Properties

Label 200.4.c.b.49.2
Level $200$
Weight $4$
Character 200.49
Analytic conductor $11.800$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,4,Mod(49,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 200.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8003820011\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 200.49
Dual form 200.4.c.b.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000i q^{3} -26.0000i q^{7} -54.0000 q^{9} +O(q^{10})\) \(q+9.00000i q^{3} -26.0000i q^{7} -54.0000 q^{9} -59.0000 q^{11} +28.0000i q^{13} -5.00000i q^{17} -109.000 q^{19} +234.000 q^{21} -194.000i q^{23} -243.000i q^{27} +32.0000 q^{29} +10.0000 q^{31} -531.000i q^{33} +198.000i q^{37} -252.000 q^{39} +117.000 q^{41} +388.000i q^{43} +68.0000i q^{47} -333.000 q^{49} +45.0000 q^{51} -18.0000i q^{53} -981.000i q^{57} -392.000 q^{59} -710.000 q^{61} +1404.00i q^{63} +253.000i q^{67} +1746.00 q^{69} -612.000 q^{71} -549.000i q^{73} +1534.00i q^{77} -414.000 q^{79} +729.000 q^{81} -121.000i q^{83} +288.000i q^{87} +81.0000 q^{89} +728.000 q^{91} +90.0000i q^{93} +1502.00i q^{97} +3186.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 108 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 108 q^{9} - 118 q^{11} - 218 q^{19} + 468 q^{21} + 64 q^{29} + 20 q^{31} - 504 q^{39} + 234 q^{41} - 666 q^{49} + 90 q^{51} - 784 q^{59} - 1420 q^{61} + 3492 q^{69} - 1224 q^{71} - 828 q^{79} + 1458 q^{81} + 162 q^{89} + 1456 q^{91} + 6372 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 26.0000i − 1.40387i −0.712242 0.701934i \(-0.752320\pi\)
0.712242 0.701934i \(-0.247680\pi\)
\(8\) 0 0
\(9\) −54.0000 −2.00000
\(10\) 0 0
\(11\) −59.0000 −1.61720 −0.808599 0.588361i \(-0.799774\pi\)
−0.808599 + 0.588361i \(0.799774\pi\)
\(12\) 0 0
\(13\) 28.0000i 0.597369i 0.954352 + 0.298685i \(0.0965479\pi\)
−0.954352 + 0.298685i \(0.903452\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 5.00000i − 0.0713340i −0.999364 0.0356670i \(-0.988644\pi\)
0.999364 0.0356670i \(-0.0113556\pi\)
\(18\) 0 0
\(19\) −109.000 −1.31612 −0.658061 0.752965i \(-0.728623\pi\)
−0.658061 + 0.752965i \(0.728623\pi\)
\(20\) 0 0
\(21\) 234.000 2.43157
\(22\) 0 0
\(23\) − 194.000i − 1.75877i −0.476108 0.879387i \(-0.657953\pi\)
0.476108 0.879387i \(-0.342047\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 243.000i − 1.73205i
\(28\) 0 0
\(29\) 32.0000 0.204905 0.102453 0.994738i \(-0.467331\pi\)
0.102453 + 0.994738i \(0.467331\pi\)
\(30\) 0 0
\(31\) 10.0000 0.0579372 0.0289686 0.999580i \(-0.490778\pi\)
0.0289686 + 0.999580i \(0.490778\pi\)
\(32\) 0 0
\(33\) − 531.000i − 2.80107i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 198.000i 0.879757i 0.898057 + 0.439878i \(0.144978\pi\)
−0.898057 + 0.439878i \(0.855022\pi\)
\(38\) 0 0
\(39\) −252.000 −1.03467
\(40\) 0 0
\(41\) 117.000 0.445667 0.222833 0.974857i \(-0.428469\pi\)
0.222833 + 0.974857i \(0.428469\pi\)
\(42\) 0 0
\(43\) 388.000i 1.37603i 0.725695 + 0.688017i \(0.241518\pi\)
−0.725695 + 0.688017i \(0.758482\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 68.0000i 0.211039i 0.994417 + 0.105519i \(0.0336505\pi\)
−0.994417 + 0.105519i \(0.966350\pi\)
\(48\) 0 0
\(49\) −333.000 −0.970845
\(50\) 0 0
\(51\) 45.0000 0.123554
\(52\) 0 0
\(53\) − 18.0000i − 0.0466508i −0.999728 0.0233254i \(-0.992575\pi\)
0.999728 0.0233254i \(-0.00742537\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 981.000i − 2.27959i
\(58\) 0 0
\(59\) −392.000 −0.864984 −0.432492 0.901638i \(-0.642366\pi\)
−0.432492 + 0.901638i \(0.642366\pi\)
\(60\) 0 0
\(61\) −710.000 −1.49027 −0.745133 0.666916i \(-0.767614\pi\)
−0.745133 + 0.666916i \(0.767614\pi\)
\(62\) 0 0
\(63\) 1404.00i 2.80774i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 253.000i 0.461326i 0.973034 + 0.230663i \(0.0740896\pi\)
−0.973034 + 0.230663i \(0.925910\pi\)
\(68\) 0 0
\(69\) 1746.00 3.04629
\(70\) 0 0
\(71\) −612.000 −1.02297 −0.511486 0.859292i \(-0.670905\pi\)
−0.511486 + 0.859292i \(0.670905\pi\)
\(72\) 0 0
\(73\) − 549.000i − 0.880214i −0.897945 0.440107i \(-0.854941\pi\)
0.897945 0.440107i \(-0.145059\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1534.00i 2.27033i
\(78\) 0 0
