Properties

Label 2008.1.bd.a.179.1
Level 2008
Weight 1
Character 2008.179
Analytic conductor 1.002
Analytic rank 0
Dimension 100
Projective image \(D_{125}\)
CM discriminant -8
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2008 = 2^{3} \cdot 251 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2008.bd (of order \(250\), degree \(100\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00212254537\)
Analytic rank: \(0\)
Dimension: \(100\)
Coefficient field: \(\Q(\zeta_{250})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{125}\)
Projective field Galois closure of \(\mathbb{Q}[x]/(x^{125} - \cdots)\)

Embedding invariants

Embedding label 179.1
Root \(0.285019 + 0.958522i\) of \(x^{100} - x^{75} + x^{50} - x^{25} + 1\)
Character \(\chi\) \(=\) 2008.179
Dual form 2008.1.bd.a.875.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.637424 - 0.770513i) q^{2} +(0.238081 + 0.138789i) q^{3} +(-0.187381 + 0.982287i) q^{4} +(-0.0448196 - 0.271911i) q^{6} +(0.876307 - 0.481754i) q^{8} +(-0.455307 - 0.804098i) q^{9} +O(q^{10})\) \(q+(-0.637424 - 0.770513i) q^{2} +(0.238081 + 0.138789i) q^{3} +(-0.187381 + 0.982287i) q^{4} +(-0.0448196 - 0.271911i) q^{6} +(0.876307 - 0.481754i) q^{8} +(-0.455307 - 0.804098i) q^{9} +(-0.139506 + 1.58184i) q^{11} +(-0.180942 + 0.207857i) q^{12} +(-0.929776 - 0.368125i) q^{16} +(1.43703 + 0.743616i) q^{17} +(-0.329344 + 0.863372i) q^{18} +(-0.125224 - 0.00945962i) q^{19} +(1.30775 - 0.900812i) q^{22} +(0.275494 + 0.00692537i) q^{24} +(0.0627905 + 0.998027i) q^{25} +(0.00666292 - 0.530190i) q^{27} +(0.309017 + 0.951057i) q^{32} +(-0.252755 + 0.357244i) q^{33} +(-0.343035 - 1.58125i) q^{34} +(0.875171 - 0.296570i) q^{36} +(0.0725322 + 0.102517i) q^{38} +(0.917174 - 0.702248i) q^{41} +(-0.422111 + 0.791209i) q^{43} +(-1.52768 - 0.433442i) q^{44} +(-0.170270 - 0.216686i) q^{48} +(0.793990 + 0.607930i) q^{49} +(0.728969 - 0.684547i) q^{50} +(0.238924 + 0.376485i) q^{51} +(-0.412766 + 0.332822i) q^{54} +(-0.0285006 - 0.0196319i) q^{57} +(0.913785 - 0.472852i) q^{59} +(0.535827 - 0.844328i) q^{64} +(0.436373 - 0.0329643i) q^{66} +(-0.434622 + 1.46164i) q^{67} +(-0.999718 + 1.27224i) q^{68} +(-0.786366 - 0.485290i) q^{72} +(-1.44501 - 1.29018i) q^{73} +(-0.123566 + 0.246325i) q^{75} +(0.0327567 - 0.121234i) q^{76} +(-0.400200 + 0.667099i) q^{81} +(-1.12572 - 0.259065i) q^{82} +(1.86799 + 0.685806i) q^{83} +(0.878701 - 0.179093i) q^{86} +(0.639808 + 1.45339i) q^{88} +(1.97481 - 0.300072i) q^{89} +(-0.0584250 + 0.269316i) q^{96} +(-0.0241778 + 0.00685985i) q^{97} +(-0.0376902 - 0.999289i) q^{98} +(1.33547 - 0.608047i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100q + O(q^{10}) \) \( 100q - 25q^{22} - 25q^{32} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2008\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(503\) \(1005\)
\(\chi(n)\) \(e\left(\frac{56}{125}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.637424 0.770513i −0.637424 0.770513i
\(3\) 0.238081 + 0.138789i 0.238081 + 0.138789i 0.617860 0.786288i \(-0.288000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(4\) −0.187381 + 0.982287i −0.187381 + 0.982287i
\(5\) 0 0 −0.728969 0.684547i \(-0.760000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(6\) −0.0448196 0.271911i −0.0448196 0.271911i
\(7\) 0 0 −0.947098 0.320944i \(-0.896000\pi\)
0.947098 + 0.320944i \(0.104000\pi\)
\(8\) 0.876307 0.481754i 0.876307 0.481754i
\(9\) −0.455307 0.804098i −0.455307 0.804098i
\(10\) 0 0
\(11\) −0.139506 + 1.58184i −0.139506 + 1.58184i 0.535827 + 0.844328i \(0.320000\pi\)
−0.675333 + 0.737513i \(0.736000\pi\)
\(12\) −0.180942 + 0.207857i −0.180942 + 0.207857i
\(13\) 0 0 0.112856 0.993611i \(-0.464000\pi\)
−0.112856 + 0.993611i \(0.536000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.929776 0.368125i −0.929776 0.368125i
\(17\) 1.43703 + 0.743616i 1.43703 + 0.743616i 0.988652 0.150226i \(-0.0480000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(18\) −0.329344 + 0.863372i −0.329344 + 0.863372i
