Properties

Label 2008.1.bd.a.155.1
Level 2008
Weight 1
Character 2008.155
Analytic conductor 1.002
Analytic rank 0
Dimension 100
Projective image \(D_{125}\)
CM discriminant -8
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2008 = 2^{3} \cdot 251 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2008.bd (of order \(250\), degree \(100\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00212254537\)
Analytic rank: \(0\)
Dimension: \(100\)
Coefficient field: \(\Q(\zeta_{250})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{125}\)
Projective field Galois closure of \(\mathbb{Q}[x]/(x^{125} - \cdots)\)

Embedding invariants

Embedding label 155.1
Root \(0.137790 - 0.990461i\) of \(x^{100} - x^{75} + x^{50} - x^{25} + 1\)
Character \(\chi\) \(=\) 2008.155
Dual form 2008.1.bd.a.1723.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.992115 - 0.125333i) q^{2} +(-0.507512 - 0.430706i) q^{3} +(0.968583 + 0.248690i) q^{4} +(0.449528 + 0.490918i) q^{6} +(-0.929776 - 0.368125i) q^{8} +(-0.0905766 - 0.549510i) q^{9} +O(q^{10})\) \(q+(-0.992115 - 0.125333i) q^{2} +(-0.507512 - 0.430706i) q^{3} +(0.968583 + 0.248690i) q^{4} +(0.449528 + 0.490918i) q^{6} +(-0.929776 - 0.368125i) q^{8} +(-0.0905766 - 0.549510i) q^{9} +(1.17735 - 1.57839i) q^{11} +(-0.384455 - 0.543387i) q^{12} +(0.876307 + 0.481754i) q^{16} +(0.0697491 - 0.614086i) q^{17} +(0.0209906 + 0.556529i) q^{18} +(-0.847259 - 0.0854639i) q^{19} +(-1.36589 + 1.41838i) q^{22} +(0.313319 + 0.587288i) q^{24} +(-0.425779 + 0.904827i) q^{25} +(-0.533139 + 0.888698i) q^{27} +(-0.809017 - 0.587785i) q^{32} +(-1.27734 + 0.293958i) q^{33} +(-0.146164 + 0.600501i) q^{34} +(0.0489265 - 0.554771i) q^{36} +(0.829867 + 0.190980i) q^{38} +(1.91897 + 0.341129i) q^{41} +(-1.44523 - 1.10656i) q^{43} +(1.53289 - 1.23601i) q^{44} +(-0.237242 - 0.621926i) q^{48} +(-0.984564 + 0.175023i) q^{49} +(0.535827 - 0.844328i) q^{50} +(-0.299889 + 0.281614i) q^{51} +(0.640319 - 0.814870i) q^{54} +(0.393184 + 0.408293i) q^{57} +(-0.213772 - 1.88210i) q^{59} +(0.728969 + 0.684547i) q^{64} +(1.30411 - 0.131547i) q^{66} +(-0.111033 - 0.798127i) q^{67} +(0.220275 - 0.577447i) q^{68} +(-0.118072 + 0.544265i) q^{72} +(0.373698 - 0.0282297i) q^{73} +(0.605802 - 0.275825i) q^{75} +(-0.799387 - 0.293484i) q^{76} +(0.125879 - 0.0426567i) q^{81} +(-1.86108 - 0.578950i) q^{82} +(0.636151 - 0.415018i) q^{83} +(1.29515 + 1.27897i) q^{86} +(-1.67572 + 1.03414i) q^{88} +(-1.09131 + 0.222427i) q^{89} +(0.157423 + 0.646756i) q^{96} +(0.800944 + 0.645819i) q^{97} +(0.998737 - 0.0502443i) q^{98} +(-0.973980 - 0.504001i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100q + O(q^{10}) \) \( 100q - 25q^{22} - 25q^{32} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2008\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(503\) \(1005\)
\(\chi(n)\) \(e\left(\frac{33}{125}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.992115 0.125333i −0.992115 0.125333i
\(3\) −0.507512 0.430706i −0.507512 0.430706i 0.356412 0.934329i \(-0.384000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(4\) 0.968583 + 0.248690i 0.968583 + 0.248690i
\(5\) 0 0 −0.535827 0.844328i \(-0.680000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(6\) 0.449528 + 0.490918i 0.449528 + 0.490918i
\(7\) 0 0 −0.0878512 0.996134i \(-0.528000\pi\)
0.0878512 + 0.996134i \(0.472000\pi\)
\(8\) −0.929776 0.368125i −0.929776 0.368125i
\(9\) −0.0905766 0.549510i −0.0905766 0.549510i
\(10\) 0 0
\(11\) 1.17735 1.57839i 1.17735 1.57839i 0.448383 0.893841i \(-0.352000\pi\)
0.728969 0.684547i \(-0.240000\pi\)
\(12\) −0.384455 0.543387i −0.384455 0.543387i
\(13\) 0 0 −0.988652 0.150226i \(-0.952000\pi\)
0.988652 + 0.150226i \(0.0480000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.876307 + 0.481754i 0.876307 + 0.481754i
\(17\) 0.0697491 0.614086i 0.0697491 0.614086i −0.910106 0.414376i \(-0.864000\pi\)
0.979855 0.199710i \(-0.0640000\pi\)
\(18\) 0.0209906 + 0.556529i 0.0209906 + 0.556529i
\(19\) −0.847259 0.0854639i −0.847259 0.0854639i −0.332820 0.942991i \(-0.608000\pi\)
