Properties

Label 2008.1.bd.a.195.1
Level 2008
Weight 1
Character 2008.195
Analytic conductor 1.002
Analytic rank 0
Dimension 100
Projective image \(D_{125}\)
CM discriminant -8
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2008 = 2^{3} \cdot 251 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2008.bd (of order \(250\), degree \(100\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00212254537\)
Analytic rank: \(0\)
Dimension: \(100\)
Coefficient field: \(\Q(\zeta_{250})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{125}\)
Projective field Galois closure of \(\mathbb{Q}[x]/(x^{125} - \cdots)\)

Embedding invariants

Embedding label 195.1
Root \(-0.162637 + 0.986686i\) of \(x^{100} - x^{75} + x^{50} - x^{25} + 1\)
Character \(\chi\) \(=\) 2008.195
Dual form 2008.1.bd.a.1627.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.535827 + 0.844328i) q^{2} +(1.35024 - 0.0339424i) q^{3} +(-0.425779 + 0.904827i) q^{4} +(0.752153 + 1.12186i) q^{6} +(-0.992115 + 0.125333i) q^{8} +(0.823256 - 0.0414163i) q^{9} +O(q^{10})\) \(q+(0.535827 + 0.844328i) q^{2} +(1.35024 - 0.0339424i) q^{3} +(-0.425779 + 0.904827i) q^{4} +(0.752153 + 1.12186i) q^{6} +(-0.992115 + 0.125333i) q^{8} +(0.823256 - 0.0414163i) q^{9} +(1.22942 - 0.716692i) q^{11} +(-0.544192 + 1.23618i) q^{12} +(-0.637424 - 0.770513i) q^{16} +(1.55659 + 0.441646i) q^{17} +(0.476092 + 0.672906i) q^{18} +(-1.67249 + 0.812840i) q^{19} +(1.26388 + 0.654015i) q^{22} +(-1.33534 + 0.202905i) q^{24} +(-0.929776 - 0.368125i) q^{25} +(-0.236641 + 0.0178762i) q^{27} +(0.309017 - 0.951057i) q^{32} +(1.63569 - 1.00943i) q^{33} +(0.461171 + 1.55092i) q^{34} +(-0.313051 + 0.762539i) q^{36} +(-1.58247 - 0.976590i) q^{38} +(-1.21103 - 1.19590i) q^{41} +(1.83965 + 0.374949i) q^{43} +(0.125019 + 1.41757i) q^{44} +(-0.886828 - 1.01874i) q^{48} +(-0.711536 + 0.702650i) q^{49} +(-0.187381 - 0.982287i) q^{50} +(2.11676 + 0.543493i) q^{51} +(-0.141892 - 0.190224i) q^{54} +(-2.23067 + 1.15430i) q^{57} +(-1.91434 + 0.543148i) q^{59} +(0.968583 - 0.248690i) q^{64} +(1.72874 + 0.840177i) q^{66} +(-0.153108 - 0.928874i) q^{67} +(-1.06238 + 1.22040i) q^{68} +(-0.811574 + 0.144271i) q^{72} +(-0.0417958 + 0.118422i) q^{73} +(-1.26792 - 0.465497i) q^{75} +(-0.0233672 - 1.85941i) q^{76} +(-1.13905 + 0.114897i) q^{81} +(0.360834 - 1.66330i) q^{82} +(-0.847315 - 1.41240i) q^{83} +(0.669152 + 1.75417i) q^{86} +(-1.12990 + 0.865128i) q^{88} +(1.17994 + 1.50160i) q^{89} +(0.384966 - 1.29464i) q^{96} +(0.175203 - 1.98661i) q^{97} +(-0.974527 - 0.224271i) q^{98} +(0.982449 - 0.640939i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100q + O(q^{10}) \) \( 100q - 25q^{22} - 25q^{32} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2008\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(503\) \(1005\)
\(\chi(n)\) \(e\left(\frac{39}{125}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.535827 + 0.844328i 0.535827 + 0.844328i
\(3\) 1.35024 0.0339424i 1.35024 0.0339424i 0.656586 0.754251i \(-0.272000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(4\) −0.425779 + 0.904827i −0.425779 + 0.904827i
\(5\) 0 0 0.187381 0.982287i \(-0.440000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(6\) 0.752153 + 1.12186i 0.752153 + 1.12186i
\(7\) 0 0 −0.379779 0.925077i \(-0.624000\pi\)
0.379779 + 0.925077i \(0.376000\pi\)
\(8\) −0.992115 + 0.125333i −0.992115 + 0.125333i
\(9\) 0.823256 0.0414163i 0.823256 0.0414163i
\(10\) 0 0
\(11\) 1.22942 0.716692i 1.22942 0.716692i 0.260842 0.965382i \(-0.416000\pi\)
0.968583 + 0.248690i \(0.0800000\pi\)
\(12\) −0.544192 + 1.23618i −0.544192 + 1.23618i
\(13\) 0 0 0.778462 0.627691i \(-0.216000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.637424 0.770513i −0.637424 0.770513i
\(17\) 1.55659 + 0.441646i 1.55659 + 0.441646i 0.938734 0.344643i \(-0.112000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(18\) 0.476092 + 0.672906i 0.476092 + 0.672906i