\(19\) −0.125224 0.00945962i −0.125224 0.00945962i 0.0125660 0.999921i \(-0.496000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.30775 0.900812i 1.30775 0.900812i
\(23\) 0 0 0.711536 0.702650i \(-0.248000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(24\) 0.275494 + 0.00692537i 0.275494 + 0.00692537i
\(25\) 0.0627905 + 0.998027i 0.0627905 + 0.998027i
\(26\) 0 0
\(27\) 0.00666292 0.530190i 0.00666292 0.530190i
\(28\) 0 0
\(29\) 0 0 −0.837528 0.546394i \(-0.816000\pi\)
0.837528 + 0.546394i \(0.184000\pi\)
\(30\) 0 0
\(31\) 0 0 −0.514440 0.857527i \(-0.672000\pi\)
0.514440 + 0.857527i \(0.328000\pi\)
\(32\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(33\) −0.252755 + 0.357244i −0.252755 + 0.357244i
\(34\) −0.343035 1.58125i −0.343035 1.58125i
\(35\) 0 0
\(36\) 0.875171 0.296570i 0.875171 0.296570i
\(37\) 0 0 0.675333 0.737513i \(-0.264000\pi\)
−0.675333 + 0.737513i \(0.736000\pi\)
\(38\) 0.0725322 + 0.102517i 0.0725322 + 0.102517i
\(39\) 0 0
\(40\) 0 0
\(41\) 0.917174 0.702248i 0.917174 0.702248i −0.0376902 0.999289i \(-0.512000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(42\) 0 0
\(43\) −0.422111 + 0.791209i −0.422111 + 0.791209i −0.999684 0.0251301i \(-0.992000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(44\) −1.52768 0.433442i −1.52768 0.433442i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.929776 0.368125i \(-0.120000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(48\) −0.170270 0.216686i −0.170270 0.216686i
\(49\) 0.793990 + 0.607930i 0.793990 + 0.607930i
\(50\) 0.728969 0.684547i 0.728969 0.684547i
\(51\) 0.238924 + 0.376485i 0.238924 + 0.376485i
\(52\) 0 0
\(53\) 0 0 −0.899405 0.437116i \(-0.856000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(54\) −0.412766 + 0.332822i −0.412766 + 0.332822i
\(55\) 0 0
\(56\) 0 0
\(57\) −0.0285006 0.0196319i −0.0285006 0.0196319i
\(58\) 0 0
\(59\) 0.913785 0.472852i 0.913785 0.472852i 0.0627905 0.998027i \(-0.480000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(60\) 0 0
\(61\) 0 0 0.137790 0.990461i \(-0.456000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.535827 0.844328i 0.535827 0.844328i
\(65\) 0 0
\(66\) 0.436373 0.0329643i 0.436373 0.0329643i
\(67\) −0.434622 + 1.46164i −0.434622 + 1.46164i 0.402906 + 0.915241i \(0.368000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(68\) −0.999718 + 1.27224i −0.999718 + 1.27224i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.910106 0.414376i \(-0.864000\pi\)
0.910106 + 0.414376i \(0.136000\pi\)
\(72\) −0.786366 0.485290i −0.786366 0.485290i
\(73\) −1.44501 1.29018i −1.44501 1.29018i −0.888136 0.459580i \(-0.848000\pi\)
−0.556876 0.830596i \(-0.688000\pi\)
\(74\) 0 0
\(75\) −0.123566 + 0.246325i −0.123566 + 0.246325i
\(76\) 0.0327567 0.121234i 0.0327567 0.121234i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.778462 0.627691i \(-0.784000\pi\)
0.778462 + 0.627691i \(0.216000\pi\)
\(80\) 0 0
\(81\) −0.400200 + 0.667099i −0.400200 + 0.667099i
\(82\) −1.12572 0.259065i −1.12572 0.259065i
\(83\) 1.86799 + 0.685806i 1.86799 + 0.685806i 0.968583 + 0.248690i \(0.0800000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.878701 0.179093i 0.878701 0.179093i
\(87\) 0 0
\(88\) 0.639808 + 1.45339i 0.639808 + 1.45339i
\(89\) 1.97481 0.300072i 1.97481 0.300072i 0.979855 0.199710i \(-0.0640000\pi\)
0.994951 0.100362i \(-0.0320000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −0.0584250 + 0.269316i −0.0584250 + 0.269316i
\(97\) −0.0241778 + 0.00685985i −0.0241778 + 0.00685985i −0.285019 0.958522i \(-0.592000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(98\) −0.0376902 0.999289i −0.0376902 0.999289i
\(99\) 1.33547 0.608047i 1.33547 0.608047i
\(100\) −0.992115 0.125333i −0.992115 0.125333i
\(101\) 0 0 0.974527 0.224271i \(-0.0720000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(102\) 0.137790 0.424075i 0.137790 0.424075i
\(103\) 0 0 −0.597905 0.801567i \(-0.704000\pi\)
