Properties

 Label 200.4.c.b.49.1 Level $200$ Weight $4$ Character 200.49 Analytic conductor $11.800$ Analytic rank $1$ Dimension $2$ Inner twists $2$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [200,4,Mod(49,200)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(200, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 1]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("200.49");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$200 = 2^{3} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 200.c (of order $$2$$, degree $$1$$, not minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$11.8003820011$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

 Embedding label 49.1 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 200.49 Dual form 200.4.c.b.49.2

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-9.00000i q^{3} +26.0000i q^{7} -54.0000 q^{9} +O(q^{10})$$ $$q-9.00000i q^{3} +26.0000i q^{7} -54.0000 q^{9} -59.0000 q^{11} -28.0000i q^{13} +5.00000i q^{17} -109.000 q^{19} +234.000 q^{21} +194.000i q^{23} +243.000i q^{27} +32.0000 q^{29} +10.0000 q^{31} +531.000i q^{33} -198.000i q^{37} -252.000 q^{39} +117.000 q^{41} -388.000i q^{43} -68.0000i q^{47} -333.000 q^{49} +45.0000 q^{51} +18.0000i q^{53} +981.000i q^{57} -392.000 q^{59} -710.000 q^{61} -1404.00i q^{63} -253.000i q^{67} +1746.00 q^{69} -612.000 q^{71} +549.000i q^{73} -1534.00i q^{77} -414.000 q^{79} +729.000 q^{81} +121.000i q^{83} -288.000i q^{87} +81.0000 q^{89} +728.000 q^{91} -90.0000i q^{93} -1502.00i q^{97} +3186.00 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 108 q^{9}+O(q^{10})$$ 2 * q - 108 * q^9 $$2 q - 108 q^{9} - 118 q^{11} - 218 q^{19} + 468 q^{21} + 64 q^{29} + 20 q^{31} - 504 q^{39} + 234 q^{41} - 666 q^{49} + 90 q^{51} - 784 q^{59} - 1420 q^{61} + 3492 q^{69} - 1224 q^{71} - 828 q^{79} + 1458 q^{81} + 162 q^{89} + 1456 q^{91} + 6372 q^{99}+O(q^{100})$$ 2 * q - 108 * q^9 - 118 * q^11 - 218 * q^19 + 468 * q^21 + 64 * q^29 + 20 * q^31 - 504 * q^39 + 234 * q^41 - 666 * q^49 + 90 * q^51 - 784 * q^59 - 1420 * q^61 + 3492 * q^69 - 1224 * q^71 - 828 * q^79 + 1458 * q^81 + 162 * q^89 + 1456 * q^91 + 6372 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/200\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$151$$ $$177$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ − 9.00000i − 1.73205i −0.500000 0.866025i $$-0.666667\pi$$
0.500000 0.866025i $$-0.333333\pi$$
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 26.0000i 1.40387i 0.712242 + 0.701934i $$0.247680\pi$$
−0.712242 + 0.701934i $$0.752320\pi$$
$$8$$ 0 0
$$9$$ −54.0000 −2.00000
$$10$$ 0 0
$$11$$ −59.0000 −1.61720 −0.808599 0.588361i $$-0.799774\pi$$
−0.808599 + 0.588361i $$0.799774\pi$$
$$12$$ 0 0
$$13$$ − 28.0000i − 0.597369i −0.954352 0.298685i $$-0.903452\pi$$
0.954352 0.298685i $$-0.0965479\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 5.00000i 0.0713340i 0.999364 + 0.0356670i $$0.0113556\pi$$
−0.999364 + 0.0356670i $$0.988644\pi$$
$$18$$ 0 0
$$19$$ −109.000 −1.31612 −0.658061 0.752965i $$-0.728623\pi$$
−0.658061 + 0.752965i $$0.728623\pi$$
$$20$$ 0 0
$$21$$ 234.000 2.43157
$$22$$ 0 0
$$23$$ 194.000i 1.75877i 0.476108 + 0.879387i $$0.342047\pi$$
−0.476108 + 0.879387i $$0.657953\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 243.000i 1.73205i
$$28$$ 0 0
$$29$$ 32.0000 0.204905 0.102453 0.994738i $$-0.467331\pi$$
0.102453 + 0.994738i $$0.467331\pi$$
$$30$$ 0 0
$$31$$ 10.0000 0.0579372 0.0289686 0.999580i $$-0.490778\pi$$
0.0289686 + 0.999580i $$0.490778\pi$$
$$32$$ 0 0
$$33$$ 531.000i 2.80107i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ − 198.000i − 0.879757i −0.898057 0.439878i $$-0.855022\pi$$
0.898057 0.439878i $$-0.144978\pi$$
$$38$$ 0 0
$$39$$ −252.000 −1.03467
$$40$$ 0 0
$$41$$ 117.000 0.445667 0.222833 0.974857i $$-0.428469\pi$$
0.222833 + 0.974857i $$0.428469\pi$$
$$42$$ 0 0
$$43$$ − 388.000i − 1.37603i −0.725695 0.688017i $$-0.758482\pi$$
0.725695 0.688017i $$-0.241518\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ − 68.0000i − 0.211039i −0.994417 0.105519i $$-0.966350\pi$$
0.994417 0.105519i $$-0.0336505\pi$$
$$48$$ 0 0
$$49$$ −333.000 −0.970845
$$50$$ 0 0
$$51$$ 45.0000 0.123554
$$52$$ 0 0
$$53$$ 18.0000i 0.0466508i 0.999728 + 0.0233254i $$0.00742537\pi$$
