Defining parameters
Level: | \( N \) | \(=\) | \( 200 = 2^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 200.v (of order \(20\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 200 \) |
Character field: | \(\Q(\zeta_{20})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 256 | 256 | 0 |
Cusp forms | 224 | 224 | 0 |
Eisenstein series | 32 | 32 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(200, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
200.2.v.a | $8$ | $1.597$ | \(\Q(\zeta_{20})\) | None | \(-8\) | \(0\) | \(10\) | \(4\) | \(q+(-1+\zeta_{20}^{5})q^{2}+(1-\zeta_{20}-\zeta_{20}^{2}+\cdots)q^{3}+\cdots\) |
200.2.v.b | $8$ | $1.597$ | \(\Q(\zeta_{20})\) | None | \(-2\) | \(0\) | \(-10\) | \(-4\) | \(q+(-\zeta_{20}-\zeta_{20}^{6})q^{2}+(1-\zeta_{20}-\zeta_{20}^{2}+\cdots)q^{3}+\cdots\) |
200.2.v.c | $208$ | $1.597$ | None | \(2\) | \(-16\) | \(0\) | \(0\) |