0.597905 + 0.801567i \(0.296000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.271327 + 1.95035i 0.271327 + 1.95035i 0.309017 + 0.951057i \(0.400000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(108\) 0.519551 + 0.105893i 0.519551 + 0.105893i
\(109\) 0 0 −0.260842 0.965382i \(-0.584000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.263152 0.191191i −0.263152 0.191191i 0.448383 0.893841i \(-0.352000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(114\) 0.00304033 + 0.0344739i 0.00304033 + 0.0344739i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.946807 0.402676i −0.946807 0.402676i
\(119\) 0 0
\(120\) 0 0
\(121\) −1.49819 0.266330i −1.49819 0.266330i
\(122\) 0 0
\(123\) 0.315825 0.0398980i 0.315825 0.0398980i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.938734 0.344643i \(-0.112000\pi\)
−0.938734 + 0.344643i \(0.888000\pi\)
\(128\) −0.992115 + 0.125333i −0.992115 + 0.125333i
\(129\) −0.210307 + 0.129787i −0.210307 + 0.129787i
\(130\) 0 0
\(131\) 0.605914 + 0.598348i 0.605914 + 0.598348i 0.938734 0.344643i \(-0.112000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(132\) −0.303554 0.315219i −0.303554 0.315219i
\(133\) 0 0
\(134\) 1.40325 0.596800i 1.40325 0.596800i
\(135\) 0 0
\(136\) 1.61752 0.0406613i 1.61752 0.0406613i
\(137\) −0.158028 1.79186i −0.158028 1.79186i −0.514440 0.857527i \(-0.672000\pi\)
0.356412 0.934329i \(-0.384000\pi\)
\(138\) 0 0
\(139\) −1.31738 1.11801i −1.31738 1.11801i −0.984564 0.175023i \(-0.944000\pi\)
−0.332820 0.942991i \(-0.608000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.127326 + 0.915241i 0.127326 + 0.915241i
\(145\) 0 0
\(146\) −0.0730122 + 1.93579i −0.0730122 + 1.93579i
\(147\) 0.104660 + 0.254933i 0.104660 + 0.254933i
\(148\) 0 0
\(149\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(150\) 0.268561 0.0618047i 0.268561 0.0618047i
\(151\) 0 0 −0.992115 0.125333i \(-0.960000\pi\)
0.992115 + 0.125333i \(0.0400000\pi\)
\(152\) −0.114292 + 0.0520377i −0.114292 + 0.0520377i
\(153\) −0.0563526 1.49409i −0.0563526 1.49409i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.876307 0.481754i \(-0.840000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.769105 0.116866i 0.769105 0.116866i
\(163\) −0.674891 1.53308i −0.674891 1.53308i −0.837528 0.546394i \(-0.816000\pi\)
0.162637 0.986686i \(-0.448000\pi\)
\(164\) 0.517948 + 1.03252i 0.517948 + 1.03252i
\(165\) 0 0
\(166\) −0.662278 1.87646i −0.662278 1.87646i
\(167\) 0 0 0.863923 0.503623i \(-0.168000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(168\) 0 0
\(169\) −0.974527 0.224271i −0.974527 0.224271i
\(170\) 0 0
\(171\) 0.0494091 + 0.105000i 0.0494091 + 0.105000i
\(172\) −0.698099 0.562893i −0.698099 0.562893i
\(173\) 0 0 0.998737 0.0502443i \(-0.0160000\pi\)
−0.998737 + 0.0502443i \(0.984000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.712024 1.41940i 0.712024 1.41940i
\(177\) 0.283181 + 0.0142462i 0.283181 + 0.0142462i
\(178\) −1.49000 1.33034i −1.49000 1.33034i
\(179\) −1.14941 0.709335i −1.14941 0.709335i −0.187381 0.982287i \(-0.560000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(180\) 0 0
\(181\) 0 0 0.379779 0.925077i \(-0.376000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.37676 + 2.16942i −1.37676 + 2.16942i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.994951 0.100362i \(-0.0320000\pi\)
−0.994951 + 0.100362i \(0.968000\pi\)
\(192\) 0.244753 0.126651i 0.244753 0.126651i
\(193\) −0.219963 1.93660i −0.219963 1.93660i −0.332820 0.942991i \(-0.608000\pi\)
0.112856 0.993611i \(-0.464000\pi\)
\(194\) 0.0206971 + 0.0142566i 0.0206971 + 0.0142566i
\(195\) 0 0
\(196\) −0.745941 + 0.666012i −0.745941 + 0.666012i
\(197\) 0 0 0.778462 0.627691i \(-0.216000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(198\) −1.31977 0.641416i −1.31977 0.641416i
\(199\) 0 0 −0.954865 0.297042i \(-0.904000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(200\) 0.535827 + 0.844328i 0.535827 + 0.844328i
\(201\) −0.306334 + 0.287666i −0.306334 + 0.287666i
\(202\) 0 0
\(203\) 0 0
\(204\) −0.414586 + 0.164146i −0.414586 + 0.164146i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.0324331 0.196765i 0.0324331 0.196765i
