Properties

Label 200.2.k.h.43.1
Level $200$
Weight $2$
Character 200.43
Analytic conductor $1.597$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(43,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.1
Root \(0.587785 + 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 200.43
Dual form 200.2.k.h.107.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26007 - 0.642040i) q^{2} +(1.61803 + 1.61803i) q^{3} +(1.17557 + 1.61803i) q^{4} +(-1.00000 - 3.07768i) q^{6} +(1.17557 + 1.17557i) q^{7} +(-0.442463 - 2.79360i) q^{8} +2.23607i q^{9} +1.23607 q^{11} +(-0.715921 + 4.52015i) q^{12} +(-3.07768 + 3.07768i) q^{13} +(-0.726543 - 2.23607i) q^{14} +(-1.23607 + 3.80423i) q^{16} +(1.00000 - 1.00000i) q^{17} +(1.43564 - 2.81761i) q^{18} +2.00000i q^{19} +3.80423i q^{21} +(-1.55754 - 0.793604i) q^{22} +(2.62866 - 2.62866i) q^{23} +(3.80423 - 5.23607i) q^{24} +(5.85410 - 1.90211i) q^{26} +(1.23607 - 1.23607i) q^{27} +(-0.520147 + 3.28408i) q^{28} +1.45309 q^{29} -5.25731i q^{31} +(4.00000 - 4.00000i) q^{32} +(2.00000 + 2.00000i) q^{33} +(-1.90211 + 0.618034i) q^{34} +(-3.61803 + 2.62866i) q^{36} +(3.07768 + 3.07768i) q^{37} +(1.28408 - 2.52015i) q^{38} -9.95959 q^{39} -7.70820 q^{41} +(2.44246 - 4.79360i) q^{42} +(-2.38197 - 2.38197i) q^{43} +(1.45309 + 2.00000i) q^{44} +(-5.00000 + 1.62460i) q^{46} +(-7.33094 - 7.33094i) q^{47} +(-8.15537 + 4.15537i) q^{48} -4.23607i q^{49} +3.23607 q^{51} +(-8.59783 - 1.36176i) q^{52} +(-0.726543 + 0.726543i) q^{53} +(-2.35114 + 0.763932i) q^{54} +(2.76393 - 3.80423i) q^{56} +(-3.23607 + 3.23607i) q^{57} +(-1.83099 - 0.932938i) q^{58} -8.47214i q^{59} +9.95959i q^{61} +(-3.37540 + 6.62460i) q^{62} +(-2.62866 + 2.62866i) q^{63} +(-7.60845 + 2.47214i) q^{64} +(-1.23607 - 3.80423i) q^{66} +(2.38197 - 2.38197i) q^{67} +(2.79360 + 0.442463i) q^{68} +8.50651 q^{69} -7.05342i q^{71} +(6.24669 - 0.989378i) q^{72} +(-8.70820 - 8.70820i) q^{73} +(-1.90211 - 5.85410i) q^{74} +(-3.23607 + 2.35114i) q^{76} +(1.45309 + 1.45309i) q^{77} +(12.5498 + 6.39445i) q^{78} +12.3107 q^{79} +10.7082 q^{81} +(9.71290 + 4.94897i) q^{82} +(4.38197 + 4.38197i) q^{83} +(-6.15537 + 4.47214i) q^{84} +(1.47214 + 4.53077i) q^{86} +(2.35114 + 2.35114i) q^{87} +(-0.546915 - 3.45309i) q^{88} +6.47214i q^{89} -7.23607 q^{91} +(7.34342 + 1.16308i) q^{92} +(8.50651 - 8.50651i) q^{93} +(4.53077 + 13.9443i) q^{94} +12.9443 q^{96} +(0.236068 - 0.236068i) q^{97} +(-2.71972 + 5.33776i) q^{98} +2.76393i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 4 q^{3} - 8 q^{6} - 4 q^{8} - 8 q^{11} - 12 q^{12} + 8 q^{16} + 8 q^{17} - 10 q^{18} - 12 q^{22} + 20 q^{26} - 8 q^{27} + 20 q^{28} + 32 q^{32} + 16 q^{33} - 20 q^{36} + 4 q^{38} - 8 q^{41}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26007 0.642040i −0.891007 0.453990i
\(3\) 1.61803 + 1.61803i 0.934172 + 0.934172i 0.997963 0.0637909i \(-0.0203191\pi\)
−0.0637909 + 0.997963i \(0.520319\pi\)
\(4\) 1.17557 + 1.61803i 0.587785 + 0.809017i
\(5\) 0 0
\(6\) −1.00000 3.07768i −0.408248 1.25646i
\(7\) 1.17557 + 1.17557i 0.444324 + 0.444324i 0.893462 0.449138i \(-0.148269\pi\)
−0.449138 + 0.893462i \(0.648269\pi\)
\(8\) −0.442463 2.79360i −0.156434 0.987688i
\(9\) 2.23607i 0.745356i
\(10\) 0 0
\(11\) 1.23607 0.372689 0.186344 0.982485i \(-0.440336\pi\)
0.186344 + 0.982485i \(0.440336\pi\)
\(12\) −0.715921 + 4.52015i −0.206669 + 1.30485i
\(13\) −3.07768 + 3.07768i −0.853596 + 0.853596i −0.990574 0.136978i \(-0.956261\pi\)
0.136978 + 0.990574i \(0.456261\pi\)
\(14\) −0.726543 2.23607i −0.194177 0.597614i
\(15\) 0 0
\(16\) −1.23607 + 3.80423i −0.309017 + 0.951057i
\(17\) 1.00000 1.00000i 0.242536 0.242536i −0.575363 0.817898i \(-0.695139\pi\)
0.817898 + 0.575363i \(0.195139\pi\)
\(18\) 1.43564 2.81761i 0.338385 0.664117i
\(19\) 2.00000i 0.458831i 0.973329 + 0.229416i \(0.0736815\pi\)
−0.973329 + 0.229416i \(0.926318\pi\)
\(20\) 0 0
\(21\) 3.80423i 0.830150i
\(22\) −1.55754 0.793604i −0.332068 0.169197i
\(23\) 2.62866 2.62866i 0.548113 0.548113i −0.377782 0.925895i \(-0.623313\pi\)
0.925895 + 0.377782i \(0.123313\pi\)
\(24\) 3.80423 5.23607i 0.776534 1.06881i
\(25\) 0 0
\(26\) 5.85410 1.90211i 1.14808 0.373035i
\(27\) 1.23607 1.23607i 0.237881 0.237881i
\(28\) −0.520147 + 3.28408i −0.0982985 + 0.620633i
\(29\) 1.45309 0.269831 0.134916 0.990857i \(-0.456924\pi\)
0.134916 + 0.990857i \(0.456924\pi\)
\(30\) 0 0
\(31\) 5.25731i 0.944241i −0.881534 0.472120i \(-0.843489\pi\)
0.881534 0.472120i \(-0.156511\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) 2.00000 + 2.00000i 0.348155 + 0.348155i
\(34\) −1.90211 + 0.618034i −0.326210 + 0.105992i
\(35\) 0 0
\(36\) −3.61803 + 2.62866i −0.603006 + 0.438109i
\(37\) 3.07768 + 3.07768i 0.505968 + 0.505968i 0.913286 0.407318i \(-0.133536\pi\)
−0.407318 + 0.913286i \(0.633536\pi\)
\(38\) 1.28408 2.52015i 0.208305 0.408822i
\(39\) −9.95959 −1.59481
\(40\) 0 0
\(41\) −7.70820 −1.20382 −0.601910 0.798564i \(-0.705593\pi\)
−0.601910 + 0.798564i \(0.705593\pi\)
\(42\) 2.44246 4.79360i 0.376880 0.739669i
\(43\) −2.38197 2.38197i −0.363246 0.363246i 0.501760 0.865007i \(-0.332686\pi\)
−0.865007 + 0.501760i \(0.832686\pi\)
\(44\) 1.45309 + 2.00000i 0.219061 + 0.301511i
\(45\) 0 0
\(46\) −5.00000 + 1.62460i −0.737210 + 0.239534i
\(47\) −7.33094 7.33094i −1.06933 1.06933i −0.997411 0.0719165i \(-0.977088\pi\)
−0.0719165 0.997411i \(-0.522912\pi\)
\(48\) −8.15537 + 4.15537i −1.17713 + 0.599776i
\(49\) 4.23607i 0.605153i
\(50\) 0 0
\(51\) 3.23607 0.453140
\(52\) −8.59783 1.36176i −1.19230 0.188842i
