0.413364 + 0.824031i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −0.975318 + 0.444067i −0.975318 + 0.444067i
\(263\) 0 0 −0.112856 0.993611i \(-0.536000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(264\) 2.31893 0.233913i 2.31893 0.233913i
\(265\) 0 0
\(266\) 0 0
\(267\) 0.579956 3.04024i 0.579956 3.04024i
\(268\) 1.91859 0.144933i 1.91859 0.144933i
\(269\) 0 0 −0.999684 0.0251301i \(-0.992000\pi\)
0.999684 + 0.0251301i \(0.00800000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(272\) 0.0697491 0.614086i 0.0697491 0.614086i
\(273\) 0 0
\(274\) 1.40325 1.19088i 1.40325 1.19088i
\(275\) 1.13255 + 0.383788i 1.13255 + 0.383788i
\(276\) 0 0
\(277\) 0 0 0.332820 0.942991i \(-0.392000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(278\) −0.272426 + 1.65275i −0.272426 + 1.65275i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.40111 0.249070i 1.40111 0.249070i 0.577573 0.816339i \(-0.304000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(282\) 0 0
\(283\) 1.20696 + 0.876906i 1.20696 + 0.876906i 0.994951 0.100362i \(-0.0320000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.593368 2.73519i 0.593368 2.73519i
\(289\) −0.611020 + 0.0928445i −0.611020 + 0.0928445i
\(290\) 0 0
\(291\) 0.628978 + 0.0794584i 0.628978 + 0.0794584i
\(292\) 1.18638 + 1.59049i 1.18638 + 1.59049i
\(293\) 0 0 −0.850994 0.525175i \(-0.824000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(294\) 0.171227 1.94152i 0.171227 1.94152i
\(295\) 0 0
\(296\) 0 0
\(297\) 1.09357 + 4.04735i 1.09357 + 4.04735i
\(298\) 0 0
\(299\) 0 0
\(300\) 1.16535 1.56230i 1.16535 1.56230i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1.34164 0.570598i 1.34164 0.570598i
\(305\) 0 0
\(306\) 1.72758 0.0869106i 1.72758 0.0869106i
\(307\) 1.30654 + 1.50089i 1.30654 + 1.50089i 0.728969 + 0.684547i \(0.240000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.260842 0.965382i \(-0.416000\pi\)
−0.260842 + 0.965382i \(0.584000\pi\)
\(312\) 0 0
\(313\) −1.90913 + 0.593896i −1.90913 + 0.593896i −0.947098 + 0.320944i \(0.896000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.556876 0.830596i \(-0.312000\pi\)
−0.556876 + 0.830596i \(0.688000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −2.40263 0.882094i −2.40263 0.882094i
\(322\) 0 0
\(323\) 0.556725 + 0.708489i 0.556725 + 0.708489i
\(324\) 4.02943 + 0.202712i 4.02943 + 0.202712i
\(325\) 0 0
\(326\) 0.157423 + 0.646756i 0.157423 + 0.646756i
\(327\) 0 0
\(328\) −1.53926 1.24114i −1.53926 1.24114i
\(329\) 0 0
\(330\) 0 0
\(331\) 1.05007 1.65464i 1.05007 1.65464i 0.356412 0.934329i \(-0.384000\pi\)
0.693653 0.720309i \(-0.256000\pi\)
\(332\) −0.352310 + 0.384748i −0.352310 + 0.384748i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.997957 0.581758i −0.997957 0.581758i −0.0878512 0.996134i \(-0.528000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(338\) −0.236499 + 0.971632i −0.236499 + 0.971632i
\(339\) 2.58237 2.08222i 2.58237 2.08222i
\(340\) 0 0
\(341\) 0 0
\(342\) 2.18644 + 3.44527i 2.18644 + 3.44527i
\(343\) 0 0
\(344\) −0.0769271 0.466700i −0.0769271 0.466700i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.0804467 + 0.210890i 0.0804467 + 0.210890i 0.968583 0.248690i \(-0.0800000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.470704 0.882291i \(-0.656000\pi\)
0.470704 + 0.882291i \(0.344000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.17172 0.238815i −1.17172 0.238815i
\(353\) 1.03137 0.749337i 1.03137 0.749337i 0.0627905 0.998027i \(-0.480000\pi\)
0.968583 + 0.248690i \(0.0800000\pi\)