\(210\) 0 0
\(211\) 0.690429 + 0.177272i 0.690429 + 0.177272i 0.577573 0.816339i \(-0.304000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.32982 1.45226i 1.32982 1.45226i
\(215\) 0 0
\(216\) −0.249582 0.467819i −0.249582 0.467819i
\(217\) 0 0
\(218\) 0 0
\(219\) −0.164967 0.507717i −0.164967 0.507717i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.492727 0.870184i \(-0.336000\pi\)
−0.492727 + 0.870184i \(0.664000\pi\)
\(224\) 0 0
\(225\) 0.773922 0.504899i 0.773922 0.504899i
\(226\) 0.0204241 + 0.324632i 0.0204241 + 0.324632i
\(227\) −1.75206 0.0440433i −1.75206 0.0440433i −0.863923 0.503623i \(-0.832000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(228\) 0.0246246 0.0243171i 0.0246246 0.0243171i
\(229\) 0 0 0.823533 0.567269i \(-0.192000\pi\)
−0.823533 + 0.567269i \(0.808000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.704734 1.84745i 0.704734 1.84745i 0.212007 0.977268i \(-0.432000\pi\)
0.492727 0.870184i \(-0.336000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.293250 + 0.986203i 0.293250 + 0.986203i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.656586 0.754251i \(-0.272000\pi\)
−0.656586 + 0.754251i \(0.728000\pi\)
\(240\) 0 0
\(241\) −0.114292 + 1.81662i −0.114292 + 1.81662i 0.356412 + 0.934329i \(0.384000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(242\) 0.749775 + 1.32414i 0.749775 + 1.32414i
\(243\) −0.652512 + 0.358721i −0.652512 + 0.358721i
\(244\) 0 0
\(245\) 0 0
\(246\) −0.232057 0.217916i −0.232057 0.217916i
\(247\) 0 0
\(248\) 0 0
\(249\) 0.349550 + 0.422533i 0.349550 + 0.422533i
\(250\) 0 0
\(251\) −0.947098 + 0.320944i −0.947098 + 0.320944i
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.728969 + 0.684547i 0.728969 + 0.684547i
\(257\) −0.0285757 0.173363i −0.0285757 0.173363i 0.968583 0.248690i \(-0.0800000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(258\) 0.234058 + 0.0793152i 0.234058 + 0.0793152i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.0748104 0.848266i 0.0748104 0.848266i
\(263\) 0 0 0.656586 0.754251i \(-0.272000\pi\)
−0.656586 + 0.754251i \(0.728000\pi\)
\(264\) −0.0493878 + 0.434821i −0.0493878 + 0.434821i
\(265\) 0 0
\(266\) 0 0
\(267\) 0.511809 + 0.202640i 0.511809 + 0.202640i
\(268\) −1.35431 0.700806i −1.35431 0.700806i
\(269\) 0 0 0.356412 0.934329i \(-0.384000\pi\)
−0.356412 + 0.934329i \(0.616000\pi\)
\(270\) 0 0
\(271\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(272\) −1.06238 1.22040i −1.06238 1.22040i
\(273\) 0 0
\(274\) −1.27992 + 1.26393i −1.27992 + 1.26393i
\(275\) −1.58748 0.0399061i −1.58748 0.0399061i
\(276\) 0 0
\(277\) 0 0 0.837528 0.546394i \(-0.184000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(278\) −0.0217122 + 1.72771i −0.0217122 + 1.72771i
\(279\) 0 0
\(280\) 0 0
\(281\) −1.06348 + 1.58621i −1.06348 + 1.58621i −0.285019 + 0.958522i \(0.592000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(282\) 0 0
\(283\) −0.562476 1.73112i −0.562476 1.73112i −0.675333 0.737513i \(-0.736000\pi\)
0.112856 0.993611i \(-0.464000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.624045 0.681503i 0.624045 0.681503i
\(289\) 0.934532 + 1.32086i 0.934532 + 1.32086i
\(290\) 0 0
\(291\) −0.00670832 0.00172240i −0.00670832 0.00172240i
\(292\) 1.53809 1.17766i 1.53809 1.17766i
\(293\) 0 0 0.162637 0.986686i \(-0.448000\pi\)
−0.162637 + 0.986686i \(0.552000\pi\)
\(294\) 0.129717 0.243142i 0.129717 0.243142i
\(295\) 0 0
\(296\) 0 0
\(297\) 0.837747 + 0.0845044i 0.837747 + 0.0845044i
\(298\) 0 0
\(299\) 0 0
\(300\) −0.218808 0.167534i −0.218808 0.167534i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0.112948 + 0.0548935i 0.112948 + 0.0548935i
\(305\) 0 0
\(306\) −1.11530 + 0.995790i −1.11530 + 0.995790i
\(307\) −0.222229 + 0.0395049i −0.222229 + 0.0395049i −0.285019 0.958522i \(-0.592000\pi\)
0.0627905 + 0.998027i \(0.480000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.994951 0.100362i \(-0.0320000\pi\)
−0.994951 + 0.100362i \(0.968000\pi\)
