Properties

Label 200.3.l
Level $200$
Weight $3$
Character orbit 200.l
Rep. character $\chi_{200}(57,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $18$
Newform subspaces $6$
Sturm bound $90$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 200.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(90\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(200, [\chi])\).

Total New Old
Modular forms 144 18 126
Cusp forms 96 18 78
Eisenstein series 48 0 48

Trace form

\( 18 q - 8 q^{7} + 16 q^{11} + 38 q^{13} + 14 q^{17} - 112 q^{21} - 96 q^{23} - 120 q^{27} + 32 q^{31} + 120 q^{33} + 82 q^{37} + 128 q^{41} - 48 q^{43} + 128 q^{47} + 360 q^{51} + 66 q^{53} + 80 q^{57} - 312 q^{61}+ \cdots - 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(200, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
200.3.l.a 200.l 5.c $2$ $5.450$ \(\Q(\sqrt{-1}) \) None 200.3.l.a \(0\) \(-2\) \(0\) \(-14\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{3}+(-7 i-7)q^{7}+7 i q^{9}+\cdots\)
200.3.l.b 200.l 5.c $2$ $5.450$ \(\Q(\sqrt{-1}) \) None 40.3.l.a \(0\) \(-2\) \(0\) \(6\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{3}+(3 i+3)q^{7}+7 i q^{9}+\cdots\)
200.3.l.c 200.l 5.c $2$ $5.450$ \(\Q(\sqrt{-1}) \) None 200.3.l.a \(0\) \(2\) \(0\) \(14\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i+1)q^{3}+(7 i+7)q^{7}+7 i q^{9}+\cdots\)
200.3.l.d 200.l 5.c $4$ $5.450$ \(\Q(i, \sqrt{6})\) None 200.3.l.d \(0\) \(-8\) \(0\) \(16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2+2\beta _{2}+\beta _{3})q^{3}+(4+4\beta _{1}+4\beta _{2}+\cdots)q^{7}+\cdots\)
200.3.l.e 200.l 5.c $4$ $5.450$ \(\Q(i, \sqrt{41})\) None 40.3.l.b \(0\) \(2\) \(0\) \(-14\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{1}+\beta _{3})q^{3}+(-3-4\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\)
200.3.l.f 200.l 5.c $4$ $5.450$ \(\Q(i, \sqrt{6})\) None 200.3.l.d \(0\) \(8\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(2-2\beta _{2}+\beta _{3})q^{3}+(-4+4\beta _{1}-4\beta _{2}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(200, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(200, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)