\(354\) −2.33804 + 1.20985i −2.33804 + 1.20985i
\(355\) 0 0
\(356\) −0.747469 + 1.40106i −0.747469 + 1.40106i
\(357\) 0 0
\(358\) −0.413213 + 0.0950940i −0.413213 + 0.0950940i
\(359\) 0 0 0.863923 0.503623i \(-0.168000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(360\) 0 0
\(361\) −0.427472 + 1.04125i −0.427472 + 1.04125i
\(362\) 0 0
\(363\) 0.806197 0.228739i 0.806197 0.228739i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.514440 0.857527i \(-0.328000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(368\) 0 0
\(369\) 2.72680 4.81568i 2.72680 4.81568i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.617860 0.786288i \(-0.288000\pi\)
−0.617860 + 0.786288i \(0.712000\pi\)
\(374\) −0.0464054 0.737593i −0.0464054 0.737593i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.117887 + 1.87376i 0.117887 + 1.87376i 0.402906 + 0.915241i \(0.368000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.514440 0.857527i \(-0.672000\pi\)
0.514440 + 0.857527i \(0.328000\pi\)
\(384\) −0.960352 + 1.69603i −0.960352 + 1.69603i
\(385\) 0 0
\(386\) −1.00815 + 1.68050i −1.00815 + 1.68050i
\(387\) 1.25380 0.424875i 1.25380 0.424875i
\(388\) −0.296034 0.134786i −0.296034 0.134786i
\(389\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.379779 + 0.925077i −0.379779 + 0.925077i
\(393\) 0.595323 + 2.00207i 0.595323 + 2.00207i
\(394\) 0 0
\(395\) 0 0
\(396\) 0.126143 3.34447i 0.126143 3.34447i
\(397\) 0 0 0.470704 0.882291i \(-0.344000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(401\) −1.92946 0.393255i −1.92946 0.393255i −0.999684 0.0251301i \(-0.992000\pi\)
−0.929776 0.368125i \(-0.880000\pi\)
\(402\) 0.235470 3.74269i 0.235470 3.74269i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −1.16674 0.299567i −1.16674 0.299567i
\(409\) 0.324863 + 1.97088i 0.324863 + 1.97088i 0.212007 + 0.977268i \(0.432000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(410\) 0 0
\(411\) −1.92210 3.02874i −1.92210 3.02874i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.11742 + 0.969774i 3.11742 + 0.969774i
\(418\) 1.46016 0.952593i 1.46016 0.952593i
\(419\) −0.275233 1.97842i −0.275233 1.97842i −0.187381 0.982287i \(-0.560000\pi\)
−0.0878512 0.996134i \(-0.528000\pi\)
\(420\) 0 0
\(421\) 0 0 0.675333 0.737513i \(-0.264000\pi\)
−0.675333 + 0.737513i \(0.736000\pi\)
\(422\) −1.07132 + 1.68812i −1.07132 + 1.68812i
\(423\) 0 0
\(424\) 0 0
\(425\) −0.481116 0.387935i −0.481116 0.387935i
\(426\) 0 0
\(427\) 0 0
\(428\) 1.04265 + 0.798317i 1.04265 + 0.798317i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.745941 0.666012i \(-0.232000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(432\) −3.29118 1.20831i −3.29118 1.20831i
\(433\) −0.124591 + 0.0157395i −0.124591 + 0.0157395i −0.187381 0.982287i \(-0.560000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 3.38900 1.86312i 3.38900 1.86312i
\(439\) 0 0 0.637424 0.770513i \(-0.280000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(440\) 0 0
\(441\) −2.72752 0.627691i −2.72752 0.627691i
\(442\) 0 0
\(443\) 1.61344 + 0.121881i 1.61344 + 0.121881i 0.850994 0.525175i \(-0.176000\pi\)
0.762443 + 0.647056i \(0.224000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.655963 0.278980i 0.655963 0.278980i −0.0376902 0.999289i \(-0.512000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(450\) −1.99145 1.96658i −1.99145 1.96658i
\(451\) −2.07201 1.13910i −2.07201 1.13910i
\(452\) −1.58247 + 0.626544i −1.58247 + 0.626544i
\(453\) 0 0
\(454\) 1.34372 1.39536i 1.34372 1.39536i
\(455\) 0 0