\(19\) −1.67249 + 0.812840i −1.67249 + 0.812840i −0.675333 + 0.737513i \(0.736000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.26388 + 0.654015i 1.26388 + 0.654015i
\(23\) 0 0 −0.0376902 0.999289i \(-0.512000\pi\)
0.0376902 + 0.999289i \(0.488000\pi\)
\(24\) −1.33534 + 0.202905i −1.33534 + 0.202905i
\(25\) −0.929776 0.368125i −0.929776 0.368125i
\(26\) 0 0
\(27\) −0.236641 + 0.0178762i −0.236641 + 0.0178762i
\(28\) 0 0
\(29\) 0 0 0.947098 0.320944i \(-0.104000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(30\) 0 0
\(31\) 0 0 −0.994951 0.100362i \(-0.968000\pi\)
0.994951 + 0.100362i \(0.0320000\pi\)
\(32\) 0.309017 0.951057i 0.309017 0.951057i
\(33\) 1.63569 1.00943i 1.63569 1.00943i
\(34\) 0.461171 + 1.55092i 0.461171 + 1.55092i
\(35\) 0 0
\(36\) −0.313051 + 0.762539i −0.313051 + 0.762539i
\(37\) 0 0 0.260842 0.965382i \(-0.416000\pi\)
−0.260842 + 0.965382i \(0.584000\pi\)
\(38\) −1.58247 0.976590i −1.58247 0.976590i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.21103 1.19590i −1.21103 1.19590i −0.974527 0.224271i \(-0.928000\pi\)
−0.236499 0.971632i \(-0.576000\pi\)
\(42\) 0 0
\(43\) 1.83965 + 0.374949i 1.83965 + 0.374949i 0.988652 0.150226i \(-0.0480000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(44\) 0.125019 + 1.41757i 0.125019 + 1.41757i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.637424 0.770513i \(-0.280000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(48\) −0.886828 1.01874i −0.886828 1.01874i
\(49\) −0.711536 + 0.702650i −0.711536 + 0.702650i
\(50\) −0.187381 0.982287i −0.187381 0.982287i
\(51\) 2.11676 + 0.543493i 2.11676 + 0.543493i
\(52\) 0 0
\(53\) 0 0 −0.910106 0.414376i \(-0.864000\pi\)
0.910106 + 0.414376i \(0.136000\pi\)
\(54\) −0.141892 0.190224i −0.141892 0.190224i
\(55\) 0 0
\(56\) 0 0
\(57\) −2.23067 + 1.15430i −2.23067 + 1.15430i
\(58\) 0 0
\(59\) −1.91434 + 0.543148i −1.91434 + 0.543148i −0.929776 + 0.368125i \(0.880000\pi\)
−0.984564 + 0.175023i \(0.944000\pi\)
\(60\) 0 0
\(61\) 0 0 0.675333 0.737513i \(-0.264000\pi\)
−0.675333 + 0.737513i \(0.736000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.968583 0.248690i 0.968583 0.248690i
\(65\) 0 0
\(66\) 1.72874 + 0.840177i 1.72874 + 0.840177i
\(67\) −0.153108 0.928874i −0.153108 0.928874i −0.947098 0.320944i \(-0.896000\pi\)
0.793990 0.607930i \(-0.208000\pi\)
\(68\) −1.06238 + 1.22040i −1.06238 + 1.22040i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.837528 0.546394i \(-0.816000\pi\)
0.837528 + 0.546394i \(0.184000\pi\)
\(72\) −0.811574 + 0.144271i −0.811574 + 0.144271i
\(73\) −0.0417958 + 0.118422i −0.0417958 + 0.118422i −0.962028 0.272952i \(-0.912000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(74\) 0 0
\(75\) −1.26792 0.465497i −1.26792 0.465497i
\(76\) −0.0233672 1.85941i −0.0233672 1.85941i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.597905 0.801567i \(-0.296000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(80\) 0 0
\(81\) −1.13905 + 0.114897i −1.13905 + 0.114897i
\(82\) 0.360834 1.66330i 0.360834 1.66330i
\(83\) −0.847315 1.41240i −0.847315 1.41240i −0.910106 0.414376i \(-0.864000\pi\)
0.0627905 0.998027i \(-0.480000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.669152 + 1.75417i 0.669152 + 1.75417i
\(87\) 0 0
\(88\) −1.12990 + 0.865128i −1.12990 + 0.865128i
\(89\) 1.17994 + 1.50160i 1.17994 + 1.50160i 0.823533 + 0.567269i \(0.192000\pi\)
0.356412 + 0.934329i \(0.384000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0.384966 1.29464i 0.384966 1.29464i
\(97\) 0.175203 1.98661i 0.175203 1.98661i 0.0125660 0.999921i \(-0.496000\pi\)
0.162637 0.986686i \(-0.448000\pi\)
\(98\) −0.974527 0.224271i −0.974527 0.224271i
\(99\) 0.982449 0.640939i 0.982449 0.640939i
\(100\) 0.728969 0.684547i 0.728969 0.684547i
\(101\) 0 0 −0.212007 0.977268i \(-0.568000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(102\) 0.675333 + 2.07846i 0.675333 + 2.07846i
\(103\) 0 0 −0.762443 0.647056i \(-0.776000\pi\)