\(79\) −414.000 −0.589603 −0.294802 0.955559i \(-0.595254\pi\)
−0.294802 + 0.955559i \(0.595254\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 0 0
\(83\) − 121.000i − 0.160018i −0.996794 0.0800089i \(-0.974505\pi\)
0.996794 0.0800089i \(-0.0254949\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 288.000i 0.354906i
\(88\) 0 0
\(89\) 81.0000 0.0964717 0.0482359 0.998836i \(-0.484640\pi\)
0.0482359 + 0.998836i \(0.484640\pi\)
\(90\) 0 0
\(91\) 728.000 0.838628
\(92\) 0 0
\(93\) 90.0000i 0.100350i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1502.00i 1.57222i 0.618089 + 0.786108i \(0.287907\pi\)
−0.618089 + 0.786108i \(0.712093\pi\)
\(98\) 0 0
\(99\) 3186.00 3.23439
\(100\) 0 0
\(101\) −234.000 −0.230533 −0.115267 0.993335i \(-0.536772\pi\)
−0.115267 + 0.993335i \(0.536772\pi\)
\(102\) 0 0
\(103\) − 1172.00i − 1.12117i −0.828097 0.560585i \(-0.810576\pi\)
0.828097 0.560585i \(-0.189424\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1125.00i − 1.01643i −0.861231 0.508214i \(-0.830306\pi\)
0.861231 0.508214i \(-0.169694\pi\)
\(108\) 0 0
\(109\) 1234.00 1.08436 0.542182 0.840261i \(-0.317598\pi\)
0.542182 + 0.840261i \(0.317598\pi\)
\(110\) 0 0
\(111\) −1782.00 −1.52378
\(112\) 0 0
\(113\) 567.000i 0.472025i 0.971750 + 0.236013i \(0.0758407\pi\)
−0.971750 + 0.236013i \(0.924159\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 1512.00i − 1.19474i
\(118\) 0 0
\(119\) −130.000 −0.100144
\(120\) 0 0
\(121\) 2150.00 1.61533
\(122\) 0 0
\(123\) 1053.00i 0.771917i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2358.00i 1.64755i 0.566918 + 0.823774i \(0.308136\pi\)
−0.566918 + 0.823774i \(0.691864\pi\)
\(128\) 0 0
\(129\) −3492.00 −2.38336
\(130\) 0 0
\(131\) −1692.00 −1.12848 −0.564239 0.825611i \(-0.690831\pi\)
−0.564239 + 0.825611i \(0.690831\pi\)
\(132\) 0 0
\(133\) 2834.00i 1.84766i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 229.000i − 0.142809i −0.997447 0.0714043i \(-0.977252\pi\)
0.997447 0.0714043i \(-0.0227481\pi\)
\(138\) 0 0
\(139\) −2781.00 −1.69699 −0.848494 0.529205i \(-0.822490\pi\)
−0.848494 + 0.529205i \(0.822490\pi\)
\(140\) 0 0
\(141\) −612.000 −0.365530
\(142\) 0 0
\(143\) − 1652.00i − 0.966064i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 2997.00i − 1.68155i
\(148\) 0 0
\(149\) −1472.00 −0.809335 −0.404668 0.914464i \(-0.632613\pi\)
−0.404668 + 0.914464i \(0.632613\pi\)
\(150\) 0 0
\(151\) 1322.00 0.712469 0.356235 0.934397i \(-0.384060\pi\)
0.356235 + 0.934397i \(0.384060\pi\)
\(152\) 0 0
\(153\) 270.000i 0.142668i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 298.000i − 0.151484i −0.997127 0.0757420i \(-0.975867\pi\)
0.997127 0.0757420i \(-0.0241325\pi\)
\(158\) 0 0
\(159\) 162.000 0.0808015
\(160\) 0 0
\(161\) −5044.00 −2.46909
\(162\) 0 0
\(163\) − 341.000i − 0.163860i −0.996638 0.0819300i \(-0.973892\pi\)
0.996638 0.0819300i \(-0.0261084\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 684.000i − 0.316943i −0.987364 0.158472i \(-0.949343\pi\)
0.987364 0.158472i \(-0.0506566\pi\)
\(168\) 0 0
\(169\) 1413.00 0.643150
\(170\) 0 0
\(171\) 5886.00 2.63224
\(172\) 0 0
\(173\) − 2344.00i − 1.03012i −0.857154 0.515061i \(-0.827769\pi\)
0.857154 0.515061i \(-0.172231\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 3528.00i − 1.49820i
\(178\) 0 0
\(179\) 1111.00 0.463911 0.231955 0.972726i \(-0.425488\pi\)
0.231955 + 0.972726i \(0.425488\pi\)
\(180\) 0 0
\(181\) 2042.00 0.838567 0.419284 0.907855i \(-0.362281\pi\)
0.419284 + 0.907855i \(0.362281\pi\)
\(182\) 0 0
\(183\) − 6390.00i − 2.58122i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 295.000i 0.115361i
\(188\) 0 0
\(189\) −6318.00 −2.43157
\(190\) 0 0
\(191\) 5270.00 1.99646 0.998230 0.0594735i \(-0.0189422\pi\)
0.998230 + 0.0594735i \(0.0189422\pi\)
\(192\) 0 0
\(193\) 613.000i 0.228625i 0.993445 + 0.114313i \(0.0364666\pi\)
−0.993445 + 0.114313i \(0.963533\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1174.00i − 0.424589i −0.977206 0.212295i \(-0.931906\pi\)
0.977206 0.212295i \(-0.0680936\pi\)
\(198\) 0 0
\(199\) −3428.00 −1.22113 −0.610564 0.791967i \(-0.709057\pi\)
−0.610564 + 0.791967i \(0.709057\pi\)
\(200\) 0 0
\(201\) −2277.00 −0.799041
\(202\) 0 0