\(456\) −0.741207 2.74323i −0.741207 2.74323i
\(457\) 0.0320954 + 0.850954i 0.0320954 + 0.850954i 0.920232 + 0.391374i \(0.128000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(458\) 0 0
\(459\) 0.190357 2.15844i 0.190357 2.15844i
\(460\) 0 0
\(461\) 0 0 −0.597905 0.801567i \(-0.704000\pi\)
0.597905 + 0.801567i \(0.296000\pi\)
\(462\) 0 0
\(463\) 0 0 −0.888136 0.459580i \(-0.848000\pi\)
0.888136 + 0.459580i \(0.152000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.340573 + 0.678925i −0.340573 + 0.678925i
\(467\) 0.0242101 + 0.274515i 0.0242101 + 0.274515i 0.998737 + 0.0502443i \(0.0160000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 1.32982 0.236398i 1.32982 0.236398i
\(473\) −0.188248 0.533370i −0.188248 0.533370i
\(474\) 0 0
\(475\) 0.237115 1.43853i 0.237115 1.43853i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.762443 0.647056i \(-0.224000\pi\)
−0.762443 + 0.647056i \(0.776000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.461017 1.41886i −0.461017 1.41886i
\(483\) 0 0
\(484\) −0.429826 0.0108050i −0.429826 0.0108050i
\(485\) 0 0
\(486\) 0.816521 4.28035i 0.816521 4.28035i
\(487\) 0 0 −0.577573 0.816339i \(-0.696000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(488\) 0 0
\(489\) 1.29082 0.130206i 1.29082 0.130206i
\(490\) 0 0
\(491\) −0.816152 + 0.371598i −0.816152 + 0.371598i −0.778462 0.627691i \(-0.784000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(492\) −2.80935 + 2.63816i −2.80935 + 2.63816i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0.648125 + 0.783449i 0.648125 + 0.783449i
\(499\) 0.0631332 + 0.0411874i 0.0631332 + 0.0411874i 0.577573 0.816339i \(-0.304000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.617860 + 0.786288i 0.617860 + 0.786288i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.81218 + 0.717495i 1.81218 + 0.717495i
\(508\) 0 0
\(509\) 0 0 −0.448383 0.893841i \(-0.648000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.728969 0.684547i 0.728969 0.684547i
\(513\) 4.65200 2.11808i 4.65200 2.11808i
\(514\) −0.205423 1.80858i −0.205423 1.80858i
\(515\) 0 0
\(516\) −0.921607 + 0.0231674i −0.921607 + 0.0231674i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.236123 0.352184i −0.236123 0.352184i 0.693653 0.720309i \(-0.256000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(522\) 0 0
\(523\) −0.106244 + 0.935394i −0.106244 + 0.935394i 0.823533 + 0.567269i \(0.192000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(524\) 0.0134664 1.07157i 0.0134664 1.07157i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.775702 + 2.19783i −0.775702 + 2.19783i
\(529\) 0.162637 0.986686i 0.162637 0.986686i
\(530\) 0 0
\(531\) 1.25814 + 3.56475i 1.25814 + 3.56475i
\(532\) 0 0
\(533\) 0 0
\(534\) 2.50396 + 1.81923i 2.50396 + 1.81923i
\(535\) 0 0
\(536\) −0.685756 + 1.79770i −0.685756 + 1.79770i
\(537\) 0.0726026 + 0.823231i 0.0726026 + 0.823231i
\(538\) 0 0
\(539\) −0.253520 + 1.16863i −0.253520 + 1.16863i
\(540\) 0 0
\(541\) 0 0 −0.888136 0.459580i \(-0.848000\pi\)
0.888136 + 0.459580i \(0.152000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.525944 + 0.324576i 0.525944 + 0.324576i
\(545\) 0 0
\(546\) 0 0
\(547\) 0.00284110 + 0.0753268i 0.00284110 + 0.0753268i 1.00000 \(0\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(548\) 0.480069 + 1.77675i 0.480069 + 1.77675i
\(549\) 0 0
\(550\) −0.829478 + 0.861353i −0.829478 + 0.861353i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.37946 0.950207i −1.37946 0.950207i
\(557\) 0 0 0.998737 0.0502443i \(-0.0160000\pi\)
