Properties

Label 200.8.a.a
Level $200$
Weight $8$
Character orbit 200.a
Self dual yes
Analytic conductor $62.477$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,8,Mod(1,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 200.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-69,0,0,0,174] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4770050968\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 69 q^{3} + 174 q^{7} + 2574 q^{9} + 7111 q^{11} - 468 q^{13} - 9555 q^{17} - 42601 q^{19} - 12006 q^{21} - 77526 q^{23} - 26703 q^{27} - 61312 q^{29} + 251710 q^{31} - 490659 q^{33} - 83462 q^{37}+ \cdots + 18303714 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −69.0000 0 0 0 174.000 0 2574.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.8.a.a 1
4.b odd 2 1 400.8.a.r 1
5.b even 2 1 200.8.a.h yes 1
5.c odd 4 2 200.8.c.b 2
20.d odd 2 1 400.8.a.c 1
20.e even 4 2 400.8.c.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.8.a.a 1 1.a even 1 1 trivial
200.8.a.h yes 1 5.b even 2 1
200.8.c.b 2 5.c odd 4 2
400.8.a.c 1 20.d odd 2 1
400.8.a.r 1 4.b odd 2 1
400.8.c.c 2 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 69 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(200))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 69 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 174 \) Copy content Toggle raw display
$11$ \( T - 7111 \) Copy content Toggle raw display
$13$ \( T + 468 \) Copy content Toggle raw display
$17$ \( T + 9555 \) Copy content Toggle raw display
$19$ \( T + 42601 \) Copy content Toggle raw display
$23$ \( T + 77526 \) Copy content Toggle raw display
$29$ \( T + 61312 \) Copy content Toggle raw display
$31$ \( T - 251710 \) Copy content Toggle raw display
$37$ \( T + 83462 \) Copy content Toggle raw display
$41$ \( T - 363477 \) Copy content Toggle raw display
$43$ \( T + 34188 \) Copy content Toggle raw display
$47$ \( T + 708812 \) Copy content Toggle raw display
$53$ \( T + 891762 \) Copy content Toggle raw display
$59$ \( T - 2809152 \) Copy content Toggle raw display
$61$ \( T + 3211510 \) Copy content Toggle raw display
$67$ \( T - 1372033 \) Copy content Toggle raw display
$71$ \( T - 4508308 \) Copy content Toggle raw display
$73$ \( T - 628179 \) Copy content Toggle raw display
$79$ \( T - 6130474 \) Copy content Toggle raw display
$83$ \( T - 9921981 \) Copy content Toggle raw display
$89$ \( T - 1806599 \) Copy content Toggle raw display
$97$ \( T - 11676482 \) Copy content Toggle raw display
show more
show less