−0.514440 + 0.857527i \(0.672000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.36589 + 1.41838i −1.36589 + 1.41838i
\(23\) 0 0 −0.492727 0.870184i \(-0.664000\pi\)
0.492727 + 0.870184i \(0.336000\pi\)
\(24\) 0.313319 + 0.587288i 0.313319 + 0.587288i
\(25\) −0.425779 + 0.904827i −0.425779 + 0.904827i
\(26\) 0 0
\(27\) −0.533139 + 0.888698i −0.533139 + 0.888698i
\(28\) 0 0
\(29\) 0 0 0.962028 0.272952i \(-0.0880000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(30\) 0 0
\(31\) 0 0 −0.947098 0.320944i \(-0.896000\pi\)
0.947098 + 0.320944i \(0.104000\pi\)
\(32\) −0.809017 0.587785i −0.809017 0.587785i
\(33\) −1.27734 + 0.293958i −1.27734 + 0.293958i
\(34\) −0.146164 + 0.600501i −0.146164 + 0.600501i
\(35\) 0 0
\(36\) 0.0489265 0.554771i 0.0489265 0.554771i
\(37\) 0 0 0.448383 0.893841i \(-0.352000\pi\)
−0.448383 + 0.893841i \(0.648000\pi\)
\(38\) 0.829867 + 0.190980i 0.829867 + 0.190980i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.91897 + 0.341129i 1.91897 + 0.341129i 0.998737 0.0502443i \(-0.0160000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(42\) 0 0
\(43\) −1.44523 1.10656i −1.44523 1.10656i −0.974527 0.224271i \(-0.928000\pi\)
−0.470704 0.882291i \(-0.656000\pi\)
\(44\) 1.53289 1.23601i 1.53289 1.23601i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.876307 0.481754i \(-0.160000\pi\)
−0.876307 + 0.481754i \(0.840000\pi\)
\(48\) −0.237242 0.621926i −0.237242 0.621926i
\(49\) −0.984564 + 0.175023i −0.984564 + 0.175023i
\(50\) 0.535827 0.844328i 0.535827 0.844328i
\(51\) −0.299889 + 0.281614i −0.299889 + 0.281614i
\(52\) 0 0
\(53\) 0 0 −0.823533 0.567269i \(-0.808000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(54\) 0.640319 0.814870i 0.640319 0.814870i
\(55\) 0 0
\(56\) 0 0
\(57\) 0.393184 + 0.408293i 0.393184 + 0.408293i
\(58\) 0 0
\(59\) −0.213772 1.88210i −0.213772 1.88210i −0.425779 0.904827i \(-0.640000\pi\)
0.212007 0.977268i \(-0.432000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.332820 0.942991i \(-0.608000\pi\)
0.332820 + 0.942991i \(0.392000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.728969 + 0.684547i 0.728969 + 0.684547i
\(65\) 0 0
\(66\) 1.30411 0.131547i 1.30411 0.131547i
\(67\) −0.111033 0.798127i −0.111033 0.798127i −0.962028 0.272952i \(-0.912000\pi\)
0.850994 0.525175i \(-0.176000\pi\)
\(68\) 0.220275 0.577447i 0.220275 0.577447i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.888136 0.459580i \(-0.152000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(72\) −0.118072 + 0.544265i −0.118072 + 0.544265i
\(73\) 0.373698 0.0282297i 0.373698 0.0282297i 0.112856 0.993611i \(-0.464000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(74\) 0 0
\(75\) 0.605802 0.275825i 0.605802 0.275825i
\(76\) −0.799387 0.293484i −0.799387 0.293484i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.617860 0.786288i \(-0.712000\pi\)
0.617860 + 0.786288i \(0.288000\pi\)
\(80\) 0 0
\(81\) 0.125879 0.0426567i 0.125879 0.0426567i
\(82\) −1.86108 0.578950i −1.86108 0.578950i
\(83\) 0.636151 0.415018i 0.636151 0.415018i −0.187381 0.982287i \(-0.560000\pi\)
0.823533 + 0.567269i \(0.192000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.29515 + 1.27897i 1.29515 + 1.27897i
\(87\) 0 0
\(88\) −1.67572 + 1.03414i −1.67572 + 1.03414i
\(89\) −1.09131 + 0.222427i −1.09131 + 0.222427i −0.711536 0.702650i \(-0.752000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0.157423 + 0.646756i 0.157423 + 0.646756i
\(97\) 0.800944 + 0.645819i 0.800944 + 0.645819i 0.938734 0.344643i \(-0.112000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(98\) 0.998737 0.0502443i 0.998737 0.0502443i
\(99\) −0.973980 0.504001i −0.973980 0.504001i
\(100\) −0.637424 + 0.770513i −0.637424 + 0.770513i
\(101\) 0 0 0.954865 0.297042i \(-0.0960000\pi\)
−0.954865 + 0.297042i \(0.904000\pi\)
\(102\) 0.332820 0.241808i 0.332820 0.241808i
\(103\) 0 0 0.656586 0.754251i \(-0.272000\pi\)