\(203\) − 832.000i − 0.287660i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 10476.0i 3.51755i
\(208\) 0 0
\(209\) 6431.00 2.12843
\(210\) 0 0
\(211\) 2339.00 0.763144 0.381572 0.924339i \(-0.375383\pi\)
0.381572 + 0.924339i \(0.375383\pi\)
\(212\) 0 0
\(213\) − 5508.00i − 1.77184i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 260.000i − 0.0813362i
\(218\) 0 0
\(219\) 4941.00 1.52457
\(220\) 0 0
\(221\) 140.000 0.0426128
\(222\) 0 0
\(223\) 3932.00i 1.18075i 0.807131 + 0.590373i \(0.201019\pi\)
−0.807131 + 0.590373i \(0.798981\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 6084.00i − 1.77890i −0.457037 0.889448i \(-0.651089\pi\)
0.457037 0.889448i \(-0.348911\pi\)
\(228\) 0 0
\(229\) −4996.00 −1.44168 −0.720841 0.693101i \(-0.756244\pi\)
−0.720841 + 0.693101i \(0.756244\pi\)
\(230\) 0 0
\(231\) −13806.0 −3.93233
\(232\) 0 0
\(233\) 3222.00i 0.905924i 0.891530 + 0.452962i \(0.149633\pi\)
−0.891530 + 0.452962i \(0.850367\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 3726.00i − 1.02122i
\(238\) 0 0
\(239\) −2736.00 −0.740490 −0.370245 0.928934i \(-0.620726\pi\)
−0.370245 + 0.928934i \(0.620726\pi\)
\(240\) 0 0
\(241\) 1673.00 0.447168 0.223584 0.974685i \(-0.428224\pi\)
0.223584 + 0.974685i \(0.428224\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 3052.00i − 0.786211i
\(248\) 0 0
\(249\) 1089.00 0.277159
\(250\) 0 0
\(251\) 5355.00 1.34663 0.673316 0.739355i \(-0.264869\pi\)
0.673316 + 0.739355i \(0.264869\pi\)
\(252\) 0 0
\(253\) 11446.0i 2.84428i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5490.00i 1.33252i 0.745721 + 0.666258i \(0.232105\pi\)
−0.745721 + 0.666258i \(0.767895\pi\)
\(258\) 0 0
\(259\) 5148.00 1.23506
\(260\) 0 0
\(261\) −1728.00 −0.409810
\(262\) 0 0
\(263\) 3150.00i 0.738545i 0.929321 + 0.369272i \(0.120393\pi\)
−0.929321 + 0.369272i \(0.879607\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 729.000i 0.167094i
\(268\) 0 0
\(269\) −176.000 −0.0398919 −0.0199459 0.999801i \(-0.506349\pi\)
−0.0199459 + 0.999801i \(0.506349\pi\)
\(270\) 0 0
\(271\) 2394.00 0.536624 0.268312 0.963332i \(-0.413534\pi\)
0.268312 + 0.963332i \(0.413534\pi\)
\(272\) 0 0
\(273\) 6552.00i 1.45255i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6256.00i 1.35699i 0.734604 + 0.678496i \(0.237368\pi\)
−0.734604 + 0.678496i \(0.762632\pi\)
\(278\) 0 0
\(279\) −540.000 −0.115874
\(280\) 0 0
\(281\) −4802.00 −1.01944 −0.509721 0.860340i \(-0.670251\pi\)
−0.509721 + 0.860340i \(0.670251\pi\)
\(282\) 0 0
\(283\) 2123.00i 0.445934i 0.974826 + 0.222967i \(0.0715742\pi\)
−0.974826 + 0.222967i \(0.928426\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 3042.00i − 0.625657i
\(288\) 0 0
\(289\) 4888.00 0.994911
\(290\) 0 0
\(291\) −13518.0 −2.72316
\(292\) 0 0
\(293\) − 8834.00i − 1.76139i −0.473682 0.880696i \(-0.657075\pi\)
0.473682 0.880696i \(-0.342925\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 14337.0i 2.80107i
\(298\) 0 0
\(299\) 5432.00 1.05064
\(300\) 0 0
\(301\) 10088.0 1.93177
\(302\) 0 0
\(303\) − 2106.00i − 0.399296i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1369.00i − 0.254505i −0.991870 0.127252i \(-0.959384\pi\)
0.991870 0.127252i \(-0.0406158\pi\)
\(308\) 0 0
\(309\) 10548.0 1.94192
\(310\) 0 0
\(311\) −10426.0 −1.90098 −0.950489 0.310758i \(-0.899417\pi\)
−0.950489 + 0.310758i \(0.899417\pi\)
\(312\) 0 0
\(313\) − 3574.00i − 0.645413i −0.946499 0.322707i \(-0.895407\pi\)
0.946499 0.322707i \(-0.104593\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 9036.00i − 1.60099i −0.599343 0.800493i \(-0.704571\pi\)
0.599343 0.800493i \(-0.295429\pi\)
\(318\) 0 0
\(319\) −1888.00 −0.331372
\(320\) 0 0
\(321\) 10125.0 1.76051
\(322\) 0 0
\(323\) 545.000i 0.0938842i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 11106.0i 1.87817i
\(328\) 0 0
\(329\) 1768.00 0.296271
\(330\) 0 0
\(331\) 10233.0 1.69926 0.849632 0.527376i \(-0.176824\pi\)
0.849632 + 0.527376i \(0.176824\pi\)
\(332\) 0 0
\(333\) − 10692.0i − 1.75951i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 4627.00i − 0.747919i −0.927445 0.373960i \(-0.878000\pi\)
0.927445 0.373960i \(-0.122000\pi\)
\(338\) 0 0
\(339\) −5103.00 −0.817572
\(340\) 0 0