−0.999728 + 0.0233254i $$0.992575\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 981.000i 2.27959i
$$58$$ 0 0
$$59$$ −392.000 −0.864984 −0.432492 0.901638i $$-0.642366\pi$$
−0.432492 + 0.901638i $$0.642366\pi$$
$$60$$ 0 0
$$61$$ −710.000 −1.49027 −0.745133 0.666916i $$-0.767614\pi$$
−0.745133 + 0.666916i $$0.767614\pi$$
$$62$$ 0 0
$$63$$ − 1404.00i − 2.80774i
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ − 253.000i − 0.461326i −0.973034 0.230663i $$-0.925910\pi$$
0.973034 0.230663i $$-0.0740896\pi$$
$$68$$ 0 0
$$69$$ 1746.00 3.04629
$$70$$ 0 0
$$71$$ −612.000 −1.02297 −0.511486 0.859292i $$-0.670905\pi$$
−0.511486 + 0.859292i $$0.670905\pi$$
$$72$$ 0 0
$$73$$ 549.000i 0.880214i 0.897945 + 0.440107i $$0.145059\pi$$
−0.897945 + 0.440107i $$0.854941\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ − 1534.00i − 2.27033i
$$78$$ 0 0
$$79$$ −414.000 −0.589603 −0.294802 0.955559i $$-0.595254\pi$$
−0.294802 + 0.955559i $$0.595254\pi$$
$$80$$ 0 0
$$81$$ 729.000 1.00000
$$82$$ 0 0
$$83$$ 121.000i 0.160018i 0.996794 + 0.0800089i $$0.0254949\pi$$
−0.996794 + 0.0800089i $$0.974505\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ − 288.000i − 0.354906i
$$88$$ 0 0
$$89$$ 81.0000 0.0964717 0.0482359 0.998836i $$-0.484640\pi$$
0.0482359 + 0.998836i $$0.484640\pi$$
$$90$$ 0 0
$$91$$ 728.000 0.838628
$$92$$ 0 0
$$93$$ − 90.0000i − 0.100350i
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ − 1502.00i − 1.57222i −0.618089 0.786108i $$-0.712093\pi$$
0.618089 0.786108i $$-0.287907\pi$$
$$98$$ 0 0
$$99$$ 3186.00 3.23439
$$100$$ 0 0
$$101$$ −234.000 −0.230533 −0.115267 0.993335i $$-0.536772\pi$$
−0.115267 + 0.993335i $$0.536772\pi$$
$$102$$ 0 0
$$103$$ 1172.00i 1.12117i 0.828097 + 0.560585i $$0.189424\pi$$
−0.828097 + 0.560585i $$0.810576\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 1125.00i 1.01643i 0.861231 + 0.508214i $$0.169694\pi$$
−0.861231 + 0.508214i $$0.830306\pi$$
$$108$$ 0 0
$$109$$ 1234.00 1.08436 0.542182 0.840261i $$-0.317598\pi$$
0.542182 + 0.840261i $$0.317598\pi$$
$$110$$ 0 0
$$111$$ −1782.00 −1.52378
$$112$$ 0 0
$$113$$ − 567.000i − 0.472025i −0.971750 0.236013i $$-0.924159\pi$$
0.971750 0.236013i $$-0.0758407\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 1512.00i 1.19474i
$$118$$ 0 0
$$119$$ −130.000 −0.100144
$$120$$ 0 0
$$121$$ 2150.00 1.61533
$$122$$ 0 0
$$123$$ − 1053.00i − 0.771917i
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ − 2358.00i − 1.64755i −0.566918 0.823774i $$-0.691864\pi$$
0.566918 0.823774i $$-0.308136\pi$$
$$128$$ 0 0
$$129$$ −3492.00 −2.38336
$$130$$ 0 0
$$131$$ −1692.00 −1.12848 −0.564239 0.825611i $$-0.690831\pi$$
−0.564239 + 0.825611i $$0.690831\pi$$
$$132$$ 0 0
$$133$$ − 2834.00i − 1.84766i
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 229.000i 0.142809i 0.997447 + 0.0714043i $$0.0227481\pi$$
−0.997447 + 0.0714043i $$0.977252\pi$$
$$138$$ 0 0
$$139$$ −2781.00 −1.69699 −0.848494 0.529205i $$-0.822490\pi$$
−0.848494 + 0.529205i $$0.822490\pi$$
$$140$$ 0 0
$$141$$ −612.000 −0.365530
$$142$$ 0 0
$$143$$ 1652.00i 0.966064i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 2997.00i 1.68155i
$$148$$ 0 0
$$149$$ −1472.00 −0.809335 −0.404668 0.914464i $$-0.632613\pi$$
−0.404668 + 0.914464i $$0.632613\pi$$
$$150$$ 0 0
$$151$$ 1322.00 0.712469 0.356235 0.934397i $$-0.384060\pi$$
0.356235 + 0.934397i $$0.384060\pi$$
$$152$$ 0 0
$$153$$ − 270.000i − 0.142668i
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 298.000i 0.151484i 0.997127 + 0.0757420i $$0.0241325\pi$$
−0.997127 + 0.0757420i $$0.975867\pi$$
$$158$$ 0 0
$$159$$ 162.000 0.0808015
$$160$$ 0 0
$$161$$ −5044.00 −2.46909
$$162$$ 0 0
$$163$$ 341.000i 0.163860i 0.996638 + 0.0819300i $$0.0261084\pi$$
−0.996638 + 0.0819300i $$0.973892\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 684.000i 0.316943i 0.987364 + 0.158472i $$0.0506566\pi$$
−0.987364 + 0.158472i $$0.949343\pi$$
$$168$$ 0 0
$$169$$ 1413.00 0.643150
$$170$$ 0 0
$$171$$ 5886.00 2.63224
$$172$$ 0 0
$$173$$ 2344.00i 1.03012i 0.857154 + 0.515061i $$0.172231\pi$$
−0.857154 + 0.515061i $$0.827769\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 3528.00i 1.49820i
$$178$$ 0 0
$$179$$ 1111.00 0.463911 0.231955 0.972726i $$-0.425488\pi$$
0.231955 + 0.972726i $$0.425488\pi$$
$$180$$ 0 0
$$181$$ 2042.00 0.838567 0.419284 0.907855i $$-0.362281\pi$$
0.419284 + 0.907855i $$0.362281\pi$$