−0.656586 + 0.754251i \(0.728000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.189720 0.537541i 0.189720 0.537541i −0.809017 0.587785i \(-0.800000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(108\) −0.737400 + 0.728191i −0.737400 + 0.728191i
\(109\) 0 0 0.938734 0.344643i \(-0.112000\pi\)
−0.938734 + 0.344643i \(0.888000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.417379 + 1.28456i −0.417379 + 1.28456i 0.492727 + 0.870184i \(0.336000\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(114\) −0.338911 0.454353i −0.338911 0.454353i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.0238026 + 1.89405i −0.0238026 + 1.89405i
\(119\) 0 0
\(120\) 0 0
\(121\) −0.820134 2.75812i −0.820134 2.75812i
\(122\) 0 0
\(123\) −0.826972 0.999638i −0.826972 0.999638i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.837528 0.546394i \(-0.816000\pi\)
0.837528 + 0.546394i \(0.184000\pi\)
\(128\) −0.637424 0.770513i −0.637424 0.770513i
\(129\) 0.256869 + 1.18406i 0.256869 + 1.18406i
\(130\) 0 0
\(131\) 0.0618772 0.109279i 0.0618772 0.109279i −0.837528 0.546394i \(-0.816000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(132\) −1.31032 0.0329387i −1.31032 0.0329387i
\(133\) 0 0
\(134\) 0.0101259 + 0.805749i 0.0101259 + 0.805749i
\(135\) 0 0
\(136\) −0.290911 + 0.545286i −0.290911 + 0.545286i
\(137\) −0.984788 1.32023i −0.984788 1.32023i −0.947098 0.320944i \(-0.896000\pi\)
−0.0376902 0.999289i \(-0.512000\pi\)
\(138\) 0 0
\(139\) 0.614386 1.39564i 0.614386 1.39564i −0.285019 0.958522i \(-0.592000\pi\)
0.899405 0.437116i \(-0.144000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.185355 0.525175i 0.185355 0.525175i
\(145\) 0 0
\(146\) −0.374289 0.0188297i −0.374289 0.0188297i
\(147\) 0.575061 + 0.335231i 0.575061 + 0.335231i
\(148\) 0 0
\(149\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(150\) −0.635595 + 0.197722i −0.635595 + 0.197722i
\(151\) 0 0 0.637424 0.770513i \(-0.280000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(152\) 0.756300 + 0.391359i 0.756300 + 0.391359i
\(153\) −0.343764 + 0.0172940i −0.343764 + 0.0172940i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.929776 0.368125i \(-0.120000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −0.130233 + 0.0265435i −0.130233 + 0.0265435i
\(163\) −1.63736 + 1.01047i −1.63736 + 1.01047i −0.675333 + 0.737513i \(0.736000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(164\) 1.77385 + 0.807640i 1.77385 + 0.807640i
\(165\) 0 0
\(166\) −0.683151 + 0.332015i −0.683151 + 0.332015i
\(167\) 0 0 0.762443 0.647056i \(-0.224000\pi\)
−0.762443 + 0.647056i \(0.776000\pi\)
\(168\) 0 0
\(169\) 0.954865 + 0.297042i 0.954865 + 0.297042i
\(170\) 0 0
\(171\) 0.0297787 + 0.473318i 0.0297787 + 0.473318i
\(172\) −1.12464 1.43121i −1.12464 1.43121i
\(173\) 0 0 −0.556876 0.830596i \(-0.688000\pi\)
0.556876 + 0.830596i \(0.312000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.79212 0.815959i 1.79212 0.815959i
\(177\) −0.702137 + 1.04726i −0.702137 + 1.04726i
\(178\) 1.11059 0.0838953i 1.11059 0.0838953i
\(179\) 0.190121 0.876381i 0.190121 0.876381i −0.778462 0.627691i \(-0.784000\pi\)
0.968583 0.248690i \(-0.0800000\pi\)
\(180\) 0 0
\(181\) 0 0 0.863923 0.503623i \(-0.168000\pi\)
−0.863923 + 0.503623i \(0.832000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.887146 0.833086i −0.887146 0.833086i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.379779 0.925077i \(-0.376000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(192\) −0.0751216 0.661387i −0.0751216 0.661387i
\(193\) 1.88806 0.286890i 1.88806 0.286890i 0.899405 0.437116i \(-0.144000\pi\)
0.988652 + 0.150226i \(0.0480000\pi\)
\(194\) −0.713685 0.741111i −0.713685 0.741111i
\(195\) 0 0
\(196\) −0.997159 0.0753268i −0.997159 0.0753268i
\(197\) 0 0 0.617860 0.786288i \(-0.288000\pi\)
−0.617860 + 0.786288i \(0.712000\pi\)
\(198\) 0.903132 + 0.622099i 0.903132 + 0.622099i
\(199\) 0 0 −0.920232 0.391374i \(-0.872000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(200\) 0.728969 0.684547i 0.728969 0.684547i
\(201\) −0.287407 + 0.452881i −0.287407 + 0.452881i