\(341\) −590.000 −0.0936959
\(342\) 0 0
\(343\) − 260.000i − 0.0409291i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 4901.00i − 0.758212i −0.925353 0.379106i \(-0.876232\pi\)
0.925353 0.379106i \(-0.123768\pi\)
\(348\) 0 0
\(349\) 4482.00 0.687438 0.343719 0.939072i \(-0.388313\pi\)
0.343719 + 0.939072i \(0.388313\pi\)
\(350\) 0 0
\(351\) 6804.00 1.03467
\(352\) 0 0
\(353\) − 1210.00i − 0.182441i −0.995831 0.0912207i \(-0.970923\pi\)
0.995831 0.0912207i \(-0.0290769\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 1170.00i − 0.173454i
\(358\) 0 0
\(359\) 9882.00 1.45279 0.726396 0.687277i \(-0.241194\pi\)
0.726396 + 0.687277i \(0.241194\pi\)
\(360\) 0 0
\(361\) 5022.00 0.732177
\(362\) 0 0
\(363\) 19350.0i 2.79783i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11260.0i 1.60155i 0.598968 + 0.800773i \(0.295578\pi\)
−0.598968 + 0.800773i \(0.704422\pi\)
\(368\) 0 0
\(369\) −6318.00 −0.891333
\(370\) 0 0
\(371\) −468.000 −0.0654915
\(372\) 0 0
\(373\) − 3230.00i − 0.448373i −0.974546 0.224186i \(-0.928028\pi\)
0.974546 0.224186i \(-0.0719724\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 896.000i 0.122404i
\(378\) 0 0
\(379\) −11575.0 −1.56878 −0.784390 0.620268i \(-0.787024\pi\)
−0.784390 + 0.620268i \(0.787024\pi\)
\(380\) 0 0
\(381\) −21222.0 −2.85364
\(382\) 0 0
\(383\) − 18.0000i − 0.00240145i −0.999999 0.00120073i \(-0.999618\pi\)
0.999999 0.00120073i \(-0.000382203\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 20952.0i − 2.75207i
\(388\) 0 0
\(389\) −10710.0 −1.39593 −0.697967 0.716130i \(-0.745912\pi\)
−0.697967 + 0.716130i \(0.745912\pi\)
\(390\) 0 0
\(391\) −970.000 −0.125460
\(392\) 0 0
\(393\) − 15228.0i − 1.95458i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3788.00i 0.478877i 0.970912 + 0.239439i \(0.0769634\pi\)
−0.970912 + 0.239439i \(0.923037\pi\)
\(398\) 0 0
\(399\) −25506.0 −3.20024
\(400\) 0 0
\(401\) −10539.0 −1.31245 −0.656225 0.754565i \(-0.727848\pi\)
−0.656225 + 0.754565i \(0.727848\pi\)
\(402\) 0 0
\(403\) 280.000i 0.0346099i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 11682.0i − 1.42274i
\(408\) 0 0
\(409\) −5581.00 −0.674725 −0.337363 0.941375i \(-0.609535\pi\)
−0.337363 + 0.941375i \(0.609535\pi\)
\(410\) 0 0
\(411\) 2061.00 0.247352
\(412\) 0 0
\(413\) 10192.0i 1.21432i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 25029.0i − 2.93927i
\(418\) 0 0
\(419\) −5193.00 −0.605476 −0.302738 0.953074i \(-0.597901\pi\)
−0.302738 + 0.953074i \(0.597901\pi\)
\(420\) 0 0
\(421\) 4788.00 0.554282 0.277141 0.960829i \(-0.410613\pi\)
0.277141 + 0.960829i \(0.410613\pi\)
\(422\) 0 0
\(423\) − 3672.00i − 0.422077i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 18460.0i 2.09214i
\(428\) 0 0
\(429\) 14868.0 1.67327
\(430\) 0 0
\(431\) 8006.00 0.894746 0.447373 0.894348i \(-0.352360\pi\)
0.447373 + 0.894348i \(0.352360\pi\)
\(432\) 0 0
\(433\) − 2395.00i − 0.265811i −0.991129 0.132906i \(-0.957569\pi\)
0.991129 0.132906i \(-0.0424308\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 21146.0i 2.31476i
\(438\) 0 0
\(439\) −1864.00 −0.202651 −0.101326 0.994853i \(-0.532308\pi\)
−0.101326 + 0.994853i \(0.532308\pi\)
\(440\) 0 0
\(441\) 17982.0 1.94169
\(442\) 0 0
\(443\) 5463.00i 0.585903i 0.956127 + 0.292951i \(0.0946374\pi\)
−0.956127 + 0.292951i \(0.905363\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 13248.0i − 1.40181i
\(448\) 0 0
\(449\) −12969.0 −1.36313 −0.681565 0.731758i \(-0.738700\pi\)
−0.681565 + 0.731758i \(0.738700\pi\)
\(450\) 0 0
\(451\) −6903.00 −0.720731
\(452\) 0 0
\(453\) 11898.0i 1.23403i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 18313.0i − 1.87450i −0.348659 0.937249i \(-0.613363\pi\)
0.348659 0.937249i \(-0.386637\pi\)
\(458\) 0 0
\(459\) −1215.00 −0.123554
\(460\) 0 0
\(461\) 12492.0 1.26206 0.631031 0.775758i \(-0.282632\pi\)
0.631031 + 0.775758i \(0.282632\pi\)
\(462\) 0 0
\(463\) 4428.00i 0.444464i 0.974994 + 0.222232i \(0.0713342\pi\)
−0.974994 + 0.222232i \(0.928666\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1084.00i 0.107412i 0.998557 + 0.0537061i \(0.0171034\pi\)
−0.998557 + 0.0537061i \(0.982897\pi\)
\(468\) 0 0
\(469\) 6578.00 0.647641
\(470\) 0 0
\(471\) 2682.00 0.262378