0.762443 + 0.647056i \(0.224000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.665510 0.726786i −0.665510 0.726786i 0.309017 0.951057i \(-0.400000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(108\) 0.0845819 0.221730i 0.0845819 0.221730i
\(109\) 0 0 0.0125660 0.999921i \(-0.496000\pi\)
−0.0125660 + 0.999921i \(0.504000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.901044 0.654647i 0.901044 0.654647i −0.0376902 0.999289i \(-0.512000\pi\)
0.938734 + 0.344643i \(0.112000\pi\)
\(114\) −2.16986 1.26492i −2.16986 1.26492i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.48435 1.32530i −1.48435 1.32530i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.505111 0.892053i 0.505111 0.892053i
\(122\) 0 0
\(123\) −1.67577 1.57365i −1.67577 1.57365i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.514440 0.857527i \(-0.328000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(128\) 0.728969 + 0.684547i 0.728969 + 0.684547i
\(129\) 2.49669 + 0.443829i 2.49669 + 0.443829i
\(130\) 0 0
\(131\) −0.0660563 + 1.75137i −0.0660563 + 1.75137i 0.448383 + 0.893841i \(0.352000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(132\) 0.216921 + 1.90981i 0.216921 + 1.90981i
\(133\) 0 0
\(134\) 0.702235 0.626989i 0.702235 0.626989i
\(135\) 0 0
\(136\) −1.59967 0.243070i −1.59967 0.243070i
\(137\) 1.57252 + 0.916701i 1.57252 + 0.916701i 0.994951 + 0.100362i \(0.0320000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(138\) 0 0
\(139\) 0.941111 1.76403i 0.941111 1.76403i 0.448383 0.893841i \(-0.352000\pi\)
0.492727 0.870184i \(-0.336000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.556675 0.607930i −0.556675 0.607930i
\(145\) 0 0
\(146\) −0.122382 + 0.0281642i −0.122382 + 0.0281642i
\(147\) −0.936894 + 0.972897i −0.936894 + 0.972897i
\(148\) 0 0
\(149\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(150\) −0.286351 1.31996i −0.286351 1.31996i
\(151\) 0 0 0.728969 0.684547i \(-0.240000\pi\)
−0.728969 + 0.684547i \(0.760000\pi\)
\(152\) 1.55743 1.01605i 1.55743 1.01605i
\(153\) 1.29977 + 0.299119i 1.29977 + 0.299119i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.992115 0.125333i \(-0.960000\pi\)
0.992115 + 0.125333i \(0.0400000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −0.707345 0.900167i −0.707345 0.900167i
\(163\) −1.50397 + 1.15154i −1.50397 + 1.15154i −0.556876 + 0.830596i \(0.688000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(164\) 1.59771 0.586578i 1.59771 0.586578i
\(165\) 0 0
\(166\) 0.738516 1.47222i 0.738516 1.47222i
\(167\) 0 0 −0.999684 0.0251301i \(-0.992000\pi\)
0.999684 + 0.0251301i \(0.00800000\pi\)
\(168\) 0 0
\(169\) 0.212007 0.977268i 0.212007 0.977268i
\(170\) 0 0
\(171\) −1.34322 + 0.738444i −1.34322 + 0.738444i
\(172\) −1.12255 + 1.50492i −1.12255 + 1.50492i
\(173\) 0 0 −0.954865 0.297042i \(-0.904000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.33589 0.490451i −1.33589 0.490451i
\(177\) −2.56638 + 0.798356i −2.56638 + 0.798356i
\(178\) −0.635595 + 1.80086i −0.635595 + 1.80086i
\(179\) −0.513630 + 0.0913066i −0.513630 + 0.0913066i −0.425779 0.904827i \(-0.640000\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(180\) 0 0
\(181\) 0 0 −0.693653 0.720309i \(-0.744000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.23024 0.572628i 2.23024 0.572628i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.823533 0.567269i \(-0.808000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(192\) 1.29938 0.368667i 1.29938 0.368667i
\(193\) −0.330079 0.266150i −0.330079 0.266150i 0.448383 0.893841i \(-0.352000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(194\) 1.77123 0.916548i 1.77123 0.916548i
\(195\) 0 0
\(196\) −0.332820 0.942991i −0.332820 0.942991i
\(197\) 0 0 −0.597905 0.801567i \(-0.704000\pi\)
0.597905 + 0.801567i \(0.296000\pi\)
\(198\) 1.06759 + 0.486077i 1.06759 + 0.486077i
\(199\) 0 0 −0.236499 0.971632i \(-0.576000\pi\)
0.236499 + 0.971632i \(0.424000\pi\)
\(200\) 0.968583 + 0.248690i 0.968583 + 0.248690i