\(202\) 0 0
\(203\) 0 0
\(204\) −0.360502 + 0.198187i −0.360502 + 0.198187i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.13242 + 1.23668i −1.13242 + 1.23668i
\(210\) 0 0
\(211\) 0.0141249 + 0.0740452i 0.0141249 + 0.0740452i 0.988652 0.150226i \(-0.0480000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −0.255596 + 0.509524i −0.255596 + 0.509524i
\(215\) 0 0
\(216\) 0.822852 0.630028i 0.822852 0.630028i
\(217\) 0 0
\(218\) 0 0
\(219\) −0.201815 0.146627i −0.201815 0.146627i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.162637 0.986686i \(-0.448000\pi\)
−0.162637 + 0.986686i \(0.552000\pi\)
\(224\) 0 0
\(225\) 0.535777 + 0.152014i 0.535777 + 0.152014i
\(226\) 0.575085 1.22212i 0.575085 1.22212i
\(227\) 0.875299 + 1.64067i 0.875299 + 1.64067i 0.762443 + 0.647056i \(0.224000\pi\)
0.112856 + 0.993611i \(0.464000\pi\)
\(228\) 0.279293 + 0.493247i 0.279293 + 0.493247i
\(229\) 0 0 0.693653 0.720309i \(-0.256000\pi\)
−0.693653 + 0.720309i \(0.744000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.0738618 1.95832i −0.0738618 1.95832i −0.236499 0.971632i \(-0.576000\pi\)
0.162637 0.986686i \(-0.448000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.261002 1.87613i 0.261002 1.87613i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.577573 0.816339i \(-0.696000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(240\) 0 0
\(241\) 0.756300 + 1.60722i 0.756300 + 1.60722i 0.793990 + 0.607930i \(0.208000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(242\) 0.467983 + 2.83916i 0.467983 + 2.83916i
\(243\) 0.881316 + 0.348938i 0.881316 + 0.348938i
\(244\) 0 0
\(245\) 0 0
\(246\) 0.695164 + 1.09540i 0.695164 + 1.09540i
\(247\) 0 0
\(248\) 0 0
\(249\) −0.501605 0.0633674i −0.501605 0.0633674i
\(250\) 0 0
\(251\) −0.0878512 + 0.996134i −0.0878512 + 0.996134i
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.535827 + 0.844328i 0.535827 + 0.844328i
\(257\) 0.807570 + 0.881926i 0.807570 + 0.881926i 0.994951 0.100362i \(-0.0320000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(258\) −0.106441 1.20692i −0.106441 1.20692i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −0.0750855 + 0.100662i −0.0750855 + 0.100662i
\(263\) 0 0 −0.577573 0.816339i \(-0.696000\pi\)
0.577573 + 0.816339i \(0.304000\pi\)
\(264\) 1.29585 + 0.196905i 1.29585 + 0.196905i
\(265\) 0 0
\(266\) 0 0
\(267\) 0.649656 + 0.357151i 0.649656 + 0.357151i
\(268\) 0.0909411 0.800665i 0.0909411 0.800665i
\(269\) 0 0 −0.0376902 0.999289i \(-0.512000\pi\)
0.0376902 + 0.999289i \(0.488000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(272\) 0.356960 0.504525i 0.356960 0.504525i
\(273\) 0 0
\(274\) 0.811554 + 1.43325i 0.811554 + 1.43325i
\(275\) 0.926877 + 1.73734i 0.926877 + 1.73734i
\(276\) 0 0
\(277\) 0 0 −0.962028 0.272952i \(-0.912000\pi\)
0.962028 + 0.272952i \(0.0880000\pi\)
\(278\) −0.784461 + 1.30763i −0.784461 + 1.30763i
\(279\) 0 0
\(280\) 0 0
\(281\) 0.480069 1.77675i 0.480069 1.77675i −0.137790 0.990461i \(-0.544000\pi\)
0.617860 0.786288i \(-0.288000\pi\)
\(282\) 0 0
\(283\) 1.43703 + 1.04407i 1.43703 + 1.04407i 0.988652 + 0.150226i \(0.0480000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.249716 + 0.497802i −0.249716 + 0.497802i
\(289\) 0.602291 + 0.138607i 0.602291 + 0.138607i
\(290\) 0 0
\(291\) −0.128330 0.672731i −0.128330 0.672731i
\(292\) 0.368978 + 0.0655921i 0.368978 + 0.0655921i
\(293\) 0 0 0.675333 0.737513i \(-0.264000\pi\)
−0.675333 + 0.737513i \(0.736000\pi\)
\(294\) −0.528511 0.404662i −0.528511 0.404662i
\(295\) 0 0
\(296\) 0 0
\(297\) 0.775018 + 1.88781i 0.775018 + 1.88781i
\(298\) 0 0
\(299\) 0 0
\(300\) 0.655365 0.116502i 0.655365 0.116502i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −0.701286 0.483063i −0.701286 0.483063i
\(305\) 0 0
\(306\) 0.343220 + 0.0259274i 0.343220 + 0.0259274i
\(307\) −0.563570 + 1.89529i −0.563570 + 1.89529i −0.137790 + 0.990461i \(0.544000\pi\)
−0.425779 + 0.904827i \(0.640000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.379779 0.925077i \(-0.376000\pi\)
