Properties

Label 2000.1.bp.a
Level $2000$
Weight $1$
Character orbit 2000.bp
Analytic conductor $0.998$
Analytic rank $0$
Dimension $20$
Projective image $D_{50}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2000,1,Mod(79,2000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2000, base_ring=CyclotomicField(50))
 
chi = DirichletCharacter(H, H._module([25, 0, 41]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2000.79");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2000 = 2^{4} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2000.bp (of order \(50\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.998130025266\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\Q(\zeta_{50})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{15} + x^{10} - x^{5} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{50}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{50} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{50}^{9} q^{5} + \zeta_{50}^{7} q^{9} + ( - \zeta_{50}^{11} + \zeta_{50}^{3}) q^{13} + ( - \zeta_{50}^{17} - \zeta_{50}^{6}) q^{17} + \zeta_{50}^{18} q^{25} + (\zeta_{50}^{8} + \zeta_{50}^{4}) q^{29}+ \cdots + ( - \zeta_{50}^{23} - \zeta_{50}^{14}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 5 q^{37} + 5 q^{49} + 5 q^{53} + 5 q^{65} - 5 q^{85} - 5 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2000\mathbb{Z}\right)^\times\).

\(n\) \(501\) \(751\) \(1377\)
\(\chi(n)\) \(1\) \(-1\) \(\zeta_{50}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
0.425779 0.904827i
−0.0627905 0.998027i
−0.0627905 + 0.998027i
−0.728969 + 0.684547i
−0.876307 + 0.481754i
−0.535827 + 0.844328i
0.637424 0.770513i
0.992115 0.125333i
0.992115 + 0.125333i
0.929776 0.368125i
−0.968583 + 0.248690i
−0.876307 0.481754i
−0.728969 0.684547i
−0.968583 0.248690i
0.929776 + 0.368125i
0.425779 + 0.904827i
0.187381 + 0.982287i
0.637424 + 0.770513i
−0.535827 0.844328i
0.187381 0.982287i
0 0 0 −0.728969 + 0.684547i 0 0 0 −0.0627905 0.998027i 0
159.1 0 0 0 −0.535827 0.844328i 0 0 0 0.425779 + 0.904827i 0
239.1 0 0 0 −0.535827 + 0.844328i 0 0 0 0.425779 0.904827i 0
319.1 0 0 0 −0.876307 + 0.481754i 0 0 0 −0.535827 0.844328i 0
479.1 0 0 0 0.187381 0.982287i 0 0 0 0.929776 0.368125i 0
559.1 0 0 0 0.929776 + 0.368125i 0 0 0 −0.728969 + 0.684547i 0
639.1 0 0 0 −0.0627905 0.998027i 0 0 0 0.992115 + 0.125333i 0
719.1 0 0 0 0.425779 0.904827i 0 0 0 0.637424 0.770513i 0
879.1 0 0 0 0.425779 + 0.904827i 0 0 0 0.637424 + 0.770513i 0
959.1 0 0 0 −0.968583 + 0.248690i 0 0 0 −0.876307 0.481754i 0
1039.1 0 0 0 0.637424 + 0.770513i 0 0 0 0.187381 + 0.982287i 0
1119.1 0 0 0 0.187381 + 0.982287i 0 0 0 0.929776 + 0.368125i 0
1279.1 0 0 0 −0.876307 0.481754i 0 0 0 −0.535827 + 0.844328i 0
1359.1 0 0 0 0.637424 0.770513i 0 0 0 0.187381 0.982287i 0
1439.1 0 0 0 −0.968583 0.248690i 0 0 0 −0.876307 + 0.481754i 0
1519.1 0 0 0 −0.728969 0.684547i 0 0 0 −0.0627905 + 0.998027i 0
1679.1 0 0 0 0.992115 0.125333i 0 0 0 −0.968583 0.248690i 0
1759.1 0 0 0 −0.0627905 + 0.998027i 0 0 0 0.992115 0.125333i 0
1839.1 0 0 0 0.929776 0.368125i 0 0 0 −0.728969 0.684547i 0
1919.1 0 0 0 0.992115 + 0.125333i 0 0 0 −0.968583 + 0.248690i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 79.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
125.h even 50 1 inner
500.n odd 50 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2000.1.bp.a 20
4.b odd 2 1 CM 2000.1.bp.a 20
125.h even 50 1 inner 2000.1.bp.a 20
500.n odd 50 1 inner 2000.1.bp.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2000.1.bp.a 20 1.a even 1 1 trivial
2000.1.bp.a 20 4.b odd 2 1 CM
2000.1.bp.a 20 125.h even 50 1 inner
2000.1.bp.a 20 500.n odd 50 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(2000, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( T^{20} - T^{15} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{20} \) Copy content Toggle raw display
$11$ \( T^{20} \) Copy content Toggle raw display
$13$ \( T^{20} + 20 T^{17} + \cdots + 5 \) Copy content Toggle raw display
$17$ \( T^{20} - 5 T^{17} + \cdots + 5 \) Copy content Toggle raw display
$19$ \( T^{20} \) Copy content Toggle raw display
$23$ \( T^{20} \) Copy content Toggle raw display
$29$ \( T^{20} + 5 T^{17} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{20} \) Copy content Toggle raw display
$37$ \( T^{20} - 5 T^{19} + \cdots + 5 \) Copy content Toggle raw display
$41$ \( T^{20} - 5 T^{17} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{20} \) Copy content Toggle raw display
$47$ \( T^{20} \) Copy content Toggle raw display
$53$ \( T^{20} - 5 T^{19} + \cdots + 5 \) Copy content Toggle raw display
$59$ \( T^{20} \) Copy content Toggle raw display
$61$ \( T^{20} + 20 T^{17} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{20} \) Copy content Toggle raw display
$71$ \( T^{20} \) Copy content Toggle raw display
$73$ \( T^{20} - 5 T^{17} + \cdots + 5 \) Copy content Toggle raw display
$79$ \( T^{20} \) Copy content Toggle raw display
$83$ \( T^{20} \) Copy content Toggle raw display
$89$ \( T^{20} + 5 T^{19} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{20} - 5 T^{17} + \cdots + 5 \) Copy content Toggle raw display
show more
show less