−0.998737 + 0.0502443i \(0.984000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −1.43636 0.108505i −1.43636 0.108505i
\(562\) −0.371196 + 1.37381i −0.371196 + 1.37381i
\(563\) −1.88782 0.434450i −1.88782 0.434450i −0.888136 0.459580i \(-0.848000\pi\)
−0.999684 + 0.0251301i \(0.992000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.30735 + 0.718720i −1.30735 + 0.718720i
\(567\) 0 0
\(568\) 0 0
\(569\) −1.05130 + 1.48591i −1.05130 + 1.48591i −0.187381 + 0.982287i \(0.560000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(570\) 0 0
\(571\) −0.0249339 + 0.00314988i −0.0249339 + 0.00314988i −0.137790 0.990461i \(-0.544000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 2.22223 + 1.70148i 2.22223 + 1.70148i
\(577\) −0.444019 1.82421i −0.444019 1.82421i −0.556876 0.830596i \(-0.688000\pi\)
0.112856 0.993611i \(-0.464000\pi\)
\(578\) 0.176152 0.592399i 0.176152 0.592399i
\(579\) 2.97340 + 2.39752i 2.97340 + 2.39752i
\(580\) 0 0
\(581\) 0 0
\(582\) −0.339702 + 0.535285i −0.339702 + 0.535285i
\(583\) 0 0
\(584\) −1.94426 + 0.396270i −1.94426 + 0.396270i
\(585\) 0 0
\(586\) 0 0
\(587\) 1.57272 + 0.489247i 1.57272 + 0.489247i 0.954865 0.297042i \(-0.0960000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(588\) 1.68383 + 0.981589i 1.68383 + 0.981589i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.703632 + 1.10875i 0.703632 + 1.10875i 0.988652 + 0.150226i \(0.0480000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(594\) −4.12777 0.733781i −4.12777 0.733781i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.899405 0.437116i \(-0.144000\pi\)
−0.899405 + 0.437116i \(0.856000\pi\)
\(600\) 0.917427 + 1.71963i 0.917427 + 1.71963i
\(601\) −1.30735 1.16726i −1.30735 1.16726i −0.974527 0.224271i \(-0.928000\pi\)
−0.332820 0.942991i \(-0.608000\pi\)
\(602\) 0 0
\(603\) −5.27658 1.07545i −5.27658 1.07545i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.470704 0.882291i \(-0.344000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(608\) −0.0549499 + 1.45690i −0.0549499 + 1.45690i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.656927 + 1.60016i −0.656927 + 1.60016i
\(613\) 0 0 0.711536 0.702650i \(-0.248000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(614\) −1.91434 + 0.543148i −1.91434 + 0.543148i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.933322 + 0.316275i −0.933322 + 0.316275i −0.745941 0.666012i \(-0.768000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(618\) 0 0
\(619\) −0.374255 0.660955i −0.374255 0.660955i 0.617860 0.786288i \(-0.288000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.0627905 + 0.998027i 0.0627905 + 0.998027i
\(626\) 0.275494 1.98030i 0.275494 1.98030i
\(627\) −1.44680 3.07461i −1.44680 3.07461i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.617860 0.786288i \(-0.288000\pi\)
−0.617860 + 0.786288i \(0.712000\pi\)
\(632\) 0 0
\(633\) 2.97114 + 2.52150i 2.97114 + 2.52150i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.78894 0.507569i 1.78894 0.507569i 0.793990 0.607930i \(-0.208000\pi\)
0.994951 + 0.100362i \(0.0320000\pi\)
\(642\) 1.82113 1.79839i 1.82113 1.79839i
\(643\) −0.526870 + 1.28337i −0.526870 + 1.28337i 0.402906 + 0.915241i \(0.368000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.878102 + 0.202080i −0.878102 + 0.202080i
\(647\) 0 0 0.0376902 0.999289i \(-0.488000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(648\) −1.89907 + 3.55963i −1.89907 + 3.55963i
\(649\) 1.51619 0.556646i 1.51619 0.556646i
\(650\) 0 0
\(651\) 0 0
\(652\) −0.652230 0.132935i −0.652230 0.132935i