\(53\) −0.726543 + 0.726543i −0.0997983 + 0.0997983i −0.755243 0.655445i \(-0.772481\pi\)
0.655445 + 0.755243i \(0.272481\pi\)
\(54\) −2.35114 + 0.763932i −0.319950 + 0.103958i
\(55\) 0 0
\(56\) 2.76393 3.80423i 0.369346 0.508361i
\(57\) −3.23607 + 3.23607i −0.428628 + 0.428628i
\(58\) −1.83099 0.932938i −0.240421 0.122501i
\(59\) 8.47214i 1.10298i −0.834182 0.551489i \(-0.814060\pi\)
0.834182 0.551489i \(-0.185940\pi\)
\(60\) 0 0
\(61\) 9.95959i 1.27520i 0.770370 + 0.637598i \(0.220072\pi\)
−0.770370 + 0.637598i \(0.779928\pi\)
\(62\) −3.37540 + 6.62460i −0.428676 + 0.841325i
\(63\) −2.62866 + 2.62866i −0.331179 + 0.331179i
\(64\) −7.60845 + 2.47214i −0.951057 + 0.309017i
\(65\) 0 0
\(66\) −1.23607 3.80423i −0.152149 0.468268i
\(67\) 2.38197 2.38197i 0.291003 0.291003i −0.546473 0.837477i \(-0.684030\pi\)
0.837477 + 0.546473i \(0.184030\pi\)
\(68\) 2.79360 + 0.442463i 0.338774 + 0.0536566i
\(69\) 8.50651 1.02406
\(70\) 0 0
\(71\) 7.05342i 0.837087i −0.908197 0.418544i \(-0.862541\pi\)
0.908197 0.418544i \(-0.137459\pi\)
\(72\) 6.24669 0.989378i 0.736179 0.116599i
\(73\) −8.70820 8.70820i −1.01922 1.01922i −0.999812 0.0194065i \(-0.993822\pi\)
−0.0194065 0.999812i \(-0.506178\pi\)
\(74\) −1.90211 5.85410i −0.221116 0.680526i
\(75\) 0 0
\(76\) −3.23607 + 2.35114i −0.371202 + 0.269694i
\(77\) 1.45309 + 1.45309i 0.165594 + 0.165594i
\(78\) 12.5498 + 6.39445i 1.42099 + 0.724029i
\(79\) 12.3107 1.38507 0.692533 0.721386i \(-0.256495\pi\)
0.692533 + 0.721386i \(0.256495\pi\)
\(80\) 0 0
\(81\) 10.7082 1.18980
\(82\) 9.71290 + 4.94897i 1.07261 + 0.546522i
\(83\) 4.38197 + 4.38197i 0.480983 + 0.480983i 0.905446 0.424462i \(-0.139537\pi\)
−0.424462 + 0.905446i \(0.639537\pi\)
\(84\) −6.15537 + 4.47214i −0.671606 + 0.487950i
\(85\) 0 0
\(86\) 1.47214 + 4.53077i 0.158745 + 0.488565i
\(87\) 2.35114 + 2.35114i 0.252069 + 0.252069i
\(88\) −0.546915 3.45309i −0.0583013 0.368100i
\(89\) 6.47214i 0.686045i 0.939327 + 0.343023i \(0.111451\pi\)
−0.939327 + 0.343023i \(0.888549\pi\)
\(90\) 0 0
\(91\) −7.23607 −0.758546
\(92\) 7.34342 + 1.16308i 0.765605 + 0.121260i
\(93\) 8.50651 8.50651i 0.882084 0.882084i
\(94\) 4.53077 + 13.9443i 0.467313 + 1.43824i
\(95\) 0 0
\(96\) 12.9443 1.32112
\(97\) 0.236068 0.236068i 0.0239691 0.0239691i −0.695021 0.718990i \(-0.744605\pi\)
0.718990 + 0.695021i \(0.244605\pi\)
\(98\) −2.71972 + 5.33776i −0.274734 + 0.539195i
\(99\) 2.76393i 0.277786i
\(100\) 0 0
\(101\) 12.3107i 1.22496i −0.790485 0.612482i \(-0.790171\pi\)
0.790485 0.612482i \(-0.209829\pi\)
\(102\) −4.07768 2.07768i −0.403751 0.205721i
\(103\) 7.33094 7.33094i 0.722339 0.722339i −0.246742 0.969081i \(-0.579360\pi\)
0.969081 + 0.246742i \(0.0793601\pi\)
\(104\) 9.95959 + 7.23607i 0.976618 + 0.709555i
\(105\) 0 0
\(106\) 1.38197 0.449028i 0.134228 0.0436135i
\(107\) −12.0902 + 12.0902i −1.16880 + 1.16880i −0.186310 + 0.982491i \(0.559653\pi\)
−0.982491 + 0.186310i \(0.940347\pi\)
\(108\) 3.45309 + 0.546915i 0.332273 + 0.0526269i
\(109\) −6.71040 −0.642739 −0.321370 0.946954i \(-0.604143\pi\)
−0.321370 + 0.946954i \(0.604143\pi\)
\(110\) 0 0
\(111\) 9.95959i 0.945323i
\(112\) −5.92522 + 3.01905i −0.559881 + 0.285273i
\(113\) 4.70820 + 4.70820i 0.442911 + 0.442911i 0.892989 0.450078i \(-0.148604\pi\)
−0.450078 + 0.892989i \(0.648604\pi\)
\(114\) 6.15537 2.00000i 0.576503 0.187317i
\(115\) 0 0
\(116\) 1.70820 + 2.35114i 0.158603 + 0.218298i
\(117\) −6.88191 6.88191i −0.636233 0.636233i
\(118\) −5.43945 + 10.6755i −0.500742 + 0.982761i
\(119\) 2.35114 0.215529
\(120\) 0 0
\(121\) −9.47214 −0.861103
\(122\) 6.39445 12.5498i 0.578927 1.13621i
\(123\) −12.4721 12.4721i −1.12457 1.12457i
\(124\) 8.50651 6.18034i 0.763907 0.555011i
\(125\) 0 0
\(126\) 5.00000 1.62460i 0.445435 0.144731i
\(127\) 8.78402 + 8.78402i 0.779456 + 0.779456i 0.979738 0.200282i \(-0.0641859\pi\)
−0.200282 + 0.979738i \(0.564186\pi\)
\(128\) 11.1744 + 1.76985i 0.987688 + 0.156434i
\(129\) 7.70820i 0.678670i
\(130\) 0 0
\(131\) 0.291796 0.0254943 0.0127472 0.999919i \(-0.495942\pi\)
0.0127472 + 0.999919i \(0.495942\pi\)
\(132\) −0.884927 + 5.58721i −0.0770230 + 0.486304i
\(133\) −2.35114 + 2.35114i −0.203870 + 0.203870i
\(134\) −4.53077 + 1.47214i −0.391399 + 0.127173i
\(135\) 0 0
\(136\) −3.23607 2.35114i −0.277491 0.201609i
\(137\) −3.47214 + 3.47214i −0.296645 + 0.296645i −0.839698 0.543054i \(-0.817268\pi\)
0.543054 + 0.839698i \(0.317268\pi\)
\(138\) −10.7188 5.46151i −0.912447 0.464915i
\(139\) 5.41641i 0.459414i 0.973260 + 0.229707i \(0.0737767\pi\)
−0.973260 + 0.229707i \(0.926223\pi\)
\(140\) 0 0
\(141\) 23.7234i 1.99787i
\(142\) −4.52858 + 8.88783i −0.380030 + 0.745850i
\(143\) −3.80423 + 3.80423i −0.318125 + 0.318125i
\(144\) −8.50651 2.76393i −0.708876 0.230328i
\(145\) 0 0
\(146\) 5.38197 + 16.5640i 0.445415 + 1.37085i
\(147\) 6.85410 6.85410i 0.565317 0.565317i
\(148\) −1.36176 + 8.59783i −0.111936 + 0.706737i
\(149\) −13.2088 −1.08211 −0.541053 0.840988i \(-0.681974\pi\)
−0.541053 + 0.840988i \(0.681974\pi\)
\(150\) 0 0
\(151\) 14.6619i 1.19317i 0.802551 + 0.596583i \(0.203475\pi\)
−0.802551 + 0.596583i \(0.796525\pi\)
\(152\) 5.58721 0.884927i 0.453182 0.0717771i
\(153\) 2.23607 + 2.23607i 0.180775 + 0.180775i
\(154\) −0.898056 2.76393i −0.0723674 0.222724i
\(155\) 0 0
\(156\) −11.7082 16.1150i −0.937407 1.29023i
\(157\) −9.78808 9.78808i −0.781174 0.781174i 0.198855 0.980029i \(-0.436278\pi\)
−0.980029 + 0.198855i \(0.936278\pi\)
\(158\) −15.5124 7.90398i −1.23410 0.628807i
\(159\) −2.35114 −0.186458
\(160\) 0 0
\(161\) 6.18034 0.487079
\(162\) −13.4931 6.87509i −1.06012 0.540158i