\(472\) 0 0
\(473\) − 22892.0i − 2.22532i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 972.000i 0.0933015i
\(478\) 0 0
\(479\) 13082.0 1.24787 0.623937 0.781474i \(-0.285532\pi\)
0.623937 + 0.781474i \(0.285532\pi\)
\(480\) 0 0
\(481\) −5544.00 −0.525540
\(482\) 0 0
\(483\) − 45396.0i − 4.27658i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3014.00i 0.280446i 0.990120 + 0.140223i \(0.0447820\pi\)
−0.990120 + 0.140223i \(0.955218\pi\)
\(488\) 0 0
\(489\) 3069.00 0.283814
\(490\) 0 0
\(491\) −3564.00 −0.327579 −0.163789 0.986495i \(-0.552372\pi\)
−0.163789 + 0.986495i \(0.552372\pi\)
\(492\) 0 0
\(493\) − 160.000i − 0.0146167i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15912.0i 1.43612i
\(498\) 0 0
\(499\) 15796.0 1.41709 0.708543 0.705667i \(-0.249353\pi\)
0.708543 + 0.705667i \(0.249353\pi\)
\(500\) 0 0
\(501\) 6156.00 0.548962
\(502\) 0 0
\(503\) − 10908.0i − 0.966926i −0.875365 0.483463i \(-0.839379\pi\)
0.875365 0.483463i \(-0.160621\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12717.0i 1.11397i
\(508\) 0 0
\(509\) −21946.0 −1.91108 −0.955540 0.294863i \(-0.904726\pi\)
−0.955540 + 0.294863i \(0.904726\pi\)
\(510\) 0 0
\(511\) −14274.0 −1.23570
\(512\) 0 0
\(513\) 26487.0i 2.27959i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 4012.00i − 0.341291i
\(518\) 0 0
\(519\) 21096.0 1.78422
\(520\) 0 0
\(521\) −6395.00 −0.537754 −0.268877 0.963174i \(-0.586653\pi\)
−0.268877 + 0.963174i \(0.586653\pi\)
\(522\) 0 0
\(523\) − 5615.00i − 0.469459i −0.972061 0.234729i \(-0.924580\pi\)
0.972061 0.234729i \(-0.0754204\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 50.0000i − 0.00413289i
\(528\) 0 0
\(529\) −25469.0 −2.09329
\(530\) 0 0
\(531\) 21168.0 1.72997
\(532\) 0 0
\(533\) 3276.00i 0.266228i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 9999.00i 0.803517i
\(538\) 0 0
\(539\) 19647.0 1.57005
\(540\) 0 0
\(541\) −4112.00 −0.326781 −0.163391 0.986561i \(-0.552243\pi\)
−0.163391 + 0.986561i \(0.552243\pi\)
\(542\) 0 0
\(543\) 18378.0i 1.45244i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2167.00i 0.169386i 0.996407 + 0.0846931i \(0.0269910\pi\)
−0.996407 + 0.0846931i \(0.973009\pi\)
\(548\) 0 0
\(549\) 38340.0 2.98053
\(550\) 0 0
\(551\) −3488.00 −0.269680
\(552\) 0 0
\(553\) 10764.0i 0.827725i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19444.0i 1.47912i 0.673092 + 0.739559i \(0.264966\pi\)
−0.673092 + 0.739559i \(0.735034\pi\)
\(558\) 0 0
\(559\) −10864.0 −0.822000
\(560\) 0 0
\(561\) −2655.00 −0.199811
\(562\) 0 0
\(563\) 20416.0i 1.52830i 0.645040 + 0.764149i \(0.276841\pi\)
−0.645040 + 0.764149i \(0.723159\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 18954.0i − 1.40387i
\(568\) 0 0
\(569\) 3127.00 0.230388 0.115194 0.993343i \(-0.463251\pi\)
0.115194 + 0.993343i \(0.463251\pi\)
\(570\) 0 0
\(571\) −22580.0 −1.65489 −0.827446 0.561545i \(-0.810207\pi\)
−0.827446 + 0.561545i \(0.810207\pi\)
\(572\) 0 0
\(573\) 47430.0i 3.45797i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 829.000i 0.0598123i 0.999553 + 0.0299062i \(0.00952085\pi\)
−0.999553 + 0.0299062i \(0.990479\pi\)
\(578\) 0 0
\(579\) −5517.00 −0.395991
\(580\) 0 0
\(581\) −3146.00 −0.224644
\(582\) 0 0
\(583\) 1062.00i 0.0754435i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 7119.00i − 0.500567i −0.968173 0.250283i \(-0.919476\pi\)
0.968173 0.250283i \(-0.0805238\pi\)
\(588\) 0 0
\(589\) −1090.00 −0.0762524
\(590\) 0 0
\(591\) 10566.0 0.735410
\(592\) 0 0
\(593\) − 8217.00i − 0.569025i −0.958672 0.284512i \(-0.908168\pi\)
0.958672 0.284512i \(-0.0918317\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 30852.0i − 2.11506i
\(598\) 0 0
\(599\) 90.0000 0.00613907 0.00306953 0.999995i \(-0.499023\pi\)
0.00306953 + 0.999995i \(0.499023\pi\)
\(600\) 0 0
\(601\) −17117.0 −1.16176 −0.580879 0.813990i \(-0.697291\pi\)
−0.580879 + 0.813990i \(0.697291\pi\)
\(602\) 0 0
\(603\) − 13662.0i − 0.922653i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 15120.0i 1.01104i 0.862815 + 0.505520i \(0.168699\pi\)
−0.862815 + 0.505520i \(0.831301\pi\)
\(608\) 0 0
\(609\) 7488.00 0.498241
\(610\) 0 0
\(611\) −1904.00 −0.126068
\(612\) 0 0