−0.379779 + 0.925077i \(0.624000\pi\)
\(312\) 0 0
\(313\) −0.0677975 0.0329499i −0.0677975 0.0329499i 0.402906 0.915241i \(-0.368000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.994951 0.100362i \(-0.0320000\pi\)
−0.994951 + 0.100362i \(0.968000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −0.327807 + 0.191095i −0.327807 + 0.191095i
\(322\) 0 0
\(323\) −0.111578 + 0.514329i −0.111578 + 0.514329i
\(324\) 0.132533 0.0100117i 0.132533 0.0100117i
\(325\) 0 0
\(326\) 1.75109 0.797282i 1.75109 0.797282i
\(327\) 0 0
\(328\) −1.65863 1.02359i −1.65863 1.02359i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.119913 + 1.90596i 0.119913 + 1.90596i 0.356412 + 0.934329i \(0.384000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(332\) 0.719376 0.243775i 0.719376 0.243775i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.196085 + 0.193637i 0.196085 + 0.193637i 0.793990 0.607930i \(-0.208000\pi\)
−0.597905 + 0.801567i \(0.704000\pi\)
\(338\) −0.910106 0.414376i −0.910106 0.414376i
\(339\) 0.765092 0.472161i 0.765092 0.472161i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.0297787 0.473318i 0.0297787 0.473318i
\(343\) 0 0
\(344\) 0.936389 + 1.56088i 0.936389 + 1.56088i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.273191 1.12238i −0.273191 1.12238i −0.929776 0.368125i \(-0.880000\pi\)
0.656586 0.754251i \(-0.272000\pi\)
\(348\) 0 0
\(349\) 0 0 0.998737 0.0502443i \(-0.0160000\pi\)
−0.998737 + 0.0502443i \(0.984000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.88025 + 0.584913i −1.88025 + 0.584913i
\(353\) −1.56720 + 1.13864i −1.56720 + 1.13864i −0.637424 + 0.770513i \(0.720000\pi\)
−0.929776 + 0.368125i \(0.880000\pi\)
\(354\) 0.827857 0.950999i 0.827857 0.950999i
\(355\) 0 0
\(356\) −1.11234 0.0559597i −1.11234 0.0559597i
\(357\) 0 0
\(358\) −0.298461 + 0.845642i −0.298461 + 0.845642i
\(359\) 0 0 0.711536 0.702650i \(-0.248000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(360\) 0 0
\(361\) −0.269311 0.0548899i −0.269311 0.0548899i
\(362\) 0 0
\(363\) −0.771709 + 1.75301i −0.771709 + 1.75301i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.999684 0.0251301i \(-0.00800000\pi\)
−0.999684 + 0.0251301i \(0.992000\pi\)
\(368\) 0 0
\(369\) 0.0136401 1.08539i 0.0136401 1.08539i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.212007 0.977268i \(-0.568000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(374\) 0.775738 + 0.937706i 0.775738 + 0.937706i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.10137 + 1.33133i 1.10137 + 1.33133i 0.938734 + 0.344643i \(0.112000\pi\)
0.162637 + 0.986686i \(0.448000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.999684 0.0251301i \(-0.992000\pi\)
0.999684 + 0.0251301i \(0.00800000\pi\)
\(384\) −0.00836445 + 0.665587i −0.00836445 + 0.665587i
\(385\) 0 0
\(386\) −1.90913 + 0.0479917i −1.90913 + 0.0479917i
\(387\) −0.477162 + 0.894397i −0.477162 + 0.894397i
\(388\) 0.615172 + 0.824715i 0.615172 + 0.824715i
\(389\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.979855 + 0.199710i 0.979855 + 0.199710i
\(393\) −0.0784703 + 0.0288093i −0.0784703 + 0.0288093i
\(394\) 0 0
\(395\) 0 0
\(396\) −0.818041 0.730386i −0.818041 0.730386i
\(397\) 0 0 −0.998737 0.0502443i \(-0.984000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(401\) 0.498137 0.154962i 0.498137 0.154962i −0.0376902 0.999289i \(-0.512000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(402\) 0.341902 0.413288i 0.341902 0.413288i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0.382498 0.151442i 0.382498 0.151442i
\(409\) 1.02596 + 1.71018i 1.02596 + 1.71018i 0.577573 + 0.816339i \(0.304000\pi\)
0.448383 + 0.893841i \(0.352000\pi\)
\(410\) 0 0
\(411\) −0.0688404 + 1.09419i −0.0688404 + 1.09419i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.912917 + 0.443683i −0.912917 + 0.443683i
\(418\) 1.27849 1.08500i 1.27849 1.08500i
\(419\) 1.67030 1.08968i 1.67030 1.08968i 0.793990 0.607930i \(-0.208000\pi\)
0.876307 0.481754i \(-0.160000\pi\)
\(420\) 0 0
