Properties

Label 200.2.v
Level $200$
Weight $2$
Character orbit 200.v
Rep. character $\chi_{200}(3,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $224$
Newform subspaces $3$
Sturm bound $60$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.v (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 200 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 3 \)
Sturm bound: \(60\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(200, [\chi])\).

Total New Old
Modular forms 256 256 0
Cusp forms 224 224 0
Eisenstein series 32 32 0

Trace form

\( 224 q - 8 q^{2} - 16 q^{3} - 10 q^{4} - 6 q^{6} - 14 q^{8} - 20 q^{9} - 12 q^{11} - 22 q^{12} - 10 q^{14} - 6 q^{16} - 12 q^{17} - 20 q^{18} - 20 q^{19} - 10 q^{20} - 22 q^{22} - 20 q^{25} - 16 q^{26} - 28 q^{27}+ \cdots + 156 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(200, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
200.2.v.a 200.v 200.v $8$ $1.597$ \(\Q(\zeta_{20})\) None 200.2.v.a \(-8\) \(0\) \(10\) \(4\) $\mathrm{SU}(2)[C_{20}]$ \(q+(-1+\zeta_{20}^{5})q^{2}+(1-\zeta_{20}-\zeta_{20}^{2}+\cdots)q^{3}+\cdots\)
200.2.v.b 200.v 200.v $8$ $1.597$ \(\Q(\zeta_{20})\) None 200.2.v.a \(-2\) \(0\) \(-10\) \(-4\) $\mathrm{SU}(2)[C_{20}]$ \(q+(-\zeta_{20}-\zeta_{20}^{6})q^{2}+(1-\zeta_{20}-\zeta_{20}^{2}+\cdots)q^{3}+\cdots\)
200.2.v.c 200.v 200.v $208$ $1.597$ None 200.2.v.c \(2\) \(-16\) \(0\) \(0\) $\mathrm{SU}(2)[C_{20}]$