\(312\) 0 0
\(313\) −0.237242 + 0.672186i −0.237242 + 0.672186i 0.762443 + 0.647056i \(0.224000\pi\)
−0.999684 + 0.0251301i \(0.992000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.997159 0.0753268i \(-0.0240000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −0.206089 + 0.501996i −0.206089 + 0.501996i
\(322\) 0 0
\(323\) −0.172917 0.106713i −0.172917 0.106713i
\(324\) −0.580293 0.518113i −0.580293 0.518113i
\(325\) 0 0
\(326\) −0.751067 + 1.49723i −0.751067 + 1.49723i
\(327\) 0 0
\(328\) 0.465416 1.05724i 0.465416 1.05724i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.829867 + 1.76356i 0.829867 + 1.76356i 0.617860 + 0.786288i \(0.288000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(332\) −1.02368 + 1.70639i −1.02368 + 1.70639i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.558555 + 0.113842i −0.558555 + 0.113842i −0.470704 0.882291i \(-0.656000\pi\)
−0.0878512 + 0.996134i \(0.528000\pi\)
\(338\) 0.448383 + 0.893841i 0.448383 + 0.893841i
\(339\) −0.0361162 0.0820416i −0.0361162 0.0820416i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.0494091 0.105000i 0.0494091 0.105000i
\(343\) 0 0
\(344\) 0.0112688 + 0.896696i 0.0112688 + 0.896696i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.278402 1.28332i 0.278402 1.28332i −0.597905 0.801567i \(-0.704000\pi\)
0.876307 0.481754i \(-0.160000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.0376902 0.999289i \(-0.512000\pi\)
0.0376902 + 0.999289i \(0.488000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.54753 + 0.356138i −1.54753 + 0.356138i
\(353\) −0.115808 + 0.356420i −0.115808 + 0.356420i −0.992115 0.125333i \(-0.960000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(354\) −0.169529 0.227276i −0.169529 0.227276i
\(355\) 0 0
\(356\) −0.0752852 + 1.99605i −0.0752852 + 1.99605i
\(357\) 0 0
\(358\) 0.186109 + 1.33778i 0.186109 + 1.33778i
\(359\) 0 0 −0.979855 0.199710i \(-0.936000\pi\)
0.979855 + 0.199710i \(0.0640000\pi\)
\(360\) 0 0
\(361\) −0.973060 0.147856i −0.973060 0.147856i
\(362\) 0 0
\(363\) −0.319727 0.271341i −0.319727 0.271341i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.693653 0.720309i \(-0.256000\pi\)
−0.693653 + 0.720309i \(0.744000\pi\)
\(368\) 0 0
\(369\) −0.982272 0.417759i −0.982272 0.417759i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.850994 0.525175i \(-0.176000\pi\)
−0.850994 + 0.525175i \(0.824000\pi\)
\(374\) 2.54915 0.322032i 2.54915 0.322032i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.753569 0.0951979i 0.753569 0.0951979i 0.260842 0.965382i \(-0.416000\pi\)
0.492727 + 0.870184i \(0.336000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.693653 0.720309i \(-0.744000\pi\)
0.693653 + 0.720309i \(0.256000\pi\)
\(384\) −0.253598 0.107855i −0.253598 0.107855i
\(385\) 0 0
\(386\) −1.35197 + 1.40392i −1.35197 + 1.40392i
\(387\) 0.828400 0.0208244i 0.828400 0.0208244i
\(388\) −0.00220788 0.0250349i −0.00220788 0.0250349i
\(389\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.988652 + 0.150226i 0.988652 + 0.150226i
\(393\) 0.0612125 + 0.226549i 0.0612125 + 0.226549i
\(394\) 0 0
\(395\) 0 0
\(396\) 0.347034 + 1.42576i 0.347034 + 1.42576i
\(397\) 0 0 0.0376902 0.999289i \(-0.488000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.309017 0.951057i 0.309017 0.951057i
\(401\) 1.08538 0.249782i 1.08538 0.249782i 0.356412 0.934329i \(-0.384000\pi\)
0.728969 + 0.684547i \(0.240000\pi\)
\(402\) 0.416915 + 0.0526686i 0.416915 + 0.0526686i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0.390744 + 0.214813i 0.390744 + 0.214813i
\(409\) −0.0187471 1.49176i −0.0187471 1.49176i −0.675333 0.737513i \(-0.736000\pi\)
0.656586 0.754251i \(-0.272000\pi\)
\(410\) 0 0
\(411\) 0.211066 0.448538i 0.211066 0.448538i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.158476 0.449015i −0.158476 0.449015i
\(418\) −0.172284 + 0.100433i −0.172284 + 0.100433i
\(419\) −1.40048 0.514167i −1.40048 0.514167i −0.470704 0.882291i \(-0.656000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(420\) 0 0