$$182$$ 0 0
$$183$$ 6390.00i 2.58122i
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ − 295.000i − 0.115361i
$$188$$ 0 0
$$189$$ −6318.00 −2.43157
$$190$$ 0 0
$$191$$ 5270.00 1.99646 0.998230 0.0594735i $$-0.0189422\pi$$
0.998230 + 0.0594735i $$0.0189422\pi$$
$$192$$ 0 0
$$193$$ − 613.000i − 0.228625i −0.993445 0.114313i $$-0.963533\pi$$
0.993445 0.114313i $$-0.0364666\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 1174.00i 0.424589i 0.977206 + 0.212295i $$0.0680936\pi$$
−0.977206 + 0.212295i $$0.931906\pi$$
$$198$$ 0 0
$$199$$ −3428.00 −1.22113 −0.610564 0.791967i $$-0.709057\pi$$
−0.610564 + 0.791967i $$0.709057\pi$$
$$200$$ 0 0
$$201$$ −2277.00 −0.799041
$$202$$ 0 0
$$203$$ 832.000i 0.287660i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ − 10476.0i − 3.51755i
$$208$$ 0 0
$$209$$ 6431.00 2.12843
$$210$$ 0 0
$$211$$ 2339.00 0.763144 0.381572 0.924339i $$-0.375383\pi$$
0.381572 + 0.924339i $$0.375383\pi$$
$$212$$ 0 0
$$213$$ 5508.00i 1.77184i
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 260.000i 0.0813362i
$$218$$ 0 0
$$219$$ 4941.00 1.52457
$$220$$ 0 0
$$221$$ 140.000 0.0426128
$$222$$ 0 0
$$223$$ − 3932.00i − 1.18075i −0.807131 0.590373i $$-0.798981\pi$$
0.807131 0.590373i $$-0.201019\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 6084.00i 1.77890i 0.457037 + 0.889448i $$0.348911\pi$$
−0.457037 + 0.889448i $$0.651089\pi$$
$$228$$ 0 0
$$229$$ −4996.00 −1.44168 −0.720841 0.693101i $$-0.756244\pi$$
−0.720841 + 0.693101i $$0.756244\pi$$
$$230$$ 0 0
$$231$$ −13806.0 −3.93233
$$232$$ 0 0
$$233$$ − 3222.00i − 0.905924i −0.891530 0.452962i $$-0.850367\pi$$
0.891530 0.452962i $$-0.149633\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 3726.00i 1.02122i
$$238$$ 0 0
$$239$$ −2736.00 −0.740490 −0.370245 0.928934i $$-0.620726\pi$$
−0.370245 + 0.928934i $$0.620726\pi$$
$$240$$ 0 0
$$241$$ 1673.00 0.447168 0.223584 0.974685i $$-0.428224\pi$$
0.223584 + 0.974685i $$0.428224\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 3052.00i 0.786211i
$$248$$ 0 0
$$249$$ 1089.00 0.277159
$$250$$ 0 0
$$251$$ 5355.00 1.34663 0.673316 0.739355i $$-0.264869\pi$$
0.673316 + 0.739355i $$0.264869\pi$$
$$252$$ 0 0
$$253$$ − 11446.0i − 2.84428i
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ − 5490.00i − 1.33252i −0.745721 0.666258i $$-0.767895\pi$$
0.745721 0.666258i $$-0.232105\pi$$
$$258$$ 0 0
$$259$$ 5148.00 1.23506
$$260$$ 0 0
$$261$$ −1728.00 −0.409810
$$262$$ 0 0
$$263$$ − 3150.00i − 0.738545i −0.929321 0.369272i $$-0.879607\pi$$
0.929321 0.369272i $$-0.120393\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ − 729.000i − 0.167094i
$$268$$ 0 0
$$269$$ −176.000 −0.0398919 −0.0199459 0.999801i $$-0.506349\pi$$
−0.0199459 + 0.999801i $$0.506349\pi$$
$$270$$ 0 0
$$271$$ 2394.00 0.536624 0.268312 0.963332i $$-0.413534\pi$$
0.268312 + 0.963332i $$0.413534\pi$$
$$272$$ 0 0
$$273$$ − 6552.00i − 1.45255i
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ − 6256.00i − 1.35699i −0.734604 0.678496i $$-0.762632\pi$$
0.734604 0.678496i $$-0.237368\pi$$
$$278$$ 0 0
$$279$$ −540.000 −0.115874
$$280$$ 0 0
$$281$$ −4802.00 −1.01944 −0.509721 0.860340i $$-0.670251\pi$$
−0.509721 + 0.860340i $$0.670251\pi$$
$$282$$ 0 0
$$283$$ − 2123.00i − 0.445934i −0.974826 0.222967i $$-0.928426\pi$$
0.974826 0.222967i $$-0.0715742\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 3042.00i 0.625657i
$$288$$ 0 0
$$289$$ 4888.00 0.994911
$$290$$ 0 0
$$291$$ −13518.0 −2.72316
$$292$$ 0 0
$$293$$ 8834.00i 1.76139i 0.473682 + 0.880696i $$0.342925\pi$$
−0.473682 + 0.880696i $$0.657075\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ − 14337.0i − 2.80107i
$$298$$ 0 0
$$299$$ 5432.00 1.05064
$$300$$ 0 0
$$301$$ 10088.0 1.93177
$$302$$ 0 0
$$303$$ 2106.00i 0.399296i
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 1369.00i 0.254505i 0.991870 + 0.127252i $$0.0406158\pi$$
−0.991870 + 0.127252i $$0.959384\pi$$
$$308$$ 0 0
$$309$$ 10548.0 1.94192
$$310$$ 0 0
$$311$$ −10426.0 −1.90098 −0.950489 0.310758i $$-0.899417\pi$$
−0.950489 + 0.310758i $$0.899417\pi$$
$$312$$ 0 0
$$313$$ 3574.00i 0.645413i 0.946499 + 0.322707i $$0.104593\pi$$
−0.946499 + 0.322707i $$0.895407\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 9036.00i 1.60099i 0.599343 + 0.800493i $$0.295429\pi$$
−0.599343 + 0.800493i $$0.704571\pi$$