\(613\) − 6570.00i − 0.432887i −0.976295 0.216444i \(-0.930554\pi\)
0.976295 0.216444i \(-0.0694457\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 18846.0i − 1.22968i −0.788653 0.614839i \(-0.789221\pi\)
0.788653 0.614839i \(-0.210779\pi\)
\(618\) 0 0
\(619\) −16316.0 −1.05944 −0.529722 0.848172i \(-0.677704\pi\)
−0.529722 + 0.848172i \(0.677704\pi\)
\(620\) 0 0
\(621\) −47142.0 −3.04629
\(622\) 0 0
\(623\) − 2106.00i − 0.135434i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 57879.0i 3.68655i
\(628\) 0 0
\(629\) 990.000 0.0627566
\(630\) 0 0
\(631\) 20170.0 1.27251 0.636256 0.771478i \(-0.280482\pi\)
0.636256 + 0.771478i \(0.280482\pi\)
\(632\) 0 0
\(633\) 21051.0i 1.32180i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 9324.00i − 0.579953i
\(638\) 0 0
\(639\) 33048.0 2.04594
\(640\) 0 0
\(641\) −12726.0 −0.784160 −0.392080 0.919931i \(-0.628244\pi\)
−0.392080 + 0.919931i \(0.628244\pi\)
\(642\) 0 0
\(643\) 2196.00i 0.134684i 0.997730 + 0.0673420i \(0.0214519\pi\)
−0.997730 + 0.0673420i \(0.978548\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16884.0i 1.02593i 0.858409 + 0.512966i \(0.171453\pi\)
−0.858409 + 0.512966i \(0.828547\pi\)
\(648\) 0 0
\(649\) 23128.0 1.39885
\(650\) 0 0
\(651\) 2340.00 0.140878
\(652\) 0 0
\(653\) − 4018.00i − 0.240791i −0.992726 0.120395i \(-0.961584\pi\)
0.992726 0.120395i \(-0.0384163\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 29646.0i 1.76043i
\(658\) 0 0
\(659\) −19071.0 −1.12732 −0.563658 0.826009i \(-0.690606\pi\)
−0.563658 + 0.826009i \(0.690606\pi\)
\(660\) 0 0
\(661\) 17424.0 1.02529 0.512644 0.858601i \(-0.328666\pi\)
0.512644 + 0.858601i \(0.328666\pi\)
\(662\) 0 0
\(663\) 1260.00i 0.0738075i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 6208.00i − 0.360382i
\(668\) 0 0
\(669\) −35388.0 −2.04511
\(670\) 0 0
\(671\) 41890.0 2.41005
\(672\) 0 0
\(673\) − 5382.00i − 0.308263i −0.988050 0.154131i \(-0.950742\pi\)
0.988050 0.154131i \(-0.0492579\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4496.00i 0.255237i 0.991823 + 0.127618i \(0.0407333\pi\)
−0.991823 + 0.127618i \(0.959267\pi\)
\(678\) 0 0
\(679\) 39052.0 2.20718
\(680\) 0 0
\(681\) 54756.0 3.08114
\(682\) 0 0
\(683\) 3249.00i 0.182020i 0.995850 + 0.0910099i \(0.0290095\pi\)
−0.995850 + 0.0910099i \(0.970991\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 44964.0i − 2.49706i
\(688\) 0 0
\(689\) 504.000 0.0278677
\(690\) 0 0
\(691\) −13399.0 −0.737658 −0.368829 0.929497i \(-0.620241\pi\)
−0.368829 + 0.929497i \(0.620241\pi\)
\(692\) 0 0
\(693\) − 82836.0i − 4.54066i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 585.000i − 0.0317912i
\(698\) 0 0
\(699\) −28998.0 −1.56911
\(700\) 0 0
\(701\) −18148.0 −0.977804 −0.488902 0.872339i \(-0.662602\pi\)
−0.488902 + 0.872339i \(0.662602\pi\)
\(702\) 0 0
\(703\) − 21582.0i − 1.15787i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6084.00i 0.323638i
\(708\) 0 0
\(709\) −4868.00 −0.257858 −0.128929 0.991654i \(-0.541154\pi\)
−0.128929 + 0.991654i \(0.541154\pi\)
\(710\) 0 0
\(711\) 22356.0 1.17921
\(712\) 0 0
\(713\) − 1940.00i − 0.101898i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 24624.0i − 1.28257i
\(718\) 0 0
\(719\) 17366.0 0.900755 0.450377 0.892838i \(-0.351289\pi\)
0.450377 + 0.892838i \(0.351289\pi\)
\(720\) 0 0
\(721\) −30472.0 −1.57398
\(722\) 0 0
\(723\) 15057.0i 0.774517i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 21824.0i − 1.11335i −0.830729 0.556676i \(-0.812076\pi\)
0.830729 0.556676i \(-0.187924\pi\)
\(728\) 0 0
\(729\) 19683.0 1.00000
\(730\) 0 0
\(731\) 1940.00 0.0981580
\(732\) 0 0
\(733\) − 31428.0i − 1.58366i −0.610744 0.791828i \(-0.709130\pi\)
0.610744 0.791828i \(-0.290870\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 14927.0i − 0.746056i
\(738\) 0 0
\(739\) 14292.0 0.711420 0.355710 0.934596i \(-0.384239\pi\)
0.355710 + 0.934596i \(0.384239\pi\)
\(740\) 0 0
\(741\) 27468.0 1.36176
\(742\) 0 0
\(743\) 13950.0i 0.688797i 0.938824 + 0.344398i \(0.111917\pi\)
−0.938824 + 0.344398i \(0.888083\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6534.00i 0.320036i
\(748\) 0 0
\(749\) −29250.0 −1.42693
\(750\) 0 0
\(751\) −38736.0 −1.88215 −0.941076 0.338194i \(-0.890184\pi\)