\(201\) −0.238260 1.24900i −0.238260 1.24900i
\(202\) 0 0
\(203\) 0 0
\(204\) −1.39304 + 1.68390i −1.39304 + 1.68390i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.47365 + 2.19799i −1.47365 + 2.19799i
\(210\) 0 0
\(211\) 0.0725322 1.15287i 0.0725322 1.15287i −0.778462 0.627691i \(-0.784000\pi\)
0.850994 0.525175i \(-0.176000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.257047 0.951340i 0.257047 0.951340i
\(215\) 0 0
\(216\) 0.232534 0.0473942i 0.232534 0.0473942i
\(217\) 0 0
\(218\) 0 0
\(219\) −0.0524148 + 0.161316i −0.0524148 + 0.161316i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.998737 0.0502443i \(-0.984000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(224\) 0 0
\(225\) −0.780691 0.264553i −0.780691 0.264553i
\(226\) 1.03554 + 0.409999i 1.03554 + 0.409999i
\(227\) −1.96171 + 0.298082i −1.96171 + 0.298082i −0.962028 + 0.272952i \(0.912000\pi\)
−0.999684 + 0.0251301i \(0.992000\pi\)
\(228\) −0.0946640 2.50985i −0.0946640 2.50985i
\(229\) 0 0 −0.888136 0.459580i \(-0.848000\pi\)
0.888136 + 0.459580i \(0.152000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.713718 + 1.00877i 0.713718 + 1.00877i 0.998737 + 0.0502443i \(0.0160000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.323632 1.96341i 0.323632 1.96341i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.402906 0.915241i \(-0.368000\pi\)
−0.402906 + 0.915241i \(0.632000\pi\)
\(240\) 0 0
\(241\) 1.55743 0.616629i 1.55743 0.616629i 0.577573 0.816339i \(-0.304000\pi\)
0.979855 + 0.199710i \(0.0640000\pi\)
\(242\) 1.02384 0.0515071i 1.02384 0.0515071i
\(243\) −1.29865 + 0.164057i −1.29865 + 0.164057i
\(244\) 0 0
\(245\) 0 0
\(246\) 0.430756 2.25810i 0.430756 2.25810i
\(247\) 0 0
\(248\) 0 0
\(249\) −1.19202 1.87832i −1.19202 1.87832i
\(250\) 0 0
\(251\) −0.379779 + 0.925077i −0.379779 + 0.925077i
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.187381 + 0.982287i −0.187381 + 0.982287i
\(257\) 0.962196 + 1.43514i 0.962196 + 1.43514i 0.899405 + 0.437116i \(0.144000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(258\) 0.963056 + 2.34584i 0.963056 + 2.34584i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −1.51412 + 0.882657i −1.51412 + 0.882657i
\(263\) 0 0 0.402906 0.915241i \(-0.368000\pi\)
−0.402906 + 0.915241i \(0.632000\pi\)
\(264\) −1.49628 + 1.20648i −1.49628 + 1.20648i
\(265\) 0 0
\(266\) 0 0
\(267\) 1.64417 + 1.98747i 1.64417 + 1.98747i
\(268\) 0.905660 + 0.256959i 0.905660 + 0.256959i
\(269\) 0 0 −0.577573 0.816339i \(-0.696000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(272\) −0.651916 1.48089i −0.651916 1.48089i
\(273\) 0 0
\(274\) 0.0686041 + 1.81892i 0.0686041 + 1.81892i
\(275\) −1.40692 + 0.213782i −1.40692 + 0.213782i
\(276\) 0 0
\(277\) 0 0 −0.947098 0.320944i \(-0.896000\pi\)
0.947098 + 0.320944i \(0.104000\pi\)
\(278\) 1.99369 0.150606i 1.99369 0.150606i
\(279\) 0 0
\(280\) 0 0
\(281\) −0.435268 + 0.185119i −0.435268 + 0.185119i −0.597905 0.801567i \(-0.704000\pi\)
0.162637 + 0.986686i \(0.448000\pi\)
\(282\) 0 0
\(283\) −0.517621 + 1.59307i −0.517621 + 1.59307i 0.260842 + 0.965382i \(0.416000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.215011 0.795762i 0.215011 0.795762i
\(289\) 1.37694 + 0.849750i 1.37694 + 0.849750i
\(290\) 0 0
\(291\) 0.169136 2.68834i 0.169136 2.68834i
\(292\) −0.0893554 0.0882395i −0.0893554 0.0882395i
\(293\) 0 0 0.556876 0.830596i \(-0.312000\pi\)
−0.556876 + 0.830596i \(0.688000\pi\)
\(294\) −1.32346 0.269741i −1.32346 0.269741i
\(295\) 0 0
\(296\) 0 0
\(297\) −0.278120 + 0.191576i −0.278120 + 0.191576i
\(298\) 0 0
\(299\) 0 0
\(300\) 0.961047 0.949045i 0.961047 0.949045i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1.69239 + 0.770553i 1.69239 + 0.770553i
\(305\) 0 0
\(306\) 0.443895 + 1.25771i 0.443895 + 1.25771i
\(307\) −0.767139 1.35481i −0.767139 1.35481i −0.929776 0.368125i \(-0.880000\pi\)
0.162637 0.986686i \(-0.448000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.823533 0.567269i \(-0.808000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(312\) 0 0