\(421\) 0 0 0.947098 0.320944i \(-0.104000\pi\)
−0.947098 + 0.320944i \(0.896000\pi\)
\(422\) −0.00473317 0.0752316i −0.00473317 0.0752316i
\(423\) 0 0
\(424\) 0 0
\(425\) 0.525944 + 0.324576i 0.525944 + 0.324576i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.317441 0.473472i 0.317441 0.473472i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.888136 0.459580i \(-0.152000\pi\)
−0.888136 + 0.459580i \(0.848000\pi\)
\(432\) −0.895327 + 0.521930i −0.895327 + 0.521930i
\(433\) 0.238883 1.25227i 0.238883 1.25227i −0.637424 0.770513i \(-0.720000\pi\)
0.876307 0.481754i \(-0.160000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0.181846 + 0.170765i 0.181846 + 0.170765i
\(439\) 0 0 0.968583 0.248690i \(-0.0800000\pi\)
−0.968583 + 0.248690i \(0.920000\pi\)
\(440\) 0 0
\(441\) 0.185355 + 0.525175i 0.185355 + 0.525175i
\(442\) 0 0
\(443\) −0.182605 1.60770i −0.182605 1.60770i −0.675333 0.737513i \(-0.736000\pi\)
0.492727 0.870184i \(-0.336000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.389529 0.268317i −0.389529 0.268317i 0.356412 0.934329i \(-0.384000\pi\)
−0.745941 + 0.666012i \(0.768000\pi\)
\(450\) −0.512500 0.217966i −0.512500 0.217966i
\(451\) 2.79774 2.62725i 2.79774 2.62725i
\(452\) −0.723723 + 1.14040i −0.723723 + 1.14040i
\(453\) 0 0
\(454\) −0.662767 1.73743i −0.662767 1.73743i
\(455\) 0 0
\(456\) −0.215270 0.524362i −0.215270 0.524362i
\(457\) 1.48012 1.32152i 1.48012 1.32152i 0.656586 0.754251i \(-0.272000\pi\)
0.823533 0.567269i \(-0.192000\pi\)
\(458\) 0 0
\(459\) 0.508550 + 0.389379i 0.508550 + 0.389379i
\(460\) 0 0
\(461\) 0 0 −0.984564 0.175023i \(-0.944000\pi\)
0.984564 + 0.175023i \(0.0560000\pi\)
\(462\) 0 0
\(463\) 0 0 −0.656586 0.754251i \(-0.728000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.172163 + 1.95213i −0.172163 + 1.95213i
\(467\) −1.32998 + 1.01832i −1.32998 + 1.01832i −0.332820 + 0.942991i \(0.608000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.494085 + 1.82862i −0.494085 + 1.82862i
\(473\) −3.44813 + 0.978323i −3.44813 + 0.978323i
\(474\) 0 0
\(475\) 0.438075 0.730234i 0.438075 0.730234i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.492727 0.870184i \(-0.664000\pi\)
0.492727 + 0.870184i \(0.336000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.548899 1.68934i −0.548899 1.68934i
\(483\) 0 0
\(484\) −0.108452 2.87542i −0.108452 2.87542i
\(485\) 0 0
\(486\) −0.830633 0.456644i −0.830633 0.456644i
\(487\) 0 0 0.137790 0.990461i \(-0.456000\pi\)
−0.137790 + 0.990461i \(0.544000\pi\)
\(488\) 0 0
\(489\) 1.26619 + 0.192398i 1.26619 + 0.192398i
\(490\) 0 0
\(491\) 0.105053 0.140837i 0.105053 0.140837i −0.745941 0.666012i \(-0.768000\pi\)
0.850994 + 0.525175i \(0.176000\pi\)
\(492\) −0.552392 1.17389i −0.552392 1.17389i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0.489708 + 0.125736i 0.489708 + 0.125736i
\(499\) −1.13747 0.965331i −1.13747 0.965331i −0.137790 0.990461i \(-0.544000\pi\)
−0.999684 + 0.0251301i \(0.992000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.212007 0.977268i 0.212007 0.977268i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.356667 0.562018i −0.356667 0.562018i
\(508\) 0 0
\(509\) 0 0 −0.0878512 0.996134i \(-0.528000\pi\)
0.0878512 + 0.996134i \(0.472000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.425779 0.904827i −0.425779 0.904827i
\(513\) 0.527659 0.707393i 0.527659 0.707393i
\(514\) −0.690667 0.976187i −0.690667 0.976187i
\(515\) 0 0
\(516\) −0.0456656 + 1.21074i −0.0456656 + 1.21074i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.892239 + 0.0900010i 0.892239 + 0.0900010i 0.535827 0.844328i \(-0.320000\pi\)
0.356412 + 0.934329i \(0.384000\pi\)
\(522\) 0 0
\(523\) 1.15369 1.63062i 1.15369 1.63062i 0.535827 0.844328i \(-0.320000\pi\)
0.617860 0.786288i \(-0.288000\pi\)
\(524\) 0.0871097 0.0904572i 0.0871097 0.0904572i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −1.26096 0.357766i −1.26096 0.357766i
\(529\) −0.514440 + 0.857527i −0.514440 + 0.857527i
\(530\) 0 0