\(163\) 7.14590 + 7.14590i 0.559710 + 0.559710i 0.929225 0.369515i \(-0.120476\pi\)
−0.369515 + 0.929225i \(0.620476\pi\)
\(164\) −9.06154 12.4721i −0.707587 0.973910i
\(165\) 0 0
\(166\) −2.70820 8.33499i −0.210197 0.646921i
\(167\) 0.277515 + 0.277515i 0.0214747 + 0.0214747i 0.717763 0.696288i \(-0.245166\pi\)
−0.696288 + 0.717763i \(0.745166\pi\)
\(168\) 10.6275 1.68323i 0.819930 0.129864i
\(169\) 5.94427i 0.457252i
\(170\) 0 0
\(171\) −4.47214 −0.341993
\(172\) 1.05393 6.65427i 0.0803616 0.507383i
\(173\) −6.32688 + 6.32688i −0.481024 + 0.481024i −0.905459 0.424435i \(-0.860473\pi\)
0.424435 + 0.905459i \(0.360473\pi\)
\(174\) −1.45309 4.47214i −0.110158 0.339032i
\(175\) 0 0
\(176\) −1.52786 + 4.70228i −0.115167 + 0.354448i
\(177\) 13.7082 13.7082i 1.03037 1.03037i
\(178\) 4.15537 8.15537i 0.311458 0.611271i
\(179\) 16.4721i 1.23119i 0.788065 + 0.615593i \(0.211083\pi\)
−0.788065 + 0.615593i \(0.788917\pi\)
\(180\) 0 0
\(181\) 9.40456i 0.699036i 0.936930 + 0.349518i \(0.113655\pi\)
−0.936930 + 0.349518i \(0.886345\pi\)
\(182\) 9.11798 + 4.64584i 0.675869 + 0.344373i
\(183\) −16.1150 + 16.1150i −1.19125 + 1.19125i
\(184\) −8.50651 6.18034i −0.627108 0.455621i
\(185\) 0 0
\(186\) −16.1803 + 5.25731i −1.18640 + 0.385485i
\(187\) 1.23607 1.23607i 0.0903902 0.0903902i
\(188\) 3.24367 20.4797i 0.236569 1.49364i
\(189\) 2.90617 0.211393
\(190\) 0 0
\(191\) 12.8658i 0.930934i 0.885065 + 0.465467i \(0.154114\pi\)
−0.885065 + 0.465467i \(0.845886\pi\)
\(192\) −16.3107 8.31073i −1.17713 0.599776i
\(193\) 7.47214 + 7.47214i 0.537856 + 0.537856i 0.922899 0.385043i \(-0.125813\pi\)
−0.385043 + 0.922899i \(0.625813\pi\)
\(194\) −0.449028 + 0.145898i −0.0322383 + 0.0104749i
\(195\) 0 0
\(196\) 6.85410 4.97980i 0.489579 0.355700i
\(197\) 2.17963 + 2.17963i 0.155292 + 0.155292i 0.780477 0.625185i \(-0.214976\pi\)
−0.625185 + 0.780477i \(0.714976\pi\)
\(198\) 1.77455 3.48276i 0.126112 0.247509i
\(199\) 18.1231 1.28471 0.642355 0.766407i \(-0.277957\pi\)
0.642355 + 0.766407i \(0.277957\pi\)
\(200\) 0 0
\(201\) 7.70820 0.543695
\(202\) −7.90398 + 15.5124i −0.556122 + 1.09145i
\(203\) 1.70820 + 1.70820i 0.119892 + 0.119892i
\(204\) 3.80423 + 5.23607i 0.266349 + 0.366598i
\(205\) 0 0
\(206\) −13.9443 + 4.53077i −0.971543 + 0.315674i
\(207\) 5.87785 + 5.87785i 0.408539 + 0.408539i
\(208\) −7.90398 15.5124i −0.548042 1.07559i
\(209\) 2.47214i 0.171001i
\(210\) 0 0
\(211\) 15.7082 1.08140 0.540699 0.841216i \(-0.318160\pi\)
0.540699 + 0.841216i \(0.318160\pi\)
\(212\) −2.02967 0.321469i −0.139398 0.0220785i
\(213\) 11.4127 11.4127i 0.781984 0.781984i
\(214\) 22.9969 7.47214i 1.57203 0.510785i
\(215\) 0 0
\(216\) −4.00000 2.90617i −0.272166 0.197740i
\(217\) 6.18034 6.18034i 0.419549 0.419549i
\(218\) 8.45559 + 4.30834i 0.572685 + 0.291798i
\(219\) 28.1803i 1.90425i
\(220\) 0 0
\(221\) 6.15537i 0.414055i
\(222\) 6.39445 12.5498i 0.429168 0.842289i
\(223\) 1.73060 1.73060i 0.115890 0.115890i −0.646784 0.762673i \(-0.723886\pi\)
0.762673 + 0.646784i \(0.223886\pi\)
\(224\) 9.40456 0.628369
\(225\) 0 0
\(226\) −2.90983 8.95554i −0.193559 0.595713i
\(227\) 11.6180 11.6180i 0.771116 0.771116i −0.207186 0.978302i \(-0.566430\pi\)
0.978302 + 0.207186i \(0.0664304\pi\)
\(228\) −9.04029 1.43184i −0.598708 0.0948260i
\(229\) −21.3723 −1.41232 −0.706160 0.708053i \(-0.749574\pi\)
−0.706160 + 0.708053i \(0.749574\pi\)
\(230\) 0 0
\(231\) 4.70228i 0.309387i
\(232\) −0.642937 4.05934i −0.0422109 0.266509i
\(233\) 3.47214 + 3.47214i 0.227467 + 0.227467i 0.811634 0.584167i \(-0.198579\pi\)
−0.584167 + 0.811634i \(0.698579\pi\)
\(234\) 4.25325 + 13.0902i 0.278044 + 0.855731i
\(235\) 0 0
\(236\) 13.7082 9.95959i 0.892328 0.648314i
\(237\) 19.9192 + 19.9192i 1.29389 + 1.29389i
\(238\) −2.96261 1.50953i −0.192038 0.0978480i
\(239\) −29.3238 −1.89680 −0.948398 0.317083i \(-0.897297\pi\)
−0.948398 + 0.317083i \(0.897297\pi\)
\(240\) 0 0
\(241\) 6.76393 0.435703 0.217852 0.975982i \(-0.430095\pi\)
0.217852 + 0.975982i \(0.430095\pi\)
\(242\) 11.9356 + 6.08149i 0.767249 + 0.390933i
\(243\) 13.6180 + 13.6180i 0.873597 + 0.873597i
\(244\) −16.1150 + 11.7082i −1.03165 + 0.749541i
\(245\) 0 0
\(246\) 7.70820 + 23.7234i 0.491457 + 1.51255i
\(247\) −6.15537 6.15537i −0.391657 0.391657i
\(248\) −14.6868 + 2.32617i −0.932616 + 0.147712i
\(249\) 14.1803i 0.898643i
\(250\) 0 0
\(251\) −22.1803 −1.40001 −0.700005 0.714138i \(-0.746819\pi\)
−0.700005 + 0.714138i \(0.746819\pi\)
\(252\) −7.34342 1.16308i −0.462592 0.0732674i
\(253\) 3.24920 3.24920i 0.204275 0.204275i
\(254\) −5.42882 16.7082i −0.340635 1.04837i
\(255\) 0 0
\(256\) −12.9443 9.40456i −0.809017 0.587785i
\(257\) −18.7082 + 18.7082i −1.16699 + 1.16699i −0.184073 + 0.982913i \(0.558928\pi\)
−0.982913 + 0.184073i \(0.941072\pi\)
\(258\) −4.94897 + 9.71290i −0.308110 + 0.604699i
\(259\) 7.23607i 0.449627i
\(260\) 0 0
\(261\) 3.24920i 0.201120i
\(262\) −0.367684 0.187345i −0.0227156 0.0115742i
\(263\) −16.3925 + 16.3925i −1.01080 + 1.01080i −0.0108623 + 0.999941i \(0.503458\pi\)
−0.999941 + 0.0108623i \(0.996542\pi\)
\(264\) 4.70228 6.47214i 0.289405 0.398332i
\(265\) 0 0
\(266\) 4.47214 1.45309i 0.274204 0.0890944i
\(267\) −10.4721 + 10.4721i −0.640884 + 0.640884i
\(268\) 6.65427 + 1.05393i 0.406474 + 0.0643792i
\(269\) 17.9111 1.09206 0.546029 0.837766i \(-0.316139\pi\)
0.546029 + 0.837766i \(0.316139\pi\)
\(270\) 0 0
\(271\) 31.6749i 1.92411i −0.272851 0.962056i \(-0.587967\pi\)
0.272851 0.962056i \(-0.412033\pi\)
\(272\) 2.56816 + 5.04029i 0.155717 + 0.305613i
\(273\) −11.7082 11.7082i −0.708613 0.708613i