$$318$$ 0 0
$$319$$ −1888.00 −0.331372
$$320$$ 0 0
$$321$$ 10125.0 1.76051
$$322$$ 0 0
$$323$$ − 545.000i − 0.0938842i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ − 11106.0i − 1.87817i
$$328$$ 0 0
$$329$$ 1768.00 0.296271
$$330$$ 0 0
$$331$$ 10233.0 1.69926 0.849632 0.527376i $$-0.176824\pi$$
0.849632 + 0.527376i $$0.176824\pi$$
$$332$$ 0 0
$$333$$ 10692.0i 1.75951i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 4627.00i 0.747919i 0.927445 + 0.373960i $$0.122000\pi$$
−0.927445 + 0.373960i $$0.878000\pi$$
$$338$$ 0 0
$$339$$ −5103.00 −0.817572
$$340$$ 0 0
$$341$$ −590.000 −0.0936959
$$342$$ 0 0
$$343$$ 260.000i 0.0409291i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 4901.00i 0.758212i 0.925353 + 0.379106i $$0.123768\pi$$
−0.925353 + 0.379106i $$0.876232\pi$$
$$348$$ 0 0
$$349$$ 4482.00 0.687438 0.343719 0.939072i $$-0.388313\pi$$
0.343719 + 0.939072i $$0.388313\pi$$
$$350$$ 0 0
$$351$$ 6804.00 1.03467
$$352$$ 0 0
$$353$$ 1210.00i 0.182441i 0.995831 + 0.0912207i $$0.0290769\pi$$
−0.995831 + 0.0912207i $$0.970923\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 1170.00i 0.173454i
$$358$$ 0 0
$$359$$ 9882.00 1.45279 0.726396 0.687277i $$-0.241194\pi$$
0.726396 + 0.687277i $$0.241194\pi$$
$$360$$ 0 0
$$361$$ 5022.00 0.732177
$$362$$ 0 0
$$363$$ − 19350.0i − 2.79783i
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ − 11260.0i − 1.60155i −0.598968 0.800773i $$-0.704422\pi$$
0.598968 0.800773i $$-0.295578\pi$$
$$368$$ 0 0
$$369$$ −6318.00 −0.891333
$$370$$ 0 0
$$371$$ −468.000 −0.0654915
$$372$$ 0 0
$$373$$ 3230.00i 0.448373i 0.974546 + 0.224186i $$0.0719724\pi$$
−0.974546 + 0.224186i $$0.928028\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ − 896.000i − 0.122404i
$$378$$ 0 0
$$379$$ −11575.0 −1.56878 −0.784390 0.620268i $$-0.787024\pi$$
−0.784390 + 0.620268i $$0.787024\pi$$
$$380$$ 0 0
$$381$$ −21222.0 −2.85364
$$382$$ 0 0
$$383$$ 18.0000i 0.00240145i 0.999999 + 0.00120073i $$0.000382203\pi$$
−0.999999 + 0.00120073i $$0.999618\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 20952.0i 2.75207i
$$388$$ 0 0
$$389$$ −10710.0 −1.39593 −0.697967 0.716130i $$-0.745912\pi$$
−0.697967 + 0.716130i $$0.745912\pi$$
$$390$$ 0 0
$$391$$ −970.000 −0.125460
$$392$$ 0 0
$$393$$ 15228.0i 1.95458i
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ − 3788.00i − 0.478877i −0.970912 0.239439i $$-0.923037\pi$$
0.970912 0.239439i $$-0.0769634\pi$$
$$398$$ 0 0
$$399$$ −25506.0 −3.20024
$$400$$ 0 0
$$401$$ −10539.0 −1.31245 −0.656225 0.754565i $$-0.727848\pi$$
−0.656225 + 0.754565i $$0.727848\pi$$
$$402$$ 0 0
$$403$$ − 280.000i − 0.0346099i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 11682.0i 1.42274i
$$408$$ 0 0
$$409$$ −5581.00 −0.674725 −0.337363 0.941375i $$-0.609535\pi$$
−0.337363 + 0.941375i $$0.609535\pi$$
$$410$$ 0 0
$$411$$ 2061.00 0.247352
$$412$$ 0 0
$$413$$ − 10192.0i − 1.21432i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 25029.0i 2.93927i
$$418$$ 0 0
$$419$$ −5193.00 −0.605476 −0.302738 0.953074i $$-0.597901\pi$$
−0.302738 + 0.953074i $$0.597901\pi$$
$$420$$ 0 0
$$421$$ 4788.00 0.554282 0.277141 0.960829i $$-0.410613\pi$$
0.277141 + 0.960829i $$0.410613\pi$$
$$422$$ 0 0
$$423$$ 3672.00i 0.422077i
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ − 18460.0i − 2.09214i
$$428$$ 0 0
$$429$$ 14868.0 1.67327
$$430$$ 0 0
$$431$$ 8006.00 0.894746 0.447373 0.894348i $$-0.352360\pi$$
0.447373 + 0.894348i $$0.352360\pi$$
$$432$$ 0 0
$$433$$ 2395.00i 0.265811i 0.991129 + 0.132906i $$0.0424308\pi$$
−0.991129 + 0.132906i $$0.957569\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ − 21146.0i − 2.31476i
$$438$$ 0 0
$$439$$ −1864.00 −0.202651 −0.101326 0.994853i $$-0.532308\pi$$
−0.101326 + 0.994853i $$0.532308\pi$$
$$440$$ 0 0
$$441$$ 17982.0 1.94169
$$442$$ 0 0
$$443$$ − 5463.00i − 0.585903i −0.956127 0.292951i $$-0.905363\pi$$
0.956127 0.292951i $$-0.0946374\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 13248.0i 1.40181i
$$448$$ 0 0
$$449$$ −12969.0 −1.36313 −0.681565 0.731758i $$-0.738700\pi$$
−0.681565 + 0.731758i $$0.738700\pi$$
$$450$$ 0 0
$$451$$ −6903.00 −0.720731
$$452$$ 0 0
$$453$$ − 11898.0i − 1.23403i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 18313.0i 1.87450i 0.348659 + 0.937249i $$0.386637\pi$$
−0.348659 + 0.937249i $$0.613363\pi$$
$$458$$ 0 0