\(531\) −1.01487 + 0.287944i −1.01487 + 0.287944i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.599770 0.435758i −0.599770 0.435758i
\(535\) 0 0
\(536\) −0.190574 + 0.782953i −0.190574 + 0.782953i
\(537\) −0.473951 + 0.362887i −0.473951 + 0.362887i
\(538\) 0 0
\(539\) −0.882924 + 1.76009i −0.882924 + 1.76009i
\(540\) 0 0
\(541\) 0 0 −0.656586 0.754251i \(-0.728000\pi\)
0.656586 + 0.754251i \(0.272000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.417379 + 0.455808i −0.417379 + 0.455808i
\(545\) 0 0
\(546\) 0 0
\(547\) 1.11286 0.993611i 1.11286 0.993611i 0.112856 0.993611i \(-0.464000\pi\)
1.00000 \(0\)
\(548\) −0.625521 1.52366i −0.625521 1.52366i
\(549\) 0 0
\(550\) −0.701821 1.83981i −0.701821 1.83981i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.942165 1.19900i 0.942165 1.19900i
\(557\) 0 0 −0.997159 0.0753268i \(-0.976000\pi\)
0.997159 + 0.0753268i \(0.0240000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.0914221 + 0.804900i 0.0914221 + 0.804900i
\(562\) −0.698970 + 1.70257i −0.698970 + 1.70257i
\(563\) 0.618896 + 1.75354i 0.618896 + 1.75354i 0.656586 + 0.754251i \(0.272000\pi\)
−0.0376902 + 0.999289i \(0.512000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.29485 1.21594i −1.29485 1.21594i
\(567\) 0 0
\(568\) 0 0
\(569\) 0.164771 + 1.18440i 0.164771 + 1.18440i 0.876307 + 0.481754i \(0.160000\pi\)
−0.711536 + 0.702650i \(0.752000\pi\)
\(570\) 0 0
\(571\) −0.259955 + 1.36273i −0.259955 + 1.36273i 0.577573 + 0.816339i \(0.304000\pi\)
−0.837528 + 0.546394i \(0.816000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.310138 0.462579i 0.310138 0.462579i
\(577\) 1.57252 0.715978i 1.57252 0.715978i 0.577573 0.816339i \(-0.304000\pi\)
0.994951 + 0.100362i \(0.0320000\pi\)
\(578\) −0.580169 0.213001i −0.580169 0.213001i
\(579\) −1.08178 0.667597i −1.08178 0.667597i
\(580\) 0 0
\(581\) 0 0
\(582\) 0.0430028 + 0.683511i 0.0430028 + 0.683511i
\(583\) 0 0
\(584\) −0.357848 0.111320i −0.357848 0.111320i
\(585\) 0 0
\(586\) 0 0
\(587\) 1.11141 0.540152i 1.11141 0.540152i 0.212007 0.977268i \(-0.432000\pi\)
0.899405 + 0.437116i \(0.144000\pi\)
\(588\) 0.473626 + 0.467711i 0.473626 + 0.467711i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.0357930 + 0.568914i −0.0357930 + 0.568914i 0.938734 + 0.344643i \(0.112000\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(594\) −0.532301 1.97006i −0.532301 1.97006i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.778462 0.627691i \(-0.784000\pi\)
0.778462 + 0.627691i \(0.216000\pi\)
\(600\) −0.664798 + 0.0334446i −0.664798 + 0.0334446i
\(601\) −1.29485 0.670039i −1.29485 0.670039i −0.332820 0.942991i \(-0.608000\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(602\) 0 0
\(603\) −0.428521 + 0.133305i −0.428521 + 0.133305i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.998737 0.0502443i \(-0.984000\pi\)
0.998737 + 0.0502443i \(0.0160000\pi\)
\(608\) 0.635213 + 0.567148i 0.635213 + 0.567148i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.337264 0.0687398i −0.337264 0.0687398i
\(613\) 0 0 0.920232 0.391374i \(-0.128000\pi\)
−0.920232 + 0.391374i \(0.872000\pi\)
\(614\) 0.796668 1.80971i 0.796668 1.80971i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.0118298 + 0.0221738i −0.0118298 + 0.0221738i −0.888136 0.459580i \(-0.848000\pi\)
0.876307 + 0.481754i \(0.160000\pi\)
\(618\) 0 0
\(619\) 0.0246258 + 1.95956i 0.0246258 + 1.95956i 0.212007 + 0.977268i \(0.432000\pi\)
−0.187381 + 0.982287i \(0.560000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.637424 0.770513i −0.637424 0.770513i
\(626\) 0.0631332 + 0.0411874i 0.0631332 + 0.0411874i
\(627\) 1.10736 0.139892i 1.10736 0.139892i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.212007 0.977268i \(-0.568000\pi\)
0.212007 + 0.977268i \(0.432000\pi\)
\(632\) 0 0
\(633\) 0.0247231 0.0436624i 0.0247231 0.0436624i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.431776 0.980821i 0.431776 0.980821i −0.556876 0.830596i \(-0.688000\pi\)
0.988652 0.150226i \(-0.0480000\pi\)
\(642\) 0.349173 0.148503i 0.349173 0.148503i