\(274\) 6.60440 2.14590i 0.398986 0.129638i
\(275\) 0 0
\(276\) 10.0000 + 13.7638i 0.601929 + 0.828485i
\(277\) −2.17963 2.17963i −0.130961 0.130961i 0.638588 0.769549i \(-0.279519\pi\)
−0.769549 + 0.638588i \(0.779519\pi\)
\(278\) 3.47755 6.82507i 0.208569 0.409341i
\(279\) 11.7557 0.703796
\(280\) 0 0
\(281\) 3.70820 0.221213 0.110606 0.993864i \(-0.464721\pi\)
0.110606 + 0.993864i \(0.464721\pi\)
\(282\) −15.2314 + 29.8932i −0.907015 + 1.78012i
\(283\) −15.6180 15.6180i −0.928396 0.928396i 0.0692066 0.997602i \(-0.477953\pi\)
−0.997602 + 0.0692066i \(0.977953\pi\)
\(284\) 11.4127 8.29180i 0.677218 0.492028i
\(285\) 0 0
\(286\) 7.23607 2.35114i 0.427878 0.139026i
\(287\) −9.06154 9.06154i −0.534886 0.534886i
\(288\) 8.94427 + 8.94427i 0.527046 + 0.527046i
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 0.763932 0.0447825
\(292\) 3.85306 24.3273i 0.225483 1.42365i
\(293\) 0.726543 0.726543i 0.0424451 0.0424451i −0.685566 0.728011i \(-0.740445\pi\)
0.728011 + 0.685566i \(0.240445\pi\)
\(294\) −13.0373 + 4.23607i −0.760349 + 0.247053i
\(295\) 0 0
\(296\) 7.23607 9.95959i 0.420588 0.578890i
\(297\) 1.52786 1.52786i 0.0886557 0.0886557i
\(298\) 16.6440 + 8.48057i 0.964164 + 0.491266i
\(299\) 16.1803i 0.935733i
\(300\) 0 0
\(301\) 5.60034i 0.322798i
\(302\) 9.41350 18.4750i 0.541686 1.06312i
\(303\) 19.9192 19.9192i 1.14433 1.14433i
\(304\) −7.60845 2.47214i −0.436375 0.141787i
\(305\) 0 0
\(306\) −1.38197 4.25325i −0.0790017 0.243142i
\(307\) −6.56231 + 6.56231i −0.374531 + 0.374531i −0.869124 0.494594i \(-0.835317\pi\)
0.494594 + 0.869124i \(0.335317\pi\)
\(308\) −0.642937 + 4.05934i −0.0366347 + 0.231303i
\(309\) 23.7234 1.34958
\(310\) 0 0
\(311\) 8.16348i 0.462909i −0.972846 0.231454i \(-0.925652\pi\)
0.972846 0.231454i \(-0.0743484\pi\)
\(312\) 4.40676 + 27.8232i 0.249483 + 1.57518i
\(313\) 6.23607 + 6.23607i 0.352483 + 0.352483i 0.861033 0.508549i \(-0.169818\pi\)
−0.508549 + 0.861033i \(0.669818\pi\)
\(314\) 6.04937 + 18.6180i 0.341385 + 1.05068i
\(315\) 0 0
\(316\) 14.4721 + 19.9192i 0.814121 + 1.12054i
\(317\) −10.6861 10.6861i −0.600193 0.600193i 0.340171 0.940364i \(-0.389515\pi\)
−0.940364 + 0.340171i \(0.889515\pi\)
\(318\) 2.96261 + 1.50953i 0.166135 + 0.0846500i
\(319\) 1.79611 0.100563
\(320\) 0 0
\(321\) −39.1246 −2.18372
\(322\) −7.78768 3.96802i −0.433991 0.221129i
\(323\) 2.00000 + 2.00000i 0.111283 + 0.111283i
\(324\) 12.5882 + 17.3262i 0.699347 + 0.962569i
\(325\) 0 0
\(326\) −4.41641 13.5923i −0.244602 0.752808i
\(327\) −10.8576 10.8576i −0.600429 0.600429i
\(328\) 3.41060 + 21.5337i 0.188319 + 1.18900i
\(329\) 17.2361i 0.950255i
\(330\) 0 0
\(331\) 28.0689 1.54281 0.771403 0.636347i \(-0.219555\pi\)
0.771403 + 0.636347i \(0.219555\pi\)
\(332\) −1.93886 + 12.2415i −0.106409 + 0.671838i
\(333\) −6.88191 + 6.88191i −0.377126 + 0.377126i
\(334\) −0.171513 0.527864i −0.00938480 0.0288834i
\(335\) 0 0
\(336\) −14.4721 4.70228i −0.789520 0.256531i
\(337\) 2.05573 2.05573i 0.111983 0.111983i −0.648895 0.760878i \(-0.724769\pi\)
0.760878 + 0.648895i \(0.224769\pi\)
\(338\) −3.81646 + 7.49022i −0.207588 + 0.407414i
\(339\) 15.2361i 0.827510i
\(340\) 0 0
\(341\) 6.49839i 0.351908i
\(342\) 5.63522 + 2.87129i 0.304718 + 0.155261i
\(343\) 13.2088 13.2088i 0.713208 0.713208i
\(344\) −5.60034 + 7.70820i −0.301950 + 0.415599i
\(345\) 0 0
\(346\) 12.0344 3.91023i 0.646976 0.210215i
\(347\) 3.03444 3.03444i 0.162897 0.162897i −0.620952 0.783849i \(-0.713254\pi\)
0.783849 + 0.620952i \(0.213254\pi\)
\(348\) −1.04029 + 6.56816i −0.0557656 + 0.352090i
\(349\) −15.5599 −0.832904 −0.416452 0.909158i \(-0.636727\pi\)
−0.416452 + 0.909158i \(0.636727\pi\)
\(350\) 0 0
\(351\) 7.60845i 0.406109i
\(352\) 4.94427 4.94427i 0.263531 0.263531i
\(353\) −4.41641 4.41641i −0.235062 0.235062i 0.579740 0.814802i \(-0.303154\pi\)
−0.814802 + 0.579740i \(0.803154\pi\)
\(354\) −26.0746 + 8.47214i −1.38585 + 0.450289i
\(355\) 0 0
\(356\) −10.4721 + 7.60845i −0.555022 + 0.403247i
\(357\) 3.80423 + 3.80423i 0.201341 + 0.201341i
\(358\) 10.5758 20.7561i 0.558946 1.09699i
\(359\) 1.79611 0.0947952 0.0473976 0.998876i \(-0.484907\pi\)
0.0473976 + 0.998876i \(0.484907\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 6.03810 11.8504i 0.317356 0.622845i
\(363\) −15.3262 15.3262i −0.804419 0.804419i
\(364\) −8.50651 11.7082i −0.445862 0.613677i
\(365\) 0 0
\(366\) 30.6525 9.95959i 1.60223 0.520596i
\(367\) 24.0009 + 24.0009i 1.25284 + 1.25284i 0.954442 + 0.298396i \(0.0964516\pi\)
0.298396 + 0.954442i \(0.403548\pi\)
\(368\) 6.75080 + 13.2492i 0.351910 + 0.690662i
\(369\) 17.2361i 0.897274i
\(370\) 0 0
\(371\) −1.70820 −0.0886855
\(372\) 23.7638 + 3.76382i 1.23210 + 0.195145i
\(373\) −15.0454 + 15.0454i −0.779021 + 0.779021i −0.979664 0.200644i \(-0.935697\pi\)
0.200644 + 0.979664i \(0.435697\pi\)
\(374\) −2.35114 + 0.763932i −0.121575 + 0.0395020i
\(375\) 0 0
\(376\) −17.2361 + 23.7234i −0.888882 + 1.22344i
\(377\) −4.47214 + 4.47214i −0.230327 + 0.230327i
\(378\) −3.66199 1.86588i −0.188352 0.0959703i
\(379\) 35.8885i 1.84347i −0.387820 0.921735i \(-0.626772\pi\)
0.387820 0.921735i \(-0.373228\pi\)
\(380\) 0 0
\(381\) 28.4257i 1.45629i
\(382\) 8.26033 16.2118i 0.422635 0.829468i
\(383\) 11.1352 11.1352i 0.568980 0.568980i −0.362862 0.931843i \(-0.618201\pi\)
0.931843 + 0.362862i \(0.118201\pi\)
\(384\) 15.2169 + 20.9443i 0.776534 + 1.06881i
\(385\) 0 0
\(386\) −4.61803 14.2128i −0.235052 0.723415i
\(387\) 5.32624 5.32624i 0.270748 0.270748i
\(388\) 0.659481 + 0.104451i 0.0334801 + 0.00530272i