−0.941076 + 0.338194i \(0.890184\pi\)
\(752\) 0 0
\(753\) 48195.0i 2.33243i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3664.00i 0.175919i 0.996124 + 0.0879593i \(0.0280345\pi\)
−0.996124 + 0.0879593i \(0.971965\pi\)
\(758\) 0 0
\(759\) −103014. −4.92644
\(760\) 0 0
\(761\) 19557.0 0.931591 0.465795 0.884892i \(-0.345768\pi\)
0.465795 + 0.884892i \(0.345768\pi\)
\(762\) 0 0
\(763\) − 32084.0i − 1.52231i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 10976.0i − 0.516715i
\(768\) 0 0
\(769\) 13283.0 0.622883 0.311442 0.950265i \(-0.399188\pi\)
0.311442 + 0.950265i \(0.399188\pi\)
\(770\) 0 0
\(771\) −49410.0 −2.30799
\(772\) 0 0
\(773\) 24840.0i 1.15580i 0.816108 + 0.577900i \(0.196127\pi\)
−0.816108 + 0.577900i \(0.803873\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 46332.0i 2.13919i
\(778\) 0 0
\(779\) −12753.0 −0.586552
\(780\) 0 0
\(781\) 36108.0 1.65435
\(782\) 0 0
\(783\) − 7776.00i − 0.354906i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 18044.0i − 0.817280i −0.912696 0.408640i \(-0.866003\pi\)
0.912696 0.408640i \(-0.133997\pi\)
\(788\) 0 0
\(789\) −28350.0 −1.27920
\(790\) 0 0
\(791\) 14742.0 0.662661
\(792\) 0 0
\(793\) − 19880.0i − 0.890239i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6174.00i 0.274397i 0.990544 + 0.137198i \(0.0438098\pi\)
−0.990544 + 0.137198i \(0.956190\pi\)
\(798\) 0 0
\(799\) 340.000 0.0150542
\(800\) 0 0
\(801\) −4374.00 −0.192943
\(802\) 0 0
\(803\) 32391.0i 1.42348i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 1584.00i − 0.0690947i
\(808\) 0 0
\(809\) 1998.00 0.0868306 0.0434153 0.999057i \(-0.486176\pi\)
0.0434153 + 0.999057i \(0.486176\pi\)
\(810\) 0 0
\(811\) −7156.00 −0.309841 −0.154921 0.987927i \(-0.549512\pi\)
−0.154921 + 0.987927i \(0.549512\pi\)
\(812\) 0 0
\(813\) 21546.0i 0.929460i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 42292.0i − 1.81103i
\(818\) 0 0
\(819\) −39312.0 −1.67726
\(820\) 0 0
\(821\) 27922.0 1.18695 0.593474 0.804853i \(-0.297756\pi\)
0.593474 + 0.804853i \(0.297756\pi\)
\(822\) 0 0
\(823\) 22636.0i 0.958738i 0.877613 + 0.479369i \(0.159134\pi\)
−0.877613 + 0.479369i \(0.840866\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 26559.0i − 1.11674i −0.829591 0.558372i \(-0.811426\pi\)
0.829591 0.558372i \(-0.188574\pi\)
\(828\) 0 0
\(829\) −12580.0 −0.527046 −0.263523 0.964653i \(-0.584885\pi\)
−0.263523 + 0.964653i \(0.584885\pi\)
\(830\) 0 0
\(831\) −56304.0 −2.35038
\(832\) 0 0
\(833\) 1665.00i 0.0692543i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2430.00i − 0.100350i
\(838\) 0 0
\(839\) 11344.0 0.466792 0.233396 0.972382i \(-0.425016\pi\)
0.233396 + 0.972382i \(0.425016\pi\)
\(840\) 0 0
\(841\) −23365.0 −0.958014
\(842\) 0 0
\(843\) − 43218.0i − 1.76573i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 55900.0i − 2.26771i
\(848\) 0 0
\(849\) −19107.0 −0.772380
\(850\) 0 0
\(851\) 38412.0 1.54729
\(852\) 0 0
\(853\) 14786.0i 0.593509i 0.954954 + 0.296754i \(0.0959043\pi\)
−0.954954 + 0.296754i \(0.904096\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 29259.0i 1.16624i 0.812386 + 0.583120i \(0.198168\pi\)
−0.812386 + 0.583120i \(0.801832\pi\)
\(858\) 0 0
\(859\) 13651.0 0.542219 0.271109 0.962549i \(-0.412609\pi\)
0.271109 + 0.962549i \(0.412609\pi\)
\(860\) 0 0
\(861\) 27378.0 1.08367
\(862\) 0 0
\(863\) 29016.0i 1.14451i 0.820074 + 0.572257i \(0.193932\pi\)
−0.820074 + 0.572257i \(0.806068\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 43992.0i 1.72324i
\(868\) 0 0
\(869\) 24426.0 0.953504
\(870\) 0 0
\(871\) −7084.00 −0.275582
\(872\) 0 0
\(873\) − 81108.0i − 3.14443i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 21412.0i − 0.824438i −0.911085 0.412219i \(-0.864754\pi\)
0.911085 0.412219i \(-0.135246\pi\)
\(878\) 0 0
\(879\) 79506.0 3.05082
\(880\) 0 0
\(881\) −1170.00 −0.0447427 −0.0223713 0.999750i \(-0.507122\pi\)
−0.0223713 + 0.999750i \(0.507122\pi\)
\(882\) 0 0
\(883\) − 12655.0i − 0.482304i −0.970487 0.241152i \(-0.922475\pi\)
0.970487 0.241152i \(-0.0775253\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 32764.0i − 1.24026i −0.784500 0.620128i \(-0.787081\pi\)
0.784500 0.620128i \(-0.212919\pi\)