\(421\) 0 0 0.514440 0.857527i \(-0.328000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(422\) −0.303506 0.644982i −0.303506 0.644982i
\(423\) 0 0
\(424\) 0 0
\(425\) −0.651916 + 1.48089i −0.651916 + 1.48089i
\(426\) 0 0
\(427\) 0 0
\(428\) −1.96664 0.0989375i −1.96664 0.0989375i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.910106 0.414376i \(-0.864000\pi\)
0.910106 + 0.414376i \(0.136000\pi\)
\(432\) −0.201371 + 0.490506i −0.201371 + 0.490506i
\(433\) −1.92189 + 0.493458i −1.92189 + 0.493458i −0.929776 + 0.368125i \(0.880000\pi\)
−0.992115 + 0.125333i \(0.960000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −0.286049 + 0.450741i −0.286049 + 0.450741i
\(439\) 0 0 −0.187381 0.982287i \(-0.560000\pi\)
0.187381 + 0.982287i \(0.440000\pi\)
\(440\) 0 0
\(441\) 0.127326 0.915241i 0.127326 0.915241i
\(442\) 0 0
\(443\) −0.548899 + 0.284036i −0.548899 + 0.284036i −0.711536 0.702650i \(-0.752000\pi\)
0.162637 + 0.986686i \(0.448000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.381361 + 0.185343i 0.381361 + 0.185343i 0.617860 0.786288i \(-0.288000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(450\) −0.882348 0.274483i −0.882348 0.274483i
\(451\) 0.982893 + 1.54879i 0.982893 + 1.54879i
\(452\) 0.237115 0.222666i 0.237115 0.222666i
\(453\) 0 0
\(454\) 1.08287 + 1.37806i 1.08287 + 1.37806i
\(455\) 0 0
\(456\) −0.0344330 0.00347329i −0.0344330 0.00347329i
\(457\) 0.301500 1.23868i 0.301500 1.23868i −0.597905 0.801567i \(-0.704000\pi\)
0.899405 0.437116i \(-0.144000\pi\)
\(458\) 0 0
\(459\) 0.403833 0.756948i 0.403833 0.756948i
\(460\) 0 0
\(461\) 0 0 0.793990 0.607930i \(-0.208000\pi\)
−0.793990 + 0.607930i \(0.792000\pi\)
\(462\) 0 0
\(463\) 0 0 0.597905 0.801567i \(-0.296000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −1.87270 + 0.634603i −1.87270 + 0.634603i
\(467\) −0.883731 1.65647i −0.883731 1.65647i −0.745941 0.666012i \(-0.768000\pi\)
−0.137790 0.990461i \(-0.544000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.572958 0.854583i 0.572958 0.854583i
\(473\) −1.19268 0.778092i −1.19268 0.778092i
\(474\) 0 0
\(475\) 0.00157806 0.125571i 0.00157806 0.125571i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.711536 0.702650i \(-0.248000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.47258 1.06989i 1.47258 1.06989i
\(483\) 0 0
\(484\) 0.542346 1.42175i 0.542346 1.42175i
\(485\) 0 0
\(486\) 0.692326 + 0.274111i 0.692326 + 0.274111i
\(487\) 0 0 −0.285019 0.958522i \(-0.592000\pi\)
0.285019 + 0.958522i \(0.408000\pi\)
\(488\) 0 0
\(489\) 0.0520960 0.458664i 0.0520960 0.458664i
\(490\) 0 0
\(491\) 0.166407 1.88687i 0.166407 1.88687i −0.236499 0.971632i \(-0.576000\pi\)
0.402906 0.915241i \(-0.368000\pi\)
\(492\) −0.0199885 + 0.317707i −0.0199885 + 0.317707i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0.102756 0.538665i 0.102756 0.538665i
\(499\) 0.408634 + 0.238213i 0.408634 + 0.238213i 0.693653 0.720309i \(-0.256000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.850994 + 0.525175i 0.850994 + 0.525175i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.200890 0.188648i −0.200890 0.188648i
\(508\) 0 0
\(509\) 0 0 −0.947098 0.320944i \(-0.896000\pi\)
0.947098 + 0.320944i \(0.104000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.0627905 0.998027i 0.0627905 0.998027i
\(513\) −0.00584976 + 0.0663297i −0.00584976 + 0.0663297i
\(514\) −0.115364 + 0.132524i −0.115364 + 0.132524i
\(515\) 0 0
\(516\) −0.0880806 0.230902i −0.0880806 0.230902i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.34683 + 0.101741i 1.34683 + 0.101741i 0.728969 0.684547i \(-0.240000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(522\) 0 0
\(523\) −0.0494937 0.0568557i −0.0494937 0.0568557i 0.728969 0.684547i \(-0.240000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(524\) −0.701286 + 0.483063i −0.701286 + 0.483063i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0.366516 0.239111i 0.366516 0.239111i
\(529\) 0.0125660 0.999921i 0.0125660 0.999921i