$$459$$ −1215.00 −0.123554
$$460$$ 0 0
$$461$$ 12492.0 1.26206 0.631031 0.775758i $$-0.282632\pi$$
0.631031 + 0.775758i $$0.282632\pi$$
$$462$$ 0 0
$$463$$ − 4428.00i − 0.444464i −0.974994 0.222232i $$-0.928666\pi$$
0.974994 0.222232i $$-0.0713342\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ − 1084.00i − 0.107412i −0.998557 0.0537061i $$-0.982897\pi$$
0.998557 0.0537061i $$-0.0171034\pi$$
$$468$$ 0 0
$$469$$ 6578.00 0.647641
$$470$$ 0 0
$$471$$ 2682.00 0.262378
$$472$$ 0 0
$$473$$ 22892.0i 2.22532i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ − 972.000i − 0.0933015i
$$478$$ 0 0
$$479$$ 13082.0 1.24787 0.623937 0.781474i $$-0.285532\pi$$
0.623937 + 0.781474i $$0.285532\pi$$
$$480$$ 0 0
$$481$$ −5544.00 −0.525540
$$482$$ 0 0
$$483$$ 45396.0i 4.27658i
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ − 3014.00i − 0.280446i −0.990120 0.140223i $$-0.955218\pi$$
0.990120 0.140223i $$-0.0447820\pi$$
$$488$$ 0 0
$$489$$ 3069.00 0.283814
$$490$$ 0 0
$$491$$ −3564.00 −0.327579 −0.163789 0.986495i $$-0.552372\pi$$
−0.163789 + 0.986495i $$0.552372\pi$$
$$492$$ 0 0
$$493$$ 160.000i 0.0146167i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ − 15912.0i − 1.43612i
$$498$$ 0 0
$$499$$ 15796.0 1.41709 0.708543 0.705667i $$-0.249353\pi$$
0.708543 + 0.705667i $$0.249353\pi$$
$$500$$ 0 0
$$501$$ 6156.00 0.548962
$$502$$ 0 0
$$503$$ 10908.0i 0.966926i 0.875365 + 0.483463i $$0.160621\pi$$
−0.875365 + 0.483463i $$0.839379\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ − 12717.0i − 1.11397i
$$508$$ 0 0
$$509$$ −21946.0 −1.91108 −0.955540 0.294863i $$-0.904726\pi$$
−0.955540 + 0.294863i $$0.904726\pi$$
$$510$$ 0 0
$$511$$ −14274.0 −1.23570
$$512$$ 0 0
$$513$$ − 26487.0i − 2.27959i
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 4012.00i 0.341291i
$$518$$ 0 0
$$519$$ 21096.0 1.78422
$$520$$ 0 0
$$521$$ −6395.00 −0.537754 −0.268877 0.963174i $$-0.586653\pi$$
−0.268877 + 0.963174i $$0.586653\pi$$
$$522$$ 0 0
$$523$$ 5615.00i 0.469459i 0.972061 + 0.234729i $$0.0754204\pi$$
−0.972061 + 0.234729i $$0.924580\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 50.0000i 0.00413289i
$$528$$ 0 0
$$529$$ −25469.0 −2.09329
$$530$$ 0 0
$$531$$ 21168.0 1.72997
$$532$$ 0 0
$$533$$ − 3276.00i − 0.266228i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ − 9999.00i − 0.803517i
$$538$$ 0 0
$$539$$ 19647.0 1.57005
$$540$$ 0 0
$$541$$ −4112.00 −0.326781 −0.163391 0.986561i $$-0.552243\pi$$
−0.163391 + 0.986561i $$0.552243\pi$$
$$542$$ 0 0
$$543$$ − 18378.0i − 1.45244i
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ − 2167.00i − 0.169386i −0.996407 0.0846931i $$-0.973009\pi$$
0.996407 0.0846931i $$-0.0269910\pi$$
$$548$$ 0 0
$$549$$ 38340.0 2.98053
$$550$$ 0 0
$$551$$ −3488.00 −0.269680
$$552$$ 0 0
$$553$$ − 10764.0i − 0.827725i
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ − 19444.0i − 1.47912i −0.673092 0.739559i $$-0.735034\pi$$
0.673092 0.739559i $$-0.264966\pi$$
$$558$$ 0 0
$$559$$ −10864.0 −0.822000
$$560$$ 0 0
$$561$$ −2655.00 −0.199811
$$562$$ 0 0
$$563$$ − 20416.0i − 1.52830i −0.645040 0.764149i $$-0.723159\pi$$
0.645040 0.764149i $$-0.276841\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 18954.0i 1.40387i
$$568$$ 0 0
$$569$$ 3127.00 0.230388 0.115194 0.993343i $$-0.463251\pi$$
0.115194 + 0.993343i $$0.463251\pi$$
$$570$$ 0 0
$$571$$ −22580.0 −1.65489 −0.827446 0.561545i $$-0.810207\pi$$
−0.827446 + 0.561545i $$0.810207\pi$$
$$572$$ 0 0
$$573$$ − 47430.0i − 3.45797i
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ − 829.000i − 0.0598123i −0.999553 0.0299062i $$-0.990479\pi$$
0.999553 0.0299062i $$-0.00952085\pi$$
$$578$$ 0 0
$$579$$ −5517.00 −0.395991
$$580$$ 0 0
$$581$$ −3146.00 −0.224644
$$582$$ 0 0
$$583$$ − 1062.00i − 0.0754435i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 7119.00i 0.500567i 0.968173 + 0.250283i $$0.0805238\pi$$
−0.968173 + 0.250283i $$0.919476\pi$$
$$588$$ 0 0
$$589$$ −1090.00 −0.0762524
$$590$$ 0 0
$$591$$ 10566.0 0.735410
$$592$$ 0 0
$$593$$ 8217.00i 0.569025i 0.958672 + 0.284512i $$0.0918317\pi$$
−0.958672 + 0.284512i $$0.908168\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 30852.0i 2.11506i
$$598$$ 0 0
$$599$$ 90.0000 0.00613907 0.00306953 0.999995i $$-0.499023\pi$$
0.00306953 + 0.999995i $$0.499023\pi$$
$$600$$ 0 0
$$601$$ −17117.0 −1.16176 −0.580879 0.813990i $$-0.697291\pi$$