\(888\) 0 0
\(889\) 61308.0 2.31294
\(890\) 0 0
\(891\) −43011.0 −1.61720
\(892\) 0 0
\(893\) − 7412.00i − 0.277753i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 48888.0i 1.81976i
\(898\) 0 0
\(899\) 320.000 0.0118716
\(900\) 0 0
\(901\) −90.0000 −0.00332779
\(902\) 0 0
\(903\) 90792.0i 3.34592i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 29844.0i 1.09256i 0.837602 + 0.546281i \(0.183957\pi\)
−0.837602 + 0.546281i \(0.816043\pi\)
\(908\) 0 0
\(909\) 12636.0 0.461067
\(910\) 0 0
\(911\) 15628.0 0.568363 0.284182 0.958770i \(-0.408278\pi\)
0.284182 + 0.958770i \(0.408278\pi\)
\(912\) 0 0
\(913\) 7139.00i 0.258780i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 43992.0i 1.58424i
\(918\) 0 0
\(919\) −42974.0 −1.54253 −0.771263 0.636517i \(-0.780375\pi\)
−0.771263 + 0.636517i \(0.780375\pi\)
\(920\) 0 0
\(921\) 12321.0 0.440815
\(922\) 0 0
\(923\) − 17136.0i − 0.611092i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 63288.0i 2.24234i
\(928\) 0 0
\(929\) −13342.0 −0.471191 −0.235596 0.971851i \(-0.575704\pi\)
−0.235596 + 0.971851i \(0.575704\pi\)
\(930\) 0 0
\(931\) 36297.0 1.27775
\(932\) 0 0
\(933\) − 93834.0i − 3.29259i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3005.00i 0.104770i 0.998627 + 0.0523848i \(0.0166822\pi\)
−0.998627 + 0.0523848i \(0.983318\pi\)
\(938\) 0 0
\(939\) 32166.0 1.11789
\(940\) 0 0
\(941\) 16204.0 0.561355 0.280678 0.959802i \(-0.409441\pi\)
0.280678 + 0.959802i \(0.409441\pi\)
\(942\) 0 0
\(943\) − 22698.0i − 0.783827i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30200.0i 1.03629i 0.855292 + 0.518146i \(0.173378\pi\)
−0.855292 + 0.518146i \(0.826622\pi\)
\(948\) 0 0
\(949\) 15372.0 0.525813
\(950\) 0 0
\(951\) 81324.0 2.77299
\(952\) 0 0
\(953\) − 29583.0i − 1.00555i −0.864418 0.502774i \(-0.832313\pi\)
0.864418 0.502774i \(-0.167687\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 16992.0i − 0.573953i
\(958\) 0 0
\(959\) −5954.00 −0.200485
\(960\) 0 0
\(961\) −29691.0 −0.996643
\(962\) 0 0
\(963\) 60750.0i 2.03286i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 6480.00i 0.215494i 0.994178 + 0.107747i \(0.0343637\pi\)
−0.994178 + 0.107747i \(0.965636\pi\)
\(968\) 0 0
\(969\) −4905.00 −0.162612
\(970\) 0 0
\(971\) −40171.0 −1.32765 −0.663825 0.747888i \(-0.731068\pi\)
−0.663825 + 0.747888i \(0.731068\pi\)
\(972\) 0 0
\(973\) 72306.0i 2.38235i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 50801.0i − 1.66353i −0.555129 0.831765i \(-0.687331\pi\)
0.555129 0.831765i \(-0.312669\pi\)
\(978\) 0 0
\(979\) −4779.00 −0.156014
\(980\) 0 0
\(981\) −66636.0 −2.16873
\(982\) 0 0
\(983\) − 58338.0i − 1.89287i −0.322891 0.946436i \(-0.604655\pi\)
0.322891 0.946436i \(-0.395345\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 15912.0i 0.513156i
\(988\) 0 0
\(989\) 75272.0 2.42013
\(990\) 0 0
\(991\) −51202.0 −1.64126 −0.820628 0.571462i \(-0.806376\pi\)
−0.820628 + 0.571462i \(0.806376\pi\)
\(992\) 0 0
\(993\) 92097.0i 2.94321i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1764.00i − 0.0560345i −0.999607 0.0280173i \(-0.991081\pi\)
0.999607 0.0280173i \(-0.00891934\pi\)
\(998\) 0 0
\(999\) 48114.0 1.52378
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.4.c.b.49.2 2
3.2 odd 2 1800.4.f.w.649.1 2
4.3 odd 2 400.4.c.b.49.1 2
5.2 odd 4 200.4.a.j.1.1 yes 1
5.3 odd 4 200.4.a.b.1.1 1
5.4 even 2 inner 200.4.c.b.49.1 2
15.2 even 4 1800.4.a.bh.1.1 1
15.8 even 4 1800.4.a.c.1.1 1
15.14 odd 2 1800.4.f.w.649.2 2
20.3 even 4 400.4.a.t.1.1 1
20.7 even 4 400.4.a.a.1.1 1
20.19 odd 2 400.4.c.b.49.2 2
40.3 even 4 1600.4.a.b.1.1 1
40.13 odd 4 1600.4.a.bz.1.1 1
40.27 even 4 1600.4.a.by.1.1 1
40.37 odd 4 1600.4.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.4.a.b.1.1 1 5.3 odd 4
200.4.a.j.1.1 yes 1 5.2 odd 4
200.4.c.b.49.1 2 5.4 even 2 inner
200.4.c.b.49.2 2 1.1 even 1 trivial
400.4.a.a.1.1 1 20.7 even 4
400.4.a.t.1.1 1 20.3 even 4
400.4.c.b.49.1 2 4.3 odd 2
400.4.c.b.49.2 2 20.19 odd 2
1600.4.a.b.1.1 1 40.3 even 4
1600.4.a.c.1.1 1 40.37 odd 4
1600.4.a.by.1.1 1 40.27 even 4
1600.4.a.bz.1.1 1 40.13 odd 4
1800.4.a.c.1.1 1 15.8 even 4
1800.4.a.bh.1.1 1 15.2 even 4
1800.4.f.w.649.1 2 3.2 odd 2
1800.4.f.w.649.2 2 15.14 odd 2