\(530\) 0 0
\(531\) −0.796272 0.519480i −0.796272 0.519480i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.170103 0.523523i −0.170103 0.523523i
\(535\) 0 0
\(536\) 0.323286 + 1.49022i 0.323286 + 1.49022i
\(537\) −0.175204 0.328404i −0.175204 0.328404i
\(538\) 0 0
\(539\) −1.07242 + 1.17116i −1.07242 + 1.17116i
\(540\) 0 0
\(541\) 0 0 0.597905 0.801567i \(-0.296000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.263152 + 1.59649i −0.263152 + 1.59649i
\(545\) 0 0
\(546\) 0 0
\(547\) 0.111864 0.459580i 0.111864 0.459580i −0.888136 0.459580i \(-0.848000\pi\)
1.00000 \(0\)
\(548\) 1.78973 + 0.180532i 1.78973 + 0.180532i
\(549\) 0 0
\(550\) 0.981149 + 1.24861i 0.981149 + 1.24861i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 1.34506 1.08455i 1.34506 1.08455i
\(557\) 0 0 0.745941 0.666012i \(-0.232000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −0.628870 + 0.325419i −0.628870 + 0.325419i
\(562\) 1.90009 0.191664i 1.90009 0.191664i
\(563\) −0.241493 + 1.73590i −0.241493 + 1.73590i 0.356412 + 0.934329i \(0.384000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.975318 + 1.53686i −0.975318 + 1.53686i
\(567\) 0 0
\(568\) 0 0
\(569\) 0.0500786 0.168415i 0.0500786 0.168415i −0.929776 0.368125i \(-0.880000\pi\)
0.979855 + 0.199710i \(0.0640000\pi\)
\(570\) 0 0
\(571\) 1.59532 0.409608i 1.59532 0.409608i 0.656586 0.754251i \(-0.272000\pi\)
0.938734 + 0.344643i \(0.112000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.922888 0.0464285i −0.922888 0.0464285i
\(577\) −0.340573 + 0.678925i −0.340573 + 0.678925i −0.997159 0.0753268i \(-0.976000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(578\) 0.422050 1.56202i 0.422050 1.56202i
\(579\) 0.216410 0.491596i 0.216410 0.491596i
\(580\) 0 0
\(581\) 0 0
\(582\) 0.00294891 + 0.00626675i 0.00294891 + 0.00626675i
\(583\) 0 0
\(584\) −1.88782 0.434450i −1.88782 0.434450i
\(585\) 0 0
\(586\) 0 0
\(587\) 0.518175 + 1.46817i 0.518175 + 1.46817i 0.850994 + 0.525175i \(0.176000\pi\)
−0.332820 + 0.942991i \(0.608000\pi\)
\(588\) −0.270029 + 0.0550362i −0.270029 + 0.0550362i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.838414 1.78172i 0.838414 1.78172i 0.260842 0.965382i \(-0.416000\pi\)
0.577573 0.816339i \(-0.304000\pi\)
\(594\) −0.468889 0.699361i −0.468889 0.699361i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.962028 0.272952i \(-0.0880000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(600\) 0.0103867 + 0.275385i 0.0103867 + 0.275385i
\(601\) −0.975318 + 0.444067i −0.975318 + 0.444067i −0.837528 0.546394i \(-0.816000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(602\) 0 0
\(603\) 1.37318 0.316015i 1.37318 0.316015i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.0376902 0.999289i \(-0.488000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(608\) −0.0296998 0.122019i −0.0296998 0.122019i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 1.47819 + 0.224610i 1.47819 + 0.224610i
\(613\) 0 0 0.954865 0.297042i \(-0.0960000\pi\)
−0.954865 + 0.297042i \(0.904000\pi\)
\(614\) 0.172093 + 0.146049i 0.172093 + 0.146049i
\(615\) 0 0
\(616\) 0 0
\(617\) −1.83988 + 0.0462510i −1.83988 + 0.0462510i −0.929776 0.368125i \(-0.880000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(618\) 0 0
\(619\) 1.81958 0.773865i 1.81958 0.773865i 0.850994 0.525175i \(-0.176000\pi\)
0.968583 0.248690i \(-0.0800000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.992115 + 0.125333i −0.992115 + 0.125333i
\(626\) 0.669152 0.245670i 0.669152 0.245670i
\(627\) 0.0350305 0.0423446i 0.0350305 0.0423446i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.850994 0.525175i \(-0.176000\pi\)
−0.850994 + 0.525175i \(0.824000\pi\)
\(632\) 0 0
\(633\) 0.139774 + 0.138029i 0.139774 + 0.138029i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.11159 + 0.943367i 1.11159 + 0.943367i 0.998737 0.0502443i \(-0.0160000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(642\) 0.518161 0.161191i 0.518161 0.161191i
\(643\) 1.22170 + 0.185637i 1.22170 + 0.185637i 0.728969 0.684547i \(-0.240000\pi\)