−0.580879 + 0.813990i $$0.697291\pi$$
$$602$$ 0 0
$$603$$ 13662.0i 0.922653i
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ − 15120.0i − 1.01104i −0.862815 0.505520i $$-0.831301\pi$$
0.862815 0.505520i $$-0.168699\pi$$
$$608$$ 0 0
$$609$$ 7488.00 0.498241
$$610$$ 0 0
$$611$$ −1904.00 −0.126068
$$612$$ 0 0
$$613$$ 6570.00i 0.432887i 0.976295 + 0.216444i $$0.0694457\pi$$
−0.976295 + 0.216444i $$0.930554\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 18846.0i 1.22968i 0.788653 + 0.614839i $$0.210779\pi$$
−0.788653 + 0.614839i $$0.789221\pi$$
$$618$$ 0 0
$$619$$ −16316.0 −1.05944 −0.529722 0.848172i $$-0.677704\pi$$
−0.529722 + 0.848172i $$0.677704\pi$$
$$620$$ 0 0
$$621$$ −47142.0 −3.04629
$$622$$ 0 0
$$623$$ 2106.00i 0.135434i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ − 57879.0i − 3.68655i
$$628$$ 0 0
$$629$$ 990.000 0.0627566
$$630$$ 0 0
$$631$$ 20170.0 1.27251 0.636256 0.771478i $$-0.280482\pi$$
0.636256 + 0.771478i $$0.280482\pi$$
$$632$$ 0 0
$$633$$ − 21051.0i − 1.32180i
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 9324.00i 0.579953i
$$638$$ 0 0
$$639$$ 33048.0 2.04594
$$640$$ 0 0
$$641$$ −12726.0 −0.784160 −0.392080 0.919931i $$-0.628244\pi$$
−0.392080 + 0.919931i $$0.628244\pi$$
$$642$$ 0 0
$$643$$ − 2196.00i − 0.134684i −0.997730 0.0673420i $$-0.978548\pi$$
0.997730 0.0673420i $$-0.0214519\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ − 16884.0i − 1.02593i −0.858409 0.512966i $$-0.828547\pi$$
0.858409 0.512966i $$-0.171453\pi$$
$$648$$ 0 0
$$649$$ 23128.0 1.39885
$$650$$ 0 0
$$651$$ 2340.00 0.140878
$$652$$ 0 0
$$653$$ 4018.00i 0.240791i 0.992726 + 0.120395i $$0.0384163\pi$$
−0.992726 + 0.120395i $$0.961584\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ − 29646.0i − 1.76043i
$$658$$ 0 0
$$659$$ −19071.0 −1.12732 −0.563658 0.826009i $$-0.690606\pi$$
−0.563658 + 0.826009i $$0.690606\pi$$
$$660$$ 0 0
$$661$$ 17424.0 1.02529 0.512644 0.858601i $$-0.328666\pi$$
0.512644 + 0.858601i $$0.328666\pi$$
$$662$$ 0 0
$$663$$ − 1260.00i − 0.0738075i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 6208.00i 0.360382i
$$668$$ 0 0
$$669$$ −35388.0 −2.04511
$$670$$ 0 0
$$671$$ 41890.0 2.41005
$$672$$ 0 0
$$673$$ 5382.00i 0.308263i 0.988050 + 0.154131i $$0.0492579\pi$$
−0.988050 + 0.154131i $$0.950742\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ − 4496.00i − 0.255237i −0.991823 0.127618i $$-0.959267\pi$$
0.991823 0.127618i $$-0.0407333\pi$$
$$678$$ 0 0
$$679$$ 39052.0 2.20718
$$680$$ 0 0
$$681$$ 54756.0 3.08114
$$682$$ 0 0
$$683$$ − 3249.00i − 0.182020i −0.995850 0.0910099i $$-0.970991\pi$$
0.995850 0.0910099i $$-0.0290095\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 44964.0i 2.49706i
$$688$$ 0 0
$$689$$ 504.000 0.0278677
$$690$$ 0 0
$$691$$ −13399.0 −0.737658 −0.368829 0.929497i $$-0.620241\pi$$
−0.368829 + 0.929497i $$0.620241\pi$$
$$692$$ 0 0
$$693$$ 82836.0i 4.54066i
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 585.000i 0.0317912i
$$698$$ 0 0
$$699$$ −28998.0 −1.56911
$$700$$ 0 0
$$701$$ −18148.0 −0.977804 −0.488902 0.872339i $$-0.662602\pi$$
−0.488902 + 0.872339i $$0.662602\pi$$
$$702$$ 0 0
$$703$$ 21582.0i 1.15787i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ − 6084.00i − 0.323638i
$$708$$ 0 0
$$709$$ −4868.00 −0.257858 −0.128929 0.991654i $$-0.541154\pi$$
−0.128929 + 0.991654i $$0.541154\pi$$
$$710$$ 0 0
$$711$$ 22356.0 1.17921
$$712$$ 0 0
$$713$$ 1940.00i 0.101898i
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 24624.0i 1.28257i
$$718$$ 0 0
$$719$$ 17366.0 0.900755 0.450377 0.892838i $$-0.351289\pi$$
0.450377 + 0.892838i $$0.351289\pi$$
$$720$$ 0 0
$$721$$ −30472.0 −1.57398
$$722$$ 0 0
$$723$$ − 15057.0i − 0.774517i
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 21824.0i 1.11335i 0.830729 + 0.556676i $$0.187924\pi$$
−0.830729 + 0.556676i $$0.812076\pi$$
$$728$$ 0 0
$$729$$ 19683.0 1.00000
$$730$$ 0 0
$$731$$ 1940.00 0.0981580
$$732$$ 0 0
$$733$$ 31428.0i 1.58366i 0.610744 + 0.791828i $$0.290870\pi$$
−0.610744 + 0.791828i $$0.709130\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 14927.0i 0.746056i
$$738$$ 0 0
$$739$$ 14292.0 0.711420 0.355710 0.934596i $$-0.384239\pi$$
0.355710 + 0.934596i $$0.384239\pi$$
$$740$$ 0 0
$$741$$ 27468.0 1.36176
$$742$$ 0 0
$$743$$ − 13950.0i − 0.688797i −0.938824 0.344398i $$-0.888083\pi$$