\(389\) 23.7234 1.20282 0.601412 0.798939i \(-0.294605\pi\)
0.601412 + 0.798939i \(0.294605\pi\)
\(390\) 0 0
\(391\) 5.25731i 0.265874i
\(392\) −11.8339 + 1.87431i −0.597702 + 0.0946667i
\(393\) 0.472136 + 0.472136i 0.0238161 + 0.0238161i
\(394\) −1.34708 4.14590i −0.0678651 0.208867i
\(395\) 0 0
\(396\) −4.47214 + 3.24920i −0.224733 + 0.163278i
\(397\) −7.22494 7.22494i −0.362609 0.362609i 0.502164 0.864773i \(-0.332538\pi\)
−0.864773 + 0.502164i \(0.832538\pi\)
\(398\) −22.8364 11.6357i −1.14469 0.583246i
\(399\) −7.60845 −0.380899
\(400\) 0 0
\(401\) −3.88854 −0.194185 −0.0970923 0.995275i \(-0.530954\pi\)
−0.0970923 + 0.995275i \(0.530954\pi\)
\(402\) −9.71290 4.94897i −0.484436 0.246832i
\(403\) 16.1803 + 16.1803i 0.806000 + 0.806000i
\(404\) 19.9192 14.4721i 0.991017 0.720016i
\(405\) 0 0
\(406\) −1.05573 3.24920i −0.0523949 0.161255i
\(407\) 3.80423 + 3.80423i 0.188568 + 0.188568i
\(408\) −1.43184 9.04029i −0.0708867 0.447561i
\(409\) 27.5967i 1.36457i −0.731086 0.682286i \(-0.760986\pi\)
0.731086 0.682286i \(-0.239014\pi\)
\(410\) 0 0
\(411\) −11.2361 −0.554234
\(412\) 20.4797 + 3.24367i 1.00896 + 0.159804i
\(413\) 9.95959 9.95959i 0.490080 0.490080i
\(414\) −3.63271 11.1803i −0.178538 0.549484i
\(415\) 0 0
\(416\) 24.6215i 1.20717i
\(417\) −8.76393 + 8.76393i −0.429172 + 0.429172i
\(418\) 1.58721 3.11507i 0.0776329 0.152363i
\(419\) 24.8328i 1.21316i −0.795022 0.606581i \(-0.792540\pi\)
0.795022 0.606581i \(-0.207460\pi\)
\(420\) 0 0
\(421\) 3.46120i 0.168689i 0.996437 + 0.0843443i \(0.0268795\pi\)
−0.996437 + 0.0843443i \(0.973120\pi\)
\(422\) −19.7935 10.0853i −0.963532 0.490944i
\(423\) 16.3925 16.3925i 0.797029 0.797029i
\(424\) 2.35114 + 1.70820i 0.114182 + 0.0829577i
\(425\) 0 0
\(426\) −21.7082 + 7.05342i −1.05177 + 0.341739i
\(427\) −11.7082 + 11.7082i −0.566600 + 0.566600i
\(428\) −33.7752 5.34946i −1.63258 0.258576i
\(429\) −12.3107 −0.594368
\(430\) 0 0
\(431\) 11.7557i 0.566252i 0.959083 + 0.283126i \(0.0913715\pi\)
−0.959083 + 0.283126i \(0.908628\pi\)
\(432\) 3.17442 + 6.23015i 0.152729 + 0.299748i
\(433\) −23.1803 23.1803i −1.11398 1.11398i −0.992608 0.121369i \(-0.961272\pi\)
−0.121369 0.992608i \(-0.538728\pi\)
\(434\) −11.7557 + 3.81966i −0.564292 + 0.183350i
\(435\) 0 0
\(436\) −7.88854 10.8576i −0.377793 0.519987i
\(437\) 5.25731 + 5.25731i 0.251491 + 0.251491i
\(438\) −18.0929 + 35.5093i −0.864512 + 1.69670i
\(439\) −11.2007 −0.534579 −0.267290 0.963616i \(-0.586128\pi\)
−0.267290 + 0.963616i \(0.586128\pi\)
\(440\) 0 0
\(441\) 9.47214 0.451054
\(442\) 3.95199 7.75621i 0.187977 0.368926i
\(443\) −10.0902 10.0902i −0.479398 0.479398i 0.425541 0.904939i \(-0.360084\pi\)
−0.904939 + 0.425541i \(0.860084\pi\)
\(444\) −16.1150 + 11.7082i −0.764782 + 0.555647i
\(445\) 0 0
\(446\) −3.29180 + 1.06957i −0.155871 + 0.0506456i
\(447\) −21.3723 21.3723i −1.01087 1.01087i
\(448\) −11.8504 6.03810i −0.559881 0.285273i
\(449\) 31.5967i 1.49114i 0.666426 + 0.745571i \(0.267823\pi\)
−0.666426 + 0.745571i \(0.732177\pi\)
\(450\) 0 0
\(451\) −9.52786 −0.448650
\(452\) −2.08321 + 13.1529i −0.0979859 + 0.618658i
\(453\) −23.7234 + 23.7234i −1.11462 + 1.11462i
\(454\) −22.0988 + 7.18034i −1.03715 + 0.336990i
\(455\) 0 0
\(456\) 10.4721 + 7.60845i 0.490403 + 0.356298i
\(457\) 21.6525 21.6525i 1.01286 1.01286i 0.0129439 0.999916i \(-0.495880\pi\)
0.999916 0.0129439i \(-0.00412028\pi\)
\(458\) 26.9306 + 13.7218i 1.25839 + 0.641180i
\(459\) 2.47214i 0.115389i
\(460\) 0 0
\(461\) 6.49839i 0.302660i 0.988483 + 0.151330i \(0.0483557\pi\)
−0.988483 + 0.151330i \(0.951644\pi\)
\(462\) 3.01905 5.92522i 0.140459 0.275666i
\(463\) −17.2905 + 17.2905i −0.803559 + 0.803559i −0.983650 0.180091i \(-0.942361\pi\)
0.180091 + 0.983650i \(0.442361\pi\)
\(464\) −1.79611 + 5.52786i −0.0833824 + 0.256625i
\(465\) 0 0
\(466\) −2.14590 6.60440i −0.0994068 0.305943i
\(467\) 2.67376 2.67376i 0.123727 0.123727i −0.642532 0.766259i \(-0.722116\pi\)
0.766259 + 0.642532i \(0.222116\pi\)
\(468\) 3.04499 19.2253i 0.140755 0.888691i
\(469\) 5.60034 0.258600
\(470\) 0 0
\(471\) 31.6749i 1.45950i
\(472\) −23.6678 + 3.74861i −1.08940 + 0.172544i
\(473\) −2.94427 2.94427i −0.135378 0.135378i
\(474\) −12.3107 37.8885i −0.565451 1.74028i
\(475\) 0 0
\(476\) 2.76393 + 3.80423i 0.126685 + 0.174366i
\(477\) −1.62460 1.62460i −0.0743853 0.0743853i
\(478\) 36.9501 + 18.8270i 1.69006 + 0.861127i
\(479\) 7.60845 0.347639 0.173820 0.984778i \(-0.444389\pi\)
0.173820 + 0.984778i \(0.444389\pi\)
\(480\) 0 0
\(481\) −18.9443 −0.863784
\(482\) −8.52305 4.34271i −0.388214 0.197805i
\(483\) 10.0000 + 10.0000i 0.455016 + 0.455016i
\(484\) −11.1352 15.3262i −0.506144 0.696647i
\(485\) 0 0
\(486\) −8.41641 25.9030i −0.381776 1.17499i
\(487\) −9.33905 9.33905i −0.423193 0.423193i 0.463109 0.886302i \(-0.346734\pi\)
−0.886302 + 0.463109i \(0.846734\pi\)
\(488\) 27.8232 4.40676i 1.25950 0.199484i
\(489\) 23.1246i 1.04573i
\(490\) 0 0
\(491\) −10.7639 −0.485769 −0.242885 0.970055i \(-0.578094\pi\)
−0.242885 + 0.970055i \(0.578094\pi\)
\(492\) 5.51846 34.8422i 0.248792 1.57081i
\(493\) 1.45309 1.45309i 0.0654437 0.0654437i
\(494\) 3.80423 + 11.7082i 0.171160 + 0.526777i
\(495\) 0 0
\(496\) 20.0000 + 6.49839i 0.898027 + 0.291787i
\(497\) 8.29180 8.29180i 0.371938 0.371938i
\(498\) 9.10434 17.8683i 0.407975 0.800696i
\(499\) 23.8885i 1.06940i 0.845043 + 0.534699i \(0.179575\pi\)
−0.845043 + 0.534699i \(0.820425\pi\)
\(500\) 0 0
\(501\) 0.898056i 0.0401222i
\(502\) 27.9489 + 14.2407i 1.24742 + 0.635592i
\(503\) 5.53483 5.53483i 0.246786 0.246786i −0.572864 0.819650i \(-0.694168\pi\)