0.492727 + 0.870184i \(0.336000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.0279982 + 0.201256i 0.0279982 + 0.201256i
\(647\) 0 0 −0.236499 0.971632i \(-0.576000\pi\)
0.236499 + 0.971632i \(0.424000\pi\)
\(648\) −0.0293205 + 0.777381i −0.0293205 + 0.777381i
\(649\) 0.620498 + 1.51143i 0.620498 + 1.51143i
\(650\) 0 0
\(651\) 0 0
\(652\) 1.63239 0.375666i 1.63239 0.375666i
\(653\) 0 0 −0.992115 0.125333i \(-0.960000\pi\)
0.992115 + 0.125333i \(0.0400000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.11128 + 0.315299i −1.11128 + 0.315299i
\(657\) −0.379503 + 1.74936i −0.379503 + 1.74936i
\(658\) 0 0
\(659\) −0.746226 0.410241i −0.746226 0.410241i 0.0627905 0.998027i \(-0.480000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(660\) 0 0
\(661\) 0 0 −0.556876 0.830596i \(-0.688000\pi\)
0.556876 + 0.830596i \(0.312000\pi\)
\(662\) 0.829867 1.76356i 0.829867 1.76356i
\(663\) 0 0
\(664\) 1.96732 0.298934i 1.96732 0.298934i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.222122 0.472033i −0.222122 0.472033i 0.762443 0.647056i \(-0.224000\pi\)
−0.984564 + 0.175023i \(0.944000\pi\)
\(674\) 0.443754 + 0.357808i 0.443754 + 0.357808i
\(675\) 0.529563 0.0266412i 0.529563 0.0266412i
\(676\) 0.402906 0.915241i 0.402906 0.915241i
\(677\) 0 0 0.260842 0.965382i \(-0.416000\pi\)
−0.260842 + 0.965382i \(0.584000\pi\)
\(678\) −0.0401928 + 0.0801233i −0.0401928 + 0.0801233i
\(679\) 0 0
\(680\) 0 0
\(681\) −0.411019 0.253652i −0.411019 0.253652i
\(682\) 0 0
\(683\) 0.252796 0.615768i 0.252796 0.615768i −0.745941 0.666012i \(-0.768000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(684\) −0.112398 + 0.0288589i −0.112398 + 0.0288589i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0.683733 0.580258i 0.683733 0.580258i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.397989 1.12764i 0.397989 1.12764i −0.556876 0.830596i \(-0.688000\pi\)
0.954865 0.297042i \(-0.0960000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.16628 + 0.603507i −1.16628 + 0.603507i
\(695\) 0 0
\(696\) 0 0
\(697\) 1.84021 0.327129i 1.84021 0.327129i
\(698\) 0 0
\(699\) 0.424189 0.342033i 0.424189 0.342033i
\(700\) 0 0
\(701\) 0 0 −0.954865 0.297042i \(-0.904000\pi\)
0.954865 + 0.297042i \(0.0960000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.26084 + 0.965382i 1.26084 + 0.965382i
\(705\) 0 0
\(706\) 0.348445 0.137959i 0.348445 0.137959i
\(707\) 0 0
\(708\) −0.0670567 + 0.275496i −0.0670567 + 0.275496i
\(709\) 0 0 −0.962028 0.272952i \(-0.912000\pi\)
0.962028 + 0.272952i \(0.0880000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.58598 1.21432i 1.58598 1.21432i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.912149 0.996134i 0.912149 0.996134i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.212007 0.977268i \(-0.568000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.506327 + 0.844003i 0.506327 + 0.844003i
\(723\) −0.279337 + 0.416639i −0.279337 + 0.416639i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.00526952 + 0.419313i −0.00526952 + 0.419313i
\(727\) 0 0 0.837528 0.546394i \(-0.184000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(728\) 0 0
\(729\) 0.572551 + 0.0143928i 0.572551 + 0.0143928i
\(730\) 0 0
\(731\) −1.19494 + 0.823106i −1.19494 + 0.823106i
\(732\) 0 0
\(733\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.25144 0.891409i −2.25144 0.891409i
\(738\) 0.304235 + 1.02314i 0.304235 + 1.02314i
\(739\) −0.237242 0.621926i −0.237242 0.621926i 0.762443 0.647056i \(-0.224000\pi\)
−0.999684 + 0.0251301i \(0.992000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.0627905 0.998027i \(-0.480000\pi\)
−0.0627905 + 0.998027i \(0.520000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.299054 1.81430i −0.299054 1.81430i
\(748\) −1.87302 1.75888i −1.87302 1.75888i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.637424 0.770513i \(-0.720000\pi\)
0.637424 + 0.770513i \(0.280000\pi\)
\(752\) 0 0
\(753\) −0.270029 0.0550362i −0.270029 0.0550362i
\(754\) 0 0