0.938824 0.344398i $$-0.111917\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ − 6534.00i − 0.320036i
$$748$$ 0 0
$$749$$ −29250.0 −1.42693
$$750$$ 0 0
$$751$$ −38736.0 −1.88215 −0.941076 0.338194i $$-0.890184\pi$$
−0.941076 + 0.338194i $$0.890184\pi$$
$$752$$ 0 0
$$753$$ − 48195.0i − 2.33243i
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ − 3664.00i − 0.175919i −0.996124 0.0879593i $$-0.971965\pi$$
0.996124 0.0879593i $$-0.0280345\pi$$
$$758$$ 0 0
$$759$$ −103014. −4.92644
$$760$$ 0 0
$$761$$ 19557.0 0.931591 0.465795 0.884892i $$-0.345768\pi$$
0.465795 + 0.884892i $$0.345768\pi$$
$$762$$ 0 0
$$763$$ 32084.0i 1.52231i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 10976.0i 0.516715i
$$768$$ 0 0
$$769$$ 13283.0 0.622883 0.311442 0.950265i $$-0.399188\pi$$
0.311442 + 0.950265i $$0.399188\pi$$
$$770$$ 0 0
$$771$$ −49410.0 −2.30799
$$772$$ 0 0
$$773$$ − 24840.0i − 1.15580i −0.816108 0.577900i $$-0.803873\pi$$
0.816108 0.577900i $$-0.196127\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ − 46332.0i − 2.13919i
$$778$$ 0 0
$$779$$ −12753.0 −0.586552
$$780$$ 0 0
$$781$$ 36108.0 1.65435
$$782$$ 0 0
$$783$$ 7776.00i 0.354906i
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 18044.0i 0.817280i 0.912696 + 0.408640i $$0.133997\pi$$
−0.912696 + 0.408640i $$0.866003\pi$$
$$788$$ 0 0
$$789$$ −28350.0 −1.27920
$$790$$ 0 0
$$791$$ 14742.0 0.662661
$$792$$ 0 0
$$793$$ 19880.0i 0.890239i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ − 6174.00i − 0.274397i −0.990544 0.137198i $$-0.956190\pi$$
0.990544 0.137198i $$-0.0438098\pi$$
$$798$$ 0 0
$$799$$ 340.000 0.0150542
$$800$$ 0 0
$$801$$ −4374.00 −0.192943
$$802$$ 0 0
$$803$$ − 32391.0i − 1.42348i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 1584.00i 0.0690947i
$$808$$ 0 0
$$809$$ 1998.00 0.0868306 0.0434153 0.999057i $$-0.486176\pi$$
0.0434153 + 0.999057i $$0.486176\pi$$
$$810$$ 0 0
$$811$$ −7156.00 −0.309841 −0.154921 0.987927i $$-0.549512\pi$$
−0.154921 + 0.987927i $$0.549512\pi$$
$$812$$ 0 0
$$813$$ − 21546.0i − 0.929460i
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 42292.0i 1.81103i
$$818$$ 0 0
$$819$$ −39312.0 −1.67726
$$820$$ 0 0
$$821$$ 27922.0 1.18695 0.593474 0.804853i $$-0.297756\pi$$
0.593474 + 0.804853i $$0.297756\pi$$
$$822$$ 0 0
$$823$$ − 22636.0i − 0.958738i −0.877613 0.479369i $$-0.840866\pi$$
0.877613 0.479369i $$-0.159134\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 26559.0i 1.11674i 0.829591 + 0.558372i $$0.188574\pi$$
−0.829591 + 0.558372i $$0.811426\pi$$
$$828$$ 0 0
$$829$$ −12580.0 −0.527046 −0.263523 0.964653i $$-0.584885\pi$$
−0.263523 + 0.964653i $$0.584885\pi$$
$$830$$ 0 0
$$831$$ −56304.0 −2.35038
$$832$$ 0 0
$$833$$ − 1665.00i − 0.0692543i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 2430.00i 0.100350i
$$838$$ 0 0
$$839$$ 11344.0 0.466792 0.233396 0.972382i $$-0.425016\pi$$
0.233396 + 0.972382i $$0.425016\pi$$
$$840$$ 0 0
$$841$$ −23365.0 −0.958014
$$842$$ 0 0
$$843$$ 43218.0i 1.76573i
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 55900.0i 2.26771i
$$848$$ 0 0
$$849$$ −19107.0 −0.772380
$$850$$ 0 0
$$851$$ 38412.0 1.54729
$$852$$ 0 0
$$853$$ − 14786.0i − 0.593509i −0.954954 0.296754i $$-0.904096\pi$$
0.954954 0.296754i $$-0.0959043\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ − 29259.0i − 1.16624i −0.812386 0.583120i $$-0.801832\pi$$
0.812386 0.583120i $$-0.198168\pi$$
$$858$$ 0 0
$$859$$ 13651.0 0.542219 0.271109 0.962549i $$-0.412609\pi$$
0.271109 + 0.962549i $$0.412609\pi$$
$$860$$ 0 0
$$861$$ 27378.0 1.08367
$$862$$ 0 0
$$863$$ − 29016.0i − 1.14451i −0.820074 0.572257i $$-0.806068\pi$$
0.820074 0.572257i $$-0.193932\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ − 43992.0i − 1.72324i
$$868$$ 0 0
$$869$$ 24426.0 0.953504
$$870$$ 0 0
$$871$$ −7084.00 −0.275582
$$872$$ 0 0
$$873$$ 81108.0i 3.14443i
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 21412.0i 0.824438i 0.911085 + 0.412219i $$0.135246\pi$$
−0.911085 + 0.412219i $$0.864754\pi$$
$$878$$ 0 0
$$879$$ 79506.0 3.05082
$$880$$ 0 0
$$881$$ −1170.00 −0.0447427 −0.0223713 0.999750i $$-0.507122\pi$$
−0.0223713 + 0.999750i $$0.507122\pi$$
$$882$$ 0 0
$$883$$ 12655.0i 0.482304i 0.970487 + 0.241152i $$0.0775253\pi$$
−0.970487 + 0.241152i $$0.922475\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 32764.0i 1.24026i 0.784500 + 0.620128i $$0.212919\pi$$