\(313\) 0.517948 + 1.03252i 0.517948 + 1.03252i 0.988652 + 0.150226i \(0.0480000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.899405 0.437116i \(-0.856000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −0.923266 0.958746i −0.923266 0.958746i
\(322\) 0 0
\(323\) −2.96238 + 0.526613i −2.96238 + 0.526613i
\(324\) 0.381022 1.07956i 0.381022 1.07956i
\(325\) 0 0
\(326\) −1.77815 0.652821i −1.77815 0.652821i
\(327\) 0 0
\(328\) 1.35136 + 1.03469i 1.35136 + 1.03469i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.371566 0.204270i 0.371566 0.204270i −0.285019 0.958522i \(-0.592000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(332\) 1.63875 0.165302i 1.63875 0.165302i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.115932 + 0.303913i 0.115932 + 0.303913i 0.979855 0.199710i \(-0.0640000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(338\) 0.938734 0.344643i 0.938734 0.344643i
\(339\) 1.19440 0.914513i 1.19440 0.914513i
\(340\) 0 0
\(341\) 0 0
\(342\) −1.34322 0.738444i −1.34322 0.738444i
\(343\) 0 0
\(344\) −1.87213 0.141424i −1.87213 0.141424i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.229672 + 0.772389i −0.229672 + 0.772389i 0.762443 + 0.647056i \(0.224000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.974527 0.224271i \(-0.928000\pi\)
0.974527 + 0.224271i \(0.0720000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.301701 1.39072i −0.301701 1.39072i
\(353\) −0.263146 0.809880i −0.263146 0.809880i −0.992115 0.125333i \(-0.960000\pi\)
0.728969 0.684547i \(-0.240000\pi\)
\(354\) −2.04921 1.73909i −2.04921 1.73909i
\(355\) 0 0
\(356\) −1.86108 + 0.428296i −1.86108 + 0.428296i
\(357\) 0 0
\(358\) −0.352310 0.384748i −0.352310 0.384748i
\(359\) 0 0 0.356412 0.934329i \(-0.384000\pi\)
−0.356412 + 0.934329i \(0.616000\pi\)
\(360\) 0 0
\(361\) 1.51866 1.93265i 1.51866 1.93265i
\(362\) 0 0
\(363\) 0.651742 1.22163i 0.651742 1.22163i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.112856 0.993611i \(-0.464000\pi\)
−0.112856 + 0.993611i \(0.536000\pi\)
\(368\) 0 0
\(369\) −1.04651 0.934378i −1.04651 0.934378i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.984564 0.175023i \(-0.944000\pi\)
0.984564 + 0.175023i \(0.0560000\pi\)
\(374\) 1.67851 + 1.57622i 1.67851 + 1.57622i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.01130 + 0.949677i 1.01130 + 0.949677i 0.998737 0.0502443i \(-0.0160000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.112856 0.993611i \(-0.536000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(384\) 1.00752 + 0.899559i 1.00752 + 0.899559i
\(385\) 0 0
\(386\) 0.0478527 0.421305i 0.0478527 0.421305i
\(387\) 1.53003 + 0.232488i 1.53003 + 0.232488i
\(388\) 1.72294 + 1.00438i 1.72294 + 1.00438i
\(389\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.617860 0.786288i 0.617860 0.786288i
\(393\) −0.0297463 + 2.36701i −0.0297463 + 2.36701i
\(394\) 0 0
\(395\) 0 0
\(396\) 0.161633 + 1.16185i 0.161633 + 1.16185i
\(397\) 0 0 0.974527 0.224271i \(-0.0720000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(401\) 0.390191 + 1.79863i 0.390191 + 1.79863i 0.577573 + 0.816339i \(0.304000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(402\) 0.926903 0.870420i 0.926903 0.870420i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −2.16819 0.273906i −2.16819 0.273906i
\(409\) 0.663748 + 0.0501405i 0.663748 + 0.0501405i 0.402906 0.915241i \(-0.368000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(410\) 0 0
\(411\) 2.15440 + 1.18439i 2.15440 + 1.18439i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.21085 2.41380i 1.21085 2.41380i
\(418\) −2.64544 0.0665012i −2.64544 0.0665012i
\(419\) 0.342431 + 0.570803i 0.342431 + 0.570803i 0.979855 0.199710i \(-0.0640000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(420\) 0 0
\(421\) 0 0 0.994951 0.100362i \(-0.0320000\pi\)
−0.994951 + 0.100362i \(0.968000\pi\)
\(422\) 1.01226 0.556496i 1.01226 0.556496i
