Newspace parameters
Level: | \( N \) | \(=\) | \( 200 = 2^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 200.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(11.8003820011\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | 9.00000 | 0 | 0 | 0 | 26.0000 | 0 | 54.0000 | 0 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(5\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 200.4.a.j | yes | 1 |
3.b | odd | 2 | 1 | 1800.4.a.bh | 1 | ||
4.b | odd | 2 | 1 | 400.4.a.a | 1 | ||
5.b | even | 2 | 1 | 200.4.a.b | ✓ | 1 | |
5.c | odd | 4 | 2 | 200.4.c.b | 2 | ||
8.b | even | 2 | 1 | 1600.4.a.c | 1 | ||
8.d | odd | 2 | 1 | 1600.4.a.by | 1 | ||
15.d | odd | 2 | 1 | 1800.4.a.c | 1 | ||
15.e | even | 4 | 2 | 1800.4.f.w | 2 | ||
20.d | odd | 2 | 1 | 400.4.a.t | 1 | ||
20.e | even | 4 | 2 | 400.4.c.b | 2 | ||
40.e | odd | 2 | 1 | 1600.4.a.b | 1 | ||
40.f | even | 2 | 1 | 1600.4.a.bz | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
200.4.a.b | ✓ | 1 | 5.b | even | 2 | 1 | |
200.4.a.j | yes | 1 | 1.a | even | 1 | 1 | trivial |
200.4.c.b | 2 | 5.c | odd | 4 | 2 | ||
400.4.a.a | 1 | 4.b | odd | 2 | 1 | ||
400.4.a.t | 1 | 20.d | odd | 2 | 1 | ||
400.4.c.b | 2 | 20.e | even | 4 | 2 | ||
1600.4.a.b | 1 | 40.e | odd | 2 | 1 | ||
1600.4.a.c | 1 | 8.b | even | 2 | 1 | ||
1600.4.a.by | 1 | 8.d | odd | 2 | 1 | ||
1600.4.a.bz | 1 | 40.f | even | 2 | 1 | ||
1800.4.a.c | 1 | 15.d | odd | 2 | 1 | ||
1800.4.a.bh | 1 | 3.b | odd | 2 | 1 | ||
1800.4.f.w | 2 | 15.e | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3} - 9 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(200))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T \)
$3$
\( T - 9 \)
$5$
\( T \)
$7$
\( T - 26 \)
$11$
\( T + 59 \)
$13$
\( T - 28 \)
$17$
\( T - 5 \)
$19$
\( T - 109 \)
$23$
\( T + 194 \)
$29$
\( T + 32 \)
$31$
\( T - 10 \)
$37$
\( T + 198 \)
$41$
\( T - 117 \)
$43$
\( T - 388 \)
$47$
\( T + 68 \)
$53$
\( T + 18 \)
$59$
\( T - 392 \)
$61$
\( T + 710 \)
$67$
\( T + 253 \)
$71$
\( T + 612 \)
$73$
\( T + 549 \)
$79$
\( T - 414 \)
$83$
\( T + 121 \)
$89$
\( T + 81 \)
$97$
\( T + 1502 \)
show more
show less