\(653\) 0 0 0.0627905 0.998027i \(-0.480000\pi\)
−0.0627905 + 0.998027i \(0.520000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.77840 0.864311i 1.77840 0.864311i
\(657\) −1.97933 5.18878i −1.97933 5.18878i
\(658\) 0 0
\(659\) 1.03799 + 0.266509i 1.03799 + 0.266509i 0.728969 0.684547i \(-0.240000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(660\) 0 0
\(661\) 0 0 −0.984564 0.175023i \(-0.944000\pi\)
0.984564 + 0.175023i \(0.0560000\pi\)
\(662\) 1.05007 + 1.65464i 1.05007 + 1.65464i
\(663\) 0 0
\(664\) −0.198124 0.482597i −0.198124 0.482597i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.305442 + 0.481299i −0.305442 + 0.481299i −0.962028 0.272952i \(-0.912000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(674\) 0.951300 0.655278i 0.951300 0.655278i
\(675\) −2.78371 + 2.13139i −2.78371 + 2.13139i
\(676\) −0.778462 0.627691i −0.778462 0.627691i
\(677\) 0 0 0.285019 0.958522i \(-0.408000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(678\) 0.784531 + 3.22316i 0.784531 + 3.22316i
\(679\) 0 0
\(680\) 0 0
\(681\) −2.33282 2.96874i −2.33282 2.96874i
\(682\) 0 0
\(683\) 1.79273 + 0.658175i 1.79273 + 0.658175i 0.998737 + 0.0502443i \(0.0160000\pi\)
0.793990 + 0.607930i \(0.208000\pi\)
\(684\) −4.04831 + 0.511421i −4.04831 + 0.511421i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0.455037 + 0.129106i 0.455037 + 0.129106i
\(689\) 0 0
\(690\) 0 0
\(691\) −1.69610 + 0.527627i −1.69610 + 0.527627i −0.984564 0.175023i \(-0.944000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.225071 0.0170022i −0.225071 0.0170022i
\(695\) 0 0
\(696\) 0 0
\(697\) 0.802375 + 0.921726i 0.802375 + 0.921726i
\(698\) 0 0
\(699\) 1.21917 + 0.839796i 1.21917 + 0.839796i
\(700\) 0 0
\(701\) 0 0 −0.711536 0.702650i \(-0.752000\pi\)
0.711536 + 0.702650i \(0.248000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.714981 0.958522i 0.714981 0.958522i
\(705\) 0 0
\(706\) 0.238883 + 1.25227i 0.238883 + 1.25227i
\(707\) 0 0
\(708\) −0.0992202 2.63065i −0.0992202 2.63065i
\(709\) 0 0 −0.899405 0.437116i \(-0.856000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.949462 1.27287i −0.949462 1.27287i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.0898940 0.414376i 0.0898940 0.414376i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.356412 0.934329i \(-0.384000\pi\)
−0.356412 + 0.934329i \(0.616000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.760142 0.830131i −0.760142 0.830131i
\(723\) −2.86288 + 0.508925i −2.86288 + 0.508925i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.136293 + 0.826861i −0.136293 + 0.826861i
\(727\) 0 0 0.332820 0.942991i \(-0.392000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(728\) 0 0
\(729\) −4.22268 1.43094i −4.22268 1.43094i
\(730\) 0 0
\(731\) −0.00367342 + 0.292306i −0.00367342 + 0.292306i
\(732\) 0 0
\(733\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.431128 + 2.26005i −0.431128 + 2.26005i
\(738\) 3.19634 + 4.51770i 3.19634 + 4.51770i
\(739\) −1.90913 + 0.0479917i −1.90913 + 0.0479917i −0.962028 0.272952i \(-0.912000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.728969 0.684547i \(-0.240000\pi\)
−0.728969 + 0.684547i \(0.760000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.24253 0.766803i 1.24253 0.766803i
\(748\) 0.687152 + 0.272063i 0.687152 + 0.272063i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.425779 0.904827i \(-0.360000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(752\) 0 0
\(753\) 1.68383 0.981589i 1.68383 0.981589i
\(754\) 0 0
\(755\) 0 0