\(423\) 0 0
\(424\) 0 0
\(425\) −1.28470 0.983652i −1.28470 0.983652i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.940976 0.292721i 0.940976 0.292721i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.837528 0.546394i \(-0.816000\pi\)
0.837528 + 0.546394i \(0.184000\pi\)
\(432\) 0.164614 + 0.170940i 0.164614 + 0.170940i
\(433\) 0.0915446 + 1.45506i 0.0915446 + 1.45506i 0.728969 + 0.684547i \(0.240000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −0.164289 + 0.0421823i −0.164289 + 0.0421823i
\(439\) 0 0 −0.425779 0.904827i \(-0.640000\pi\)
0.425779 + 0.904827i \(0.360000\pi\)
\(440\) 0 0
\(441\) −0.556675 + 0.607930i −0.556675 + 0.607930i
\(442\) 0 0
\(443\) −0.594566 + 0.168694i −0.594566 + 0.168694i −0.556876 0.830596i \(-0.688000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.518795 + 0.236210i 0.518795 + 0.236210i 0.656586 0.754251i \(-0.272000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(450\) −0.194946 0.800914i −0.194946 0.800914i
\(451\) −2.34596 0.602340i −2.34596 0.602340i
\(452\) 0.208696 + 1.09402i 0.208696 + 1.09402i
\(453\) 0 0
\(454\) −1.30282 1.49661i −1.30282 1.49661i
\(455\) 0 0
\(456\) 2.06841 1.42477i 2.06841 1.42477i
\(457\) −0.147663 + 1.06143i −0.147663 + 1.06143i 0.762443 + 0.647056i \(0.224000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(458\) 0 0
\(459\) −0.376249 0.0766854i −0.376249 0.0766854i
\(460\) 0 0
\(461\) 0 0 −0.711536 0.702650i \(-0.752000\pi\)
0.711536 + 0.702650i \(0.248000\pi\)
\(462\) 0 0
\(463\) 0 0 0.762443 0.647056i \(-0.224000\pi\)
−0.762443 + 0.647056i \(0.776000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.469300 + 1.14314i −0.469300 + 1.14314i
\(467\) −1.00815 + 0.205477i −1.00815 + 0.205477i −0.675333 0.737513i \(-0.736000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 1.83117 0.778795i 1.83117 0.778795i
\(473\) 2.53043 0.857488i 2.53043 0.857488i
\(474\) 0 0
\(475\) 1.85427 0.140074i 1.85427 0.140074i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.0376902 0.999289i \(-0.512000\pi\)
0.0376902 + 0.999289i \(0.488000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.35515 + 0.984573i 1.35515 + 0.984573i
\(483\) 0 0
\(484\) 0.592088 + 0.836856i 0.592088 + 0.836856i
\(485\) 0 0
\(486\) −0.834368 1.00858i −0.834368 1.00858i
\(487\) 0 0 0.162637 0.986686i \(-0.448000\pi\)
−0.162637 + 0.986686i \(0.552000\pi\)
\(488\) 0 0
\(489\) −1.99164 + 1.60590i −1.99164 + 1.60590i
\(490\) 0 0
\(491\) 0.656200 0.382531i 0.656200 0.382531i −0.137790 0.990461i \(-0.544000\pi\)
0.793990 + 0.607930i \(0.208000\pi\)
\(492\) 2.13739 0.846251i 2.13739 0.846251i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0.947203 2.01291i 0.947203 2.01291i
\(499\) 0.275494 0.00692537i 0.275494 0.00692537i 0.112856 0.993611i \(-0.464000\pi\)
0.162637 + 0.986686i \(0.448000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.984564 + 0.175023i −0.984564 + 0.175023i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.253089 1.32674i 0.253089 1.32674i
\(508\) 0 0
\(509\) 0 0 −0.379779 0.925077i \(-0.624000\pi\)
0.379779 + 0.925077i \(0.376000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.929776 + 0.368125i −0.929776 + 0.368125i
\(513\) 0.381250 0.222249i 0.381250 0.222249i
\(514\) −0.696161 + 1.58140i −0.696161 + 1.58140i
\(515\) 0 0
\(516\) −1.46463 + 2.07010i −1.46463 + 2.07010i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.469204 0.228036i 0.469204 0.228036i −0.187381 0.982287i \(-0.560000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(522\) 0 0
\(523\) −0.785286 1.78385i −0.785286 1.78385i −0.597905 0.801567i \(-0.704000\pi\)
−0.187381 0.982287i \(-0.560000\pi\)
\(524\) −1.55656 0.805466i −1.55656 0.805466i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −1.82041 0.616884i −1.82041 0.616884i
\(529\) −0.997159 + 0.0753268i −0.997159 + 0.0753268i
\(530\) 0 0
\(531\) −1.55350 + 0.526435i −1.55350 + 0.526435i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.797080 + 2.45316i −0.797080 + 2.45316i