0.819650 + 0.572864i \(0.194168\pi\)
\(504\) 8.50651 + 6.18034i 0.378910 + 0.275294i
\(505\) 0 0
\(506\) −6.18034 + 2.00811i −0.274750 + 0.0892716i
\(507\) 9.61803 9.61803i 0.427152 0.427152i
\(508\) −3.88661 + 24.5391i −0.172440 + 1.08875i
\(509\) 9.06154 0.401646 0.200823 0.979628i \(-0.435638\pi\)
0.200823 + 0.979628i \(0.435638\pi\)
\(510\) 0 0
\(511\) 20.4742i 0.905726i
\(512\) 10.2726 + 20.1612i 0.453990 + 0.891007i
\(513\) 2.47214 + 2.47214i 0.109147 + 0.109147i
\(514\) 35.5851 11.5623i 1.56959 0.509991i
\(515\) 0 0
\(516\) 12.4721 9.06154i 0.549055 0.398912i
\(517\) −9.06154 9.06154i −0.398526 0.398526i
\(518\) 4.64584 9.11798i 0.204127 0.400621i
\(519\) −20.4742 −0.898718
\(520\) 0 0
\(521\) 8.47214 0.371171 0.185586 0.982628i \(-0.440582\pi\)
0.185586 + 0.982628i \(0.440582\pi\)
\(522\) 2.08611 4.09423i 0.0913067 0.179199i
\(523\) 16.7426 + 16.7426i 0.732105 + 0.732105i 0.971036 0.238932i \(-0.0767972\pi\)
−0.238932 + 0.971036i \(0.576797\pi\)
\(524\) 0.343027 + 0.472136i 0.0149852 + 0.0206254i
\(525\) 0 0
\(526\) 31.1803 10.1311i 1.35953 0.441737i
\(527\) −5.25731 5.25731i −0.229012 0.229012i
\(528\) −10.0806 + 5.13632i −0.438701 + 0.223529i
\(529\) 9.18034i 0.399145i
\(530\) 0 0
\(531\) 18.9443 0.822111
\(532\) −6.56816 1.04029i −0.284766 0.0451025i
\(533\) 23.7234 23.7234i 1.02758 1.02758i
\(534\) 19.9192 6.47214i 0.861987 0.280077i
\(535\) 0 0
\(536\) −7.70820 5.60034i −0.332944 0.241898i
\(537\) −26.6525 + 26.6525i −1.15014 + 1.15014i
\(538\) −22.5693 11.4996i −0.973030 0.495784i
\(539\) 5.23607i 0.225533i
\(540\) 0 0
\(541\) 2.90617i 0.124946i 0.998047 + 0.0624730i \(0.0198987\pi\)
−0.998047 + 0.0624730i \(0.980101\pi\)
\(542\) −20.3365 + 39.9127i −0.873529 + 1.71440i
\(543\) −15.2169 + 15.2169i −0.653020 + 0.653020i
\(544\) 8.00000i 0.342997i
\(545\) 0 0
\(546\) 7.23607 + 22.2703i 0.309675 + 0.953082i
\(547\) 8.56231 8.56231i 0.366098 0.366098i −0.499954 0.866052i \(-0.666650\pi\)
0.866052 + 0.499954i \(0.166650\pi\)
\(548\) −9.69977 1.53629i −0.414354 0.0656272i
\(549\) −22.2703 −0.950474
\(550\) 0 0
\(551\) 2.90617i 0.123807i
\(552\) −3.76382 23.7638i −0.160199 1.01146i
\(553\) 14.4721 + 14.4721i 0.615418 + 0.615418i
\(554\) 1.34708 + 4.14590i 0.0572321 + 0.176142i
\(555\) 0 0
\(556\) −8.76393 + 6.36737i −0.371674 + 0.270037i
\(557\) 17.1845 + 17.1845i 0.728132 + 0.728132i 0.970247 0.242116i \(-0.0778413\pi\)
−0.242116 + 0.970247i \(0.577841\pi\)
\(558\) −14.8131 7.54763i −0.627087 0.319517i
\(559\) 14.6619 0.620131
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) −4.67261 2.38081i −0.197102 0.100429i
\(563\) −11.3262 11.3262i −0.477344 0.477344i 0.426937 0.904281i \(-0.359593\pi\)
−0.904281 + 0.426937i \(0.859593\pi\)
\(564\) 38.3853 27.8885i 1.61631 1.17432i
\(565\) 0 0
\(566\) 9.65248 + 29.7073i 0.405724 + 1.24869i
\(567\) 12.5882 + 12.5882i 0.528657 + 0.528657i
\(568\) −19.7045 + 3.12088i −0.826781 + 0.130949i
\(569\) 13.1246i 0.550212i −0.961414 0.275106i \(-0.911287\pi\)
0.961414 0.275106i \(-0.0887130\pi\)
\(570\) 0 0
\(571\) −8.65248 −0.362095 −0.181047 0.983474i \(-0.557949\pi\)
−0.181047 + 0.983474i \(0.557949\pi\)
\(572\) −10.6275 1.68323i −0.444358 0.0703794i
\(573\) −20.8172 + 20.8172i −0.869653 + 0.869653i
\(574\) 5.60034 + 17.2361i 0.233754 + 0.719420i
\(575\) 0 0
\(576\) −5.52786 17.0130i −0.230328 0.708876i
\(577\) −21.7639 + 21.7639i −0.906044 + 0.906044i −0.995950 0.0899059i \(-0.971343\pi\)
0.0899059 + 0.995950i \(0.471343\pi\)
\(578\) 9.63059 18.9011i 0.400580 0.786182i
\(579\) 24.1803i 1.00490i
\(580\) 0 0
\(581\) 10.3026i 0.427425i
\(582\) −0.962611 0.490475i −0.0399015 0.0203308i
\(583\) −0.898056 + 0.898056i −0.0371937 + 0.0371937i
\(584\) −20.4742 + 28.1803i −0.847229 + 1.16611i
\(585\) 0 0
\(586\) −1.38197 + 0.449028i −0.0570885 + 0.0185492i
\(587\) −5.90983 + 5.90983i −0.243925 + 0.243925i −0.818472 0.574547i \(-0.805178\pi\)
0.574547 + 0.818472i \(0.305178\pi\)
\(588\) 19.1477 + 3.03269i 0.789636 + 0.125066i
\(589\) 10.5146 0.433247
\(590\) 0 0
\(591\) 7.05342i 0.290139i
\(592\) −15.5124 + 7.90398i −0.637557 + 0.324851i
\(593\) 6.41641 + 6.41641i 0.263490 + 0.263490i 0.826470 0.562980i \(-0.190345\pi\)
−0.562980 + 0.826470i \(0.690345\pi\)
\(594\) −2.90617 + 0.944272i −0.119242 + 0.0387439i
\(595\) 0 0
\(596\) −15.5279 21.3723i −0.636046 0.875442i
\(597\) 29.3238 + 29.3238i 1.20014 + 1.20014i
\(598\) 10.3884 20.3884i 0.424814 0.833744i
\(599\) −27.5276 −1.12475 −0.562374 0.826883i \(-0.690112\pi\)
−0.562374 + 0.826883i \(0.690112\pi\)
\(600\) 0 0
\(601\) −4.29180 −0.175066 −0.0875330 0.996162i \(-0.527898\pi\)
−0.0875330 + 0.996162i \(0.527898\pi\)
\(602\) −3.59564 + 7.05684i −0.146547 + 0.287615i
\(603\) 5.32624 + 5.32624i 0.216901 + 0.216901i
\(604\) −23.7234 + 17.2361i −0.965292 + 0.701326i
\(605\) 0 0
\(606\) −37.8885 + 12.3107i −1.53912 + 0.500089i
\(607\) 6.08985 + 6.08985i 0.247180 + 0.247180i 0.819812 0.572633i \(-0.194078\pi\)
−0.572633 + 0.819812i \(0.694078\pi\)
\(608\) 8.00000 + 8.00000i 0.324443 + 0.324443i
\(609\) 5.52786i 0.224000i
\(610\) 0 0
\(611\) 45.1246 1.82555
\(612\) −0.989378 + 6.24669i −0.0399933 + 0.252507i
\(613\) 27.3561 27.3561i 1.10490 1.10490i 0.111094 0.993810i \(-0.464565\pi\)
0.993810 0.111094i \(-0.0354353\pi\)
\(614\) 12.4822 4.05573i 0.503743 0.163676i
\(615\) 0 0
\(616\) 3.41641 4.70228i 0.137651 0.189460i
\(617\) 30.8885 30.8885i 1.24353 1.24353i 0.284998 0.958528i \(-0.408007\pi\)
0.958528 0.284998i \(-0.0919929\pi\)
\(618\) −29.8932 15.2314i −1.20248 0.612695i
\(619\) 27.3050i 1.09748i 0.835994 + 0.548739i \(0.184892\pi\)