\(643\) 0.698464 + 0.142358i 0.698464 + 0.142358i 0.535827 0.844328i \(-0.320000\pi\)
0.162637 + 0.986686i \(0.448000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.175160 0.496289i 0.175160 0.496289i
\(647\) 0 0 −0.745941 0.666012i \(-0.768000\pi\)
0.745941 + 0.666012i \(0.232000\pi\)
\(648\) −0.132743 0.00667799i −0.132743 0.00667799i
\(649\) −3.22236 1.87847i −3.22236 1.87847i
\(650\) 0 0
\(651\) 0 0
\(652\) −1.83721 + 0.571524i −1.83721 + 0.571524i
\(653\) 0 0 0.637424 0.770513i \(-0.280000\pi\)
−0.637424 + 0.770513i \(0.720000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.51726 + 1.22340i 1.51726 + 1.22340i
\(657\) −0.0493608 0.202794i −0.0493608 0.202794i
\(658\) 0 0
\(659\) −0.116762 + 0.0462295i −0.116762 + 0.0462295i −0.425779 0.904827i \(-0.640000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(660\) 0 0
\(661\) 0 0 −0.260842 0.965382i \(-0.584000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(662\) 0.119913 1.90596i 0.119913 1.90596i
\(663\) 0 0
\(664\) −0.744257 + 0.151691i −0.744257 + 0.151691i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.117887 + 1.87376i 0.117887 + 1.87376i 0.402906 + 0.915241i \(0.368000\pi\)
−0.285019 + 0.958522i \(0.592000\pi\)
\(674\) −0.170270 0.216686i −0.170270 0.216686i
\(675\) −0.577118 0.860788i −0.577118 0.860788i
\(676\) 0.850994 + 0.525175i 0.850994 + 0.525175i
\(677\) 0 0 −0.938734 0.344643i \(-0.888000\pi\)
0.938734 + 0.344643i \(0.112000\pi\)
\(678\) −0.818236 + 0.372547i −0.818236 + 0.372547i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.262421 1.20965i 0.262421 1.20965i
\(682\) 0 0
\(683\) −1.55403 + 0.905923i −1.55403 + 0.905923i −0.556876 + 0.830596i \(0.688000\pi\)
−0.997159 + 0.0753268i \(0.976000\pi\)
\(684\) −0.0888663 + 0.465854i −0.0888663 + 0.465854i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.733375 1.66593i −0.733375 1.66593i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.18107 + 0.574008i 1.18107 + 0.574008i 0.920232 0.391374i \(-0.128000\pi\)
0.260842 + 0.965382i \(0.416000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.130366 + 1.14777i 0.130366 + 1.14777i
\(695\) 0 0
\(696\) 0 0
\(697\) 0.343329 1.15462i 0.343329 1.15462i
\(698\) 0 0
\(699\) −0.805973 + 1.02568i −0.805973 + 1.02568i
\(700\) 0 0
\(701\) 0 0 −0.920232 0.391374i \(-0.872000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.93873 0.344643i 1.93873 0.344643i
\(705\) 0 0
\(706\) 1.69755 0.933237i 1.69755 0.933237i
\(707\) 0 0
\(708\) −0.940521 + 0.839742i −0.940521 + 0.839742i
\(709\) 0 0 0.778462 0.627691i \(-0.216000\pi\)
−0.778462 + 0.627691i \(0.784000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.09656 + 0.194932i 1.09656 + 0.194932i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.402095 0.801567i 0.402095 0.801567i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.236499 0.971632i \(-0.424000\pi\)
−0.236499 + 0.971632i \(0.576000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.260308 + 0.0882107i 0.260308 + 0.0882107i
\(723\) 0.308408 1.14143i 0.308408 1.14143i
\(724\) 0 0
\(725\) 0 0
\(726\) 0.985334 1.64247i 0.985334 1.64247i
\(727\) 0 0 −0.962028 0.272952i \(-0.912000\pi\)
0.962028 + 0.272952i \(0.0880000\pi\)
\(728\) 0 0
\(729\) −0.359550 0.673943i −0.359550 0.673943i
\(730\) 0 0
\(731\) −0.780327 + 0.810314i −0.780327 + 0.810314i
\(732\) 0 0
\(733\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.39048 0.764422i −1.39048 0.764422i
\(738\) −0.149568 + 1.07512i −0.149568 + 1.07512i
\(739\) −0.0677975 + 1.79753i −0.0677975 + 1.79753i 0.402906 + 0.915241i \(0.368000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.425779 0.904827i \(-0.640000\pi\)
0.425779 + 0.904827i \(0.360000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.285677 0.311980i −0.285677 0.311980i
\(748\) −0.652095 1.02754i −0.652095 1.02754i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.992115 0.125333i \(-0.960000\pi\)
0.992115 + 0.125333i \(0.0400000\pi\)
\(752\) 0 0
\(753\) 0.473626 0.467711i 0.473626 0.467711i
\(754\) 0 0
\(755\)