Defining parameters
Level: | \( N \) | \(=\) | \( 200 = 2^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 200.l (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 144 | 18 | 126 |
Cusp forms | 96 | 18 | 78 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(200, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
200.3.l.a | $2$ | $5.450$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(0\) | \(-14\) | \(q+(-1+i)q^{3}+(-7-7i)q^{7}+7iq^{9}+\cdots\) |
200.3.l.b | $2$ | $5.450$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(0\) | \(6\) | \(q+(-1+i)q^{3}+(3+3i)q^{7}+7iq^{9}+\cdots\) |
200.3.l.c | $2$ | $5.450$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(2\) | \(0\) | \(14\) | \(q+(1-i)q^{3}+(7+7i)q^{7}+7iq^{9}-4q^{11}+\cdots\) |
200.3.l.d | $4$ | $5.450$ | \(\Q(i, \sqrt{6})\) | None | \(0\) | \(-8\) | \(0\) | \(16\) | \(q+(-2+2\beta _{2}+\beta _{3})q^{3}+(4+4\beta _{1}+4\beta _{2}+\cdots)q^{7}+\cdots\) |
200.3.l.e | $4$ | $5.450$ | \(\Q(i, \sqrt{41})\) | None | \(0\) | \(2\) | \(0\) | \(-14\) | \(q+(1-\beta _{1}+\beta _{3})q^{3}+(-3-4\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\) |
200.3.l.f | $4$ | $5.450$ | \(\Q(i, \sqrt{6})\) | None | \(0\) | \(8\) | \(0\) | \(-16\) | \(q+(2-2\beta _{2}+\beta _{3})q^{3}+(-4+4\beta _{1}-4\beta _{2}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(200, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(200, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)