−0.835994 + 0.548739i \(0.815108\pi\)
\(620\) 0 0
\(621\) 6.49839i 0.260772i
\(622\) −5.24128 + 10.2866i −0.210156 + 0.412455i
\(623\) −7.60845 + 7.60845i −0.304826 + 0.304826i
\(624\) 12.3107 37.8885i 0.492824 1.51676i
\(625\) 0 0
\(626\) −3.85410 11.8617i −0.154041 0.474089i
\(627\) −4.00000 + 4.00000i −0.159745 + 0.159745i
\(628\) 4.33087 27.3440i 0.172820 1.09115i
\(629\) 6.15537 0.245431
\(630\) 0 0
\(631\) 28.0827i 1.11795i 0.829183 + 0.558977i \(0.188806\pi\)
−0.829183 + 0.558977i \(0.811194\pi\)
\(632\) −5.44705 34.3913i −0.216672 1.36801i
\(633\) 25.4164 + 25.4164i 1.01021 + 1.01021i
\(634\) 6.60440 + 20.3262i 0.262294 + 0.807258i
\(635\) 0 0
\(636\) −2.76393 3.80423i −0.109597 0.150847i
\(637\) 13.0373 + 13.0373i 0.516556 + 0.516556i
\(638\) −2.26323 1.15317i −0.0896023 0.0456546i
\(639\) 15.7719 0.623928
\(640\) 0 0
\(641\) −7.34752 −0.290210 −0.145105 0.989416i \(-0.546352\pi\)
−0.145105 + 0.989416i \(0.546352\pi\)
\(642\) 49.2999 + 25.1195i 1.94571 + 0.991389i
\(643\) −8.56231 8.56231i −0.337664 0.337664i 0.517823 0.855488i \(-0.326742\pi\)
−0.855488 + 0.517823i \(0.826742\pi\)
\(644\) 7.26543 + 10.0000i 0.286298 + 0.394055i
\(645\) 0 0
\(646\) −1.23607 3.80423i −0.0486324 0.149675i
\(647\) 22.8909 + 22.8909i 0.899933 + 0.899933i 0.995430 0.0954968i \(-0.0304440\pi\)
−0.0954968 + 0.995430i \(0.530444\pi\)
\(648\) −4.73799 29.9145i −0.186126 1.17515i
\(649\) 10.4721i 0.411067i
\(650\) 0 0
\(651\) 20.0000 0.783862
\(652\) −3.16180 + 19.9628i −0.123826 + 0.781804i
\(653\) −11.2412 + 11.2412i −0.439901 + 0.439901i −0.891979 0.452078i \(-0.850683\pi\)
0.452078 + 0.891979i \(0.350683\pi\)
\(654\) 6.71040 + 20.6525i 0.262397 + 0.807576i
\(655\) 0 0
\(656\) 9.52786 29.3238i 0.372001 1.14490i
\(657\) 19.4721 19.4721i 0.759680 0.759680i
\(658\) −11.0662 + 21.7187i −0.431407 + 0.846684i
\(659\) 18.0000i 0.701180i −0.936529 0.350590i \(-0.885981\pi\)
0.936529 0.350590i \(-0.114019\pi\)
\(660\) 0 0
\(661\) 2.35114i 0.0914488i 0.998954 + 0.0457244i \(0.0145596\pi\)
−0.998954 + 0.0457244i \(0.985440\pi\)
\(662\) −35.3689 18.0213i −1.37465 0.700419i
\(663\) −9.95959 + 9.95959i −0.386799 + 0.386799i
\(664\) 10.3026 14.1803i 0.399819 0.550304i
\(665\) 0 0
\(666\) 13.0902 4.25325i 0.507234 0.164810i
\(667\) 3.81966 3.81966i 0.147898 0.147898i
\(668\) −0.122790 + 0.775266i −0.00475089 + 0.0299959i
\(669\) 5.60034 0.216522
\(670\) 0 0
\(671\) 12.3107i 0.475251i
\(672\) 15.2169 + 15.2169i 0.587005 + 0.587005i
\(673\) 30.7082 + 30.7082i 1.18371 + 1.18371i 0.978775 + 0.204940i \(0.0656998\pi\)
0.204940 + 0.978775i \(0.434300\pi\)
\(674\) −3.91023 + 1.27051i −0.150616 + 0.0489382i
\(675\) 0 0
\(676\) 9.61803 6.98791i 0.369924 0.268766i
\(677\) −8.33499 8.33499i −0.320340 0.320340i 0.528558 0.848897i \(-0.322733\pi\)
−0.848897 + 0.528558i \(0.822733\pi\)
\(678\) 9.78216 19.1986i 0.375682 0.737316i
\(679\) 0.555029 0.0213001
\(680\) 0 0
\(681\) 37.5967 1.44071
\(682\) −4.17223 + 8.18845i −0.159763 + 0.313552i
\(683\) −1.79837 1.79837i −0.0688129 0.0688129i 0.671863 0.740676i \(-0.265494\pi\)
−0.740676 + 0.671863i \(0.765494\pi\)
\(684\) −5.25731 7.23607i −0.201018 0.276678i
\(685\) 0 0
\(686\) −25.1246 + 8.16348i −0.959262 + 0.311683i
\(687\) −34.5811 34.5811i −1.31935 1.31935i
\(688\) 12.0058 6.11727i 0.457717 0.233219i
\(689\) 4.47214i 0.170375i
\(690\) 0 0
\(691\) −31.1246 −1.18404 −0.592018 0.805925i \(-0.701669\pi\)
−0.592018 + 0.805925i \(0.701669\pi\)
\(692\) −17.6748 2.79941i −0.671895 0.106418i
\(693\) −3.24920 + 3.24920i −0.123427 + 0.123427i
\(694\) −5.77185 + 1.87539i −0.219096 + 0.0711888i
\(695\) 0 0
\(696\) 5.52786 7.60845i 0.209533 0.288398i
\(697\) −7.70820 + 7.70820i −0.291969 + 0.291969i
\(698\) 19.6067 + 9.99009i 0.742123 + 0.378131i
\(699\) 11.2361i 0.424987i
\(700\) 0 0
\(701\) 40.3934i 1.52564i −0.646612 0.762819i \(-0.723815\pi\)
0.646612 0.762819i \(-0.276185\pi\)
\(702\) 4.88493 9.58721i 0.184370 0.361846i
\(703\) −6.15537 + 6.15537i −0.232154 + 0.232154i
\(704\) −9.40456 + 3.05573i −0.354448 + 0.115167i
\(705\) 0 0
\(706\) 2.72949 + 8.40051i 0.102726 + 0.316157i
\(707\) 14.4721 14.4721i 0.544281 0.544281i
\(708\) 38.2953 + 6.06538i 1.43923 + 0.227951i
\(709\) −13.7638 −0.516911 −0.258456 0.966023i \(-0.583214\pi\)
−0.258456 + 0.966023i \(0.583214\pi\)
\(710\) 0 0
\(711\) 27.5276i 1.03237i
\(712\) 18.0806 2.86368i 0.677599 0.107321i
\(713\) −13.8197 13.8197i −0.517550 0.517550i
\(714\) −2.35114 7.23607i −0.0879892 0.270803i
\(715\) 0 0
\(716\) −26.6525 + 19.3642i −0.996050 + 0.723673i
\(717\) −47.4468 47.4468i −1.77193 1.77193i
\(718\) −2.26323 1.15317i −0.0844631 0.0430361i
\(719\) 44.5407 1.66109 0.830543 0.556954i \(-0.188030\pi\)
0.830543 + 0.556954i \(0.188030\pi\)
\(720\) 0 0
\(721\) 17.2361 0.641905
\(722\) −18.9011 9.63059i −0.703426 0.358414i
\(723\) 10.9443 + 10.9443i 0.407022 + 0.407022i
\(724\) −15.2169 + 11.0557i −0.565532 + 0.410883i
\(725\) 0 0
\(726\) 9.47214 + 29.1522i 0.351544 + 1.08194i
\(727\) 5.87785 + 5.87785i 0.217997 + 0.217997i 0.807654 0.589657i \(-0.200737\pi\)
−0.589657 + 0.807654i \(0.700737\pi\)
\(728\) 3.20170 + 20.2147i 0.118663 + 0.749207i
\(729\) 11.9443i 0.442380i
\(730\) 0 0
\(731\) −4.76393 −0.176200
\(732\) −45.0188 7.13028i −1.66394 0.263543i
\(733\) 1.28157 1.28157i 0.0473359 0.0473359i −0.683043 0.730379i \(-0.739344\pi\)
0.730379 + 0.683043i \(0.239344\pi\)
\(734\) −14.8334 45.6525i −0.547510 1.68506i
\(735\) 0 0
\(736\) 21.0292i 0.775148i
\(737\) 2.94427 2.94427i 0.108454 0.108454i
\(738\) −11.0662 + 21.7187i −0.407354 + 0.799477i