\(535\) 0 0
\(536\) 0.268319 + 0.902360i 0.268319 + 0.902360i
\(537\) −0.690425 + 0.140720i −0.690425 + 0.140720i
\(538\) 0 0
\(539\) −0.371196 + 1.37381i −0.371196 + 1.37381i
\(540\) 0 0
\(541\) 0 0 0.762443 0.647056i \(-0.224000\pi\)
−0.762443 + 0.647056i \(0.776000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.901044 1.34393i 0.901044 1.34393i
\(545\) 0 0
\(546\) 0 0
\(547\) 0.0379723 0.272952i 0.0379723 0.272952i −0.962028 0.272952i \(-0.912000\pi\)
1.00000 \(0\)
\(548\) −1.49900 + 1.03255i −1.49900 + 1.03255i
\(549\) 0 0
\(550\) −0.934368 1.07335i −0.934368 1.07335i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 1.19543 + 1.60263i 1.19543 + 1.60263i
\(557\) 0 0 −0.332820 0.942991i \(-0.608000\pi\)
0.332820 + 0.942991i \(0.392000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 2.99192 0.848884i 2.99192 0.848884i
\(562\) −0.389529 0.268317i −0.389529 0.268317i
\(563\) 1.34002 1.46340i 1.34002 1.46340i 0.577573 0.816339i \(-0.304000\pi\)
0.762443 0.647056i \(-0.224000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.62243 + 0.416570i −1.62243 + 0.416570i
\(567\) 0 0
\(568\) 0 0
\(569\) −0.281012 1.70484i −0.281012 1.70484i −0.637424 0.770513i \(-0.720000\pi\)
0.356412 0.934329i \(-0.384000\pi\)
\(570\) 0 0
\(571\) −0.111533 1.77277i −0.111533 1.77277i −0.514440 0.857527i \(-0.672000\pi\)
0.402906 0.915241i \(-0.368000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.787093 0.244851i 0.787093 0.244851i
\(577\) 1.30231 + 0.478125i 1.30231 + 0.478125i 0.899405 0.437116i \(-0.144000\pi\)
0.402906 + 0.915241i \(0.368000\pi\)
\(578\) 0.0203323 + 1.61791i 0.0203323 + 1.61791i
\(579\) −0.454719 0.348163i −0.454719 0.348163i
\(580\) 0 0
\(581\) 0 0
\(582\) 2.36047 1.29768i 2.36047 1.29768i
\(583\) 0 0
\(584\) 0.0266241 0.122726i 0.0266241 0.122726i
\(585\) 0 0
\(586\) 0 0
\(587\) −0.536181 + 1.06886i −0.536181 + 1.06886i 0.448383 + 0.893841i \(0.352000\pi\)
−0.984564 + 0.175023i \(0.944000\pi\)
\(588\) −0.481393 1.26197i −0.481393 1.26197i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.863561 + 0.474746i 0.863561 + 0.474746i 0.850994 0.525175i \(-0.176000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(594\) −0.310777 0.132173i −0.310777 0.132173i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.0878512 0.996134i \(-0.472000\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(600\) 1.31626 + 0.302915i 1.31626 + 0.302915i
\(601\) −1.62243 + 1.05846i −1.62243 + 1.05846i −0.675333 + 0.737513i \(0.736000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(602\) 0 0
\(603\) −0.164518 0.758360i −0.164518 0.758360i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.974527 0.224271i \(-0.0720000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(608\) 0.256228 + 1.84182i 0.256228 + 1.84182i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.824065 + 1.04871i −0.824065 + 1.04871i
\(613\) 0 0 0.236499 0.971632i \(-0.424000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(614\) 0.732851 1.37366i 0.732851 1.37366i
\(615\) 0 0
\(616\) 0 0
\(617\) −1.47495 0.224119i −1.47495 0.224119i −0.637424 0.770513i \(-0.720000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(618\) 0 0
\(619\) −0.921774 + 0.823004i −0.921774 + 0.823004i −0.984564 0.175023i \(-0.944000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.728969 + 0.684547i 0.728969 + 0.684547i
\(626\) −0.594252 + 0.990568i −0.594252 + 0.990568i
\(627\) −1.91517 + 3.01783i −1.91517 + 3.01783i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.984564 0.175023i \(-0.944000\pi\)
0.984564 + 0.175023i \(0.0560000\pi\)
\(632\) 0 0
\(633\) 0.0588048 1.55911i 0.0588048 1.55911i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.176402 0.330650i 0.176402 0.330650i −0.778462 0.627691i \(-0.784000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(642\) 0.314785 1.29326i 0.314785 1.29326i
\(643\) 0.811356 1.03253i 0.811356 1.03253i −0.187381 0.982287i \(-0.560000\pi\)