−0.784500 + 0.620128i $$0.787081\pi$$
$$888$$ 0 0
$$889$$ 61308.0 2.31294
$$890$$ 0 0
$$891$$ −43011.0 −1.61720
$$892$$ 0 0
$$893$$ 7412.00i 0.277753i
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ − 48888.0i − 1.81976i
$$898$$ 0 0
$$899$$ 320.000 0.0118716
$$900$$ 0 0
$$901$$ −90.0000 −0.00332779
$$902$$ 0 0
$$903$$ − 90792.0i − 3.34592i
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ − 29844.0i − 1.09256i −0.837602 0.546281i $$-0.816043\pi$$
0.837602 0.546281i $$-0.183957\pi$$
$$908$$ 0 0
$$909$$ 12636.0 0.461067
$$910$$ 0 0
$$911$$ 15628.0 0.568363 0.284182 0.958770i $$-0.408278\pi$$
0.284182 + 0.958770i $$0.408278\pi$$
$$912$$ 0 0
$$913$$ − 7139.00i − 0.258780i
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ − 43992.0i − 1.58424i
$$918$$ 0 0
$$919$$ −42974.0 −1.54253 −0.771263 0.636517i $$-0.780375\pi$$
−0.771263 + 0.636517i $$0.780375\pi$$
$$920$$ 0 0
$$921$$ 12321.0 0.440815
$$922$$ 0 0
$$923$$ 17136.0i 0.611092i
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ − 63288.0i − 2.24234i
$$928$$ 0 0
$$929$$ −13342.0 −0.471191 −0.235596 0.971851i $$-0.575704\pi$$
−0.235596 + 0.971851i $$0.575704\pi$$
$$930$$ 0 0
$$931$$ 36297.0 1.27775
$$932$$ 0 0
$$933$$ 93834.0i 3.29259i
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ − 3005.00i − 0.104770i −0.998627 0.0523848i $$-0.983318\pi$$
0.998627 0.0523848i $$-0.0166822\pi$$
$$938$$ 0 0
$$939$$ 32166.0 1.11789
$$940$$ 0 0
$$941$$ 16204.0 0.561355 0.280678 0.959802i $$-0.409441\pi$$
0.280678 + 0.959802i $$0.409441\pi$$
$$942$$ 0 0
$$943$$ 22698.0i 0.783827i
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ − 30200.0i − 1.03629i −0.855292 0.518146i $$-0.826622\pi$$
0.855292 0.518146i $$-0.173378\pi$$
$$948$$ 0 0
$$949$$ 15372.0 0.525813
$$950$$ 0 0
$$951$$ 81324.0 2.77299
$$952$$ 0 0
$$953$$ 29583.0i 1.00555i 0.864418 + 0.502774i $$0.167687\pi$$
−0.864418 + 0.502774i $$0.832313\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 16992.0i 0.573953i
$$958$$ 0 0
$$959$$ −5954.00 −0.200485
$$960$$ 0 0
$$961$$ −29691.0 −0.996643
$$962$$ 0 0
$$963$$ − 60750.0i − 2.03286i
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ − 6480.00i − 0.215494i −0.994178 0.107747i $$-0.965636\pi$$
0.994178 0.107747i $$-0.0343637\pi$$
$$968$$ 0 0
$$969$$ −4905.00 −0.162612
$$970$$ 0 0
$$971$$ −40171.0 −1.32765 −0.663825 0.747888i $$-0.731068\pi$$
−0.663825 + 0.747888i $$0.731068\pi$$
$$972$$ 0 0
$$973$$ − 72306.0i − 2.38235i
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 50801.0i 1.66353i 0.555129 + 0.831765i $$0.312669\pi$$
−0.555129 + 0.831765i $$0.687331\pi$$
$$978$$ 0 0
$$979$$ −4779.00 −0.156014
$$980$$ 0 0
$$981$$ −66636.0 −2.16873
$$982$$ 0 0
$$983$$ 58338.0i 1.89287i 0.322891 + 0.946436i $$0.395345\pi$$
−0.322891 + 0.946436i $$0.604655\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ − 15912.0i − 0.513156i
$$988$$ 0 0
$$989$$ 75272.0 2.42013
$$990$$ 0 0
$$991$$ −51202.0 −1.64126 −0.820628 0.571462i $$-0.806376\pi$$
−0.820628 + 0.571462i $$0.806376\pi$$
$$992$$ 0 0
$$993$$ − 92097.0i − 2.94321i
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 1764.00i 0.0560345i 0.999607 + 0.0280173i $$0.00891934\pi$$
−0.999607 + 0.0280173i $$0.991081\pi$$
$$998$$ 0 0
$$999$$ 48114.0 1.52378
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.4.c.b.49.1 2
3.2 odd 2 1800.4.f.w.649.2 2
4.3 odd 2 400.4.c.b.49.2 2
5.2 odd 4 200.4.a.b.1.1 1
5.3 odd 4 200.4.a.j.1.1 yes 1
5.4 even 2 inner 200.4.c.b.49.2 2
15.2 even 4 1800.4.a.c.1.1 1
15.8 even 4 1800.4.a.bh.1.1 1
15.14 odd 2 1800.4.f.w.649.1 2
20.3 even 4 400.4.a.a.1.1 1
20.7 even 4 400.4.a.t.1.1 1
20.19 odd 2 400.4.c.b.49.1 2
40.3 even 4 1600.4.a.by.1.1 1
40.13 odd 4 1600.4.a.c.1.1 1
40.27 even 4 1600.4.a.b.1.1 1
40.37 odd 4 1600.4.a.bz.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
200.4.a.b.1.1 1 5.2 odd 4
200.4.a.j.1.1 yes 1 5.3 odd 4
200.4.c.b.49.1 2 1.1 even 1 trivial
200.4.c.b.49.2 2 5.4 even 2 inner
400.4.a.a.1.1 1 20.3 even 4
400.4.a.t.1.1 1 20.7 even 4
400.4.c.b.49.1 2 20.19 odd 2
400.4.c.b.49.2 2 4.3 odd 2
1600.4.a.b.1.1 1 40.27 even 4
1600.4.a.c.1.1 1 40.13 odd 4
1600.4.a.by.1.1 1 40.3 even 4
1600.4.a.bz.1.1 1 40.37 odd 4
1800.4.a.c.1.1 1 15.2 even 4
1800.4.a.bh.1.1 1 15.8 even 4
1800.4.f.w.649.1 2 15.14 odd 2
1800.4.f.w.649.2 2 3.2 odd 2