\(739\) 17.4164i 0.640673i −0.947304 0.320336i \(-0.896204\pi\)
0.947304 0.320336i \(-0.103796\pi\)
\(740\) 0 0
\(741\) 19.9192i 0.731750i
\(742\) 2.15246 + 1.09673i 0.0790194 + 0.0402624i
\(743\) −13.4863 + 13.4863i −0.494765 + 0.494765i −0.909804 0.415039i \(-0.863768\pi\)
0.415039 + 0.909804i \(0.363768\pi\)
\(744\) −27.5276 20.0000i −1.00921 0.733236i
\(745\) 0 0
\(746\) 28.6180 9.29856i 1.04778 0.340445i
\(747\) −9.79837 + 9.79837i −0.358504 + 0.358504i
\(748\) 3.45309 + 0.546915i 0.126257 + 0.0199972i
\(749\) −28.4257 −1.03865
\(750\) 0 0
\(751\) 7.05342i 0.257383i 0.991685 + 0.128692i \(0.0410777\pi\)
−0.991685 + 0.128692i \(0.958922\pi\)
\(752\) 36.9501 18.8270i 1.34743 0.686550i
\(753\) −35.8885 35.8885i −1.30785 1.30785i
\(754\) 8.50651 2.76393i 0.309789 0.100656i
\(755\) 0 0
\(756\) 3.41641 + 4.70228i 0.124254 + 0.171020i
\(757\) −38.0018 38.0018i −1.38120 1.38120i −0.842497 0.538701i \(-0.818915\pi\)
−0.538701 0.842497i \(-0.681085\pi\)
\(758\) −23.0419 + 45.2222i −0.836918 + 1.64254i
\(759\) 10.5146 0.381657
\(760\) 0 0
\(761\) −14.9443 −0.541729 −0.270865 0.962617i \(-0.587310\pi\)
−0.270865 + 0.962617i \(0.587310\pi\)
\(762\) 18.2504 35.8185i 0.661143 1.29757i
\(763\) −7.88854 7.88854i −0.285584 0.285584i
\(764\) −20.8172 + 15.1246i −0.753141 + 0.547189i
\(765\) 0 0
\(766\) −21.1803 + 6.88191i −0.765277 + 0.248654i
\(767\) 26.0746 + 26.0746i 0.941498 + 0.941498i
\(768\) −5.72737 36.1612i −0.206669 1.30485i
\(769\) 2.47214i 0.0891475i −0.999006 0.0445738i \(-0.985807\pi\)
0.999006 0.0445738i \(-0.0141930\pi\)
\(770\) 0 0
\(771\) −60.5410 −2.18033
\(772\) −3.30615 + 20.8742i −0.118991 + 0.751279i
\(773\) −4.18774 + 4.18774i −0.150623 + 0.150623i −0.778396 0.627773i \(-0.783966\pi\)
0.627773 + 0.778396i \(0.283966\pi\)
\(774\) −10.1311 + 3.29180i −0.364155 + 0.118321i
\(775\) 0 0
\(776\) −0.763932 0.555029i −0.0274236 0.0199244i
\(777\) −11.7082 + 11.7082i −0.420029 + 0.420029i
\(778\) −29.8932 15.2314i −1.07172 0.546071i
\(779\) 15.4164i 0.552350i
\(780\) 0 0
\(781\) 8.71851i 0.311973i
\(782\) −3.37540 + 6.62460i −0.120704 + 0.236895i
\(783\) 1.79611 1.79611i 0.0641878 0.0641878i
\(784\) 16.1150 + 5.23607i 0.575534 + 0.187002i
\(785\) 0 0
\(786\) −0.291796 0.898056i −0.0104080 0.0320326i
\(787\) −11.1459 + 11.1459i −0.397308 + 0.397308i −0.877283 0.479974i \(-0.840646\pi\)
0.479974 + 0.877283i \(0.340646\pi\)
\(788\) −0.964406 + 6.08902i −0.0343555 + 0.216912i
\(789\) −53.0472 −1.88853
\(790\) 0 0
\(791\) 11.0697i 0.393591i
\(792\) 7.72133 1.22294i 0.274366 0.0434552i
\(793\) −30.6525 30.6525i −1.08850 1.08850i
\(794\) 4.46526 + 13.7426i 0.158466 + 0.487708i
\(795\) 0 0
\(796\) 21.3050 + 29.3238i 0.755134 + 1.03935i
\(797\) 19.7477 + 19.7477i 0.699498 + 0.699498i 0.964302 0.264804i \(-0.0853072\pi\)
−0.264804 + 0.964302i \(0.585307\pi\)
\(798\) 9.58721 + 4.88493i 0.339384 + 0.172925i
\(799\) −14.6619 −0.518700
\(800\) 0 0
\(801\) −14.4721 −0.511348
\(802\) 4.89985 + 2.49660i 0.173020 + 0.0881580i
\(803\) −10.7639 10.7639i −0.379851 0.379851i
\(804\) 9.06154 + 12.4721i 0.319576 + 0.439858i
\(805\) 0 0
\(806\) −10.0000 30.7768i −0.352235 1.08407i
\(807\) 28.9807 + 28.9807i 1.02017 + 1.02017i
\(808\) −34.3913 + 5.44705i −1.20988 + 0.191627i
\(809\) 12.9443i 0.455096i −0.973767 0.227548i \(-0.926929\pi\)
0.973767 0.227548i \(-0.0730709\pi\)
\(810\) 0 0
\(811\) −32.0689 −1.12609 −0.563045 0.826426i \(-0.690370\pi\)
−0.563045 + 0.826426i \(0.690370\pi\)
\(812\) −0.755818 + 4.77205i −0.0265240 + 0.167466i
\(813\) 51.2511 51.2511i 1.79745 1.79745i
\(814\) −2.35114 7.23607i −0.0824074 0.253624i
\(815\) 0 0
\(816\) −4.00000 + 12.3107i −0.140028 + 0.430962i
\(817\) 4.76393 4.76393i 0.166669 0.166669i
\(818\) −17.7182 + 34.7739i −0.619502 + 1.21584i
\(819\) 16.1803i 0.565387i
\(820\) 0 0
\(821\) 20.4742i 0.714555i −0.933998 0.357278i \(-0.883705\pi\)
0.933998 0.357278i \(-0.116295\pi\)
\(822\) 14.1583 + 7.21400i 0.493826 + 0.251617i
\(823\) 24.3440 24.3440i 0.848577 0.848577i −0.141379 0.989956i \(-0.545154\pi\)
0.989956 + 0.141379i \(0.0451535\pi\)
\(824\) −23.7234 17.2361i −0.826444 0.600447i
\(825\) 0 0
\(826\) −18.9443 + 6.15537i −0.659156 + 0.214173i
\(827\) −14.8541 + 14.8541i −0.516528 + 0.516528i −0.916519 0.399991i \(-0.869013\pi\)
0.399991 + 0.916519i \(0.369013\pi\)
\(828\) −2.60074 + 16.4204i −0.0903818 + 0.570648i
\(829\) −3.11817 −0.108299 −0.0541493 0.998533i \(-0.517245\pi\)
−0.0541493 + 0.998533i \(0.517245\pi\)
\(830\) 0 0
\(831\) 7.05342i 0.244681i
\(832\) 15.8080 31.0249i 0.548042 1.07559i
\(833\) −4.23607 4.23607i −0.146771 0.146771i
\(834\) 16.6700 5.41641i 0.577235 0.187555i
\(835\) 0 0
\(836\) −4.00000 + 2.90617i −0.138343 + 0.100512i
\(837\) −6.49839 6.49839i −0.224617 0.224617i
\(838\) −15.9436 + 31.2912i −0.550764 + 1.08094i
\(839\) 9.40456 0.324682 0.162341 0.986735i \(-0.448096\pi\)
0.162341 + 0.986735i \(0.448096\pi\)
\(840\) 0 0
\(841\) −26.8885 −0.927191
\(842\) 2.22223 4.36137i 0.0765830 0.150303i
\(843\) 6.00000 + 6.00000i 0.206651 + 0.206651i
\(844\) 18.4661 + 25.4164i 0.635629 + 0.874869i
\(845\) 0 0
\(846\) −31.1803 + 10.1311i −1.07200 + 0.348315i
\(847\) −11.1352 11.1352i −0.382609 0.382609i
\(848\) −1.86588 3.66199i −0.0640744 0.125753i
\(849\) 50.5410i 1.73456i
\(850\) 0 0
\(851\) 16.1803 0.554655
\(852\) 31.8825 + 5.04969i 1.09228 + 0.173000i
\(853\) −24.7930 + 24.7930i −0.848896 + 0.848896i −0.989995 0.141100i \(-0.954936\pi\)
0.141100 + 0.989995i \(0.454936\pi\)
\(854\) 22.2703 7.23607i 0.762075 0.247613i
\(855\) 0 0
\(856\) 39.1246 + 28.4257