0.998737 0.0502443i \(-0.0160000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.03195 2.21904i −2.03195 2.21904i
\(647\) 0 0 −0.137790 0.990461i \(-0.544000\pi\)
0.137790 + 0.990461i \(0.456000\pi\)
\(648\) 1.11567 0.256752i 1.11567 0.256752i
\(649\) −1.96427 + 2.03975i −1.96427 + 2.03975i
\(650\) 0 0
\(651\) 0 0
\(652\) −0.401583 1.85114i −0.401583 1.85114i
\(653\) 0 0 0.728969 0.684547i \(-0.240000\pi\)
−0.728969 + 0.684547i \(0.760000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.149522 + 1.69541i −0.149522 + 1.69541i
\(657\) −0.0295041 + 0.0992225i −0.0295041 + 0.0992225i
\(658\) 0 0
\(659\) −1.73879 0.219661i −1.73879 0.219661i −0.809017 0.587785i \(-0.800000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(660\) 0 0
\(661\) 0 0 −0.920232 0.391374i \(-0.872000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(662\) 0.371566 + 0.204270i 0.371566 + 0.204270i
\(663\) 0 0
\(664\) 1.01766 + 1.29507i 1.01766 + 1.29507i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.0220234 0.0121075i 0.0220234 0.0121075i −0.470704 0.882291i \(-0.656000\pi\)
0.492727 + 0.870184i \(0.336000\pi\)
\(674\) −0.194483 + 0.260729i −0.194483 + 0.260729i
\(675\) 0.226604 + 0.0704925i 0.226604 + 0.0704925i
\(676\) 0.793990 + 0.607930i 0.793990 + 0.607930i
\(677\) 0 0 −0.0125660 0.999921i \(-0.504000\pi\)
0.0125660 + 0.999921i \(0.496000\pi\)
\(678\) 1.41214 + 0.518448i 1.41214 + 0.518448i
\(679\) 0 0
\(680\) 0 0
\(681\) −2.63866 + 0.469067i −2.63866 + 0.469067i
\(682\) 0 0
\(683\) 0.622045 + 0.645949i 0.622045 + 0.645949i 0.954865 0.297042i \(-0.0960000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(684\) −0.0962469 1.52980i −0.0962469 1.52980i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.883731 1.65647i −0.883731 1.65647i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.683733 + 1.36301i 0.683733 + 1.36301i 0.920232 + 0.391374i \(0.128000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.775214 + 0.219948i −0.775214 + 0.219948i
\(695\) 0 0
\(696\) 0 0
\(697\) −1.35691 2.39638i −1.35691 2.39638i
\(698\) 0 0
\(699\) 0.997929 + 1.33785i 0.997929 + 1.33785i
\(700\) 0 0
\(701\) 0 0 −0.236499 0.971632i \(-0.576000\pi\)
0.236499 + 0.971632i \(0.424000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.01257 0.999921i 1.01257 0.999921i
\(705\) 0 0
\(706\) 0.542804 0.656137i 0.542804 0.656137i
\(707\) 0 0
\(708\) 0.370338 2.66206i 0.370338 2.66206i
\(709\) 0 0 −0.0878512 0.996134i \(-0.528000\pi\)
0.0878512 + 0.996134i \(0.472000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.35884 1.34187i −1.35884 1.34187i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.136077 0.503623i 0.136077 0.503623i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.285019 0.958522i \(-0.592000\pi\)
0.285019 + 0.958522i \(0.408000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 2.44553 + 0.246683i 2.44553 + 0.246683i
\(723\) 2.08197 0.885460i 2.08197 0.885460i
\(724\) 0 0
\(725\) 0 0
\(726\) 1.38068 0.104298i 1.38068 0.104298i
\(727\) 0 0 −0.947098 0.320944i \(-0.896000\pi\)
0.947098 + 0.320944i \(0.104000\pi\)
\(728\) 0 0
\(729\) −0.616076 + 0.0936128i −0.616076 + 0.0936128i
\(730\) 0 0
\(731\) 2.69799 + 1.39611i 2.69799 + 1.39611i
\(732\) 0 0
\(733\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.853951 1.03225i −0.853951 1.03225i
\(738\) 0.228171 1.38427i 0.228171 1.38427i
\(739\) 0.517948 0.732066i 0.517948 0.732066i −0.470704 0.882291i \(-0.656000\pi\)
0.988652 + 0.150226i \(0.0480000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.929776 0.368125i \(-0.120000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.756054 1.12768i −0.756054 1.12768i
\(748\) −0.431460 + 2.26179i −0.431460 + 2.26179i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.535827 0.844328i \(-0.680000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(752\) 0 0
\(753\) −0.481393 + 1.26197i −0.481393 + 1.26197i
\(754\) 0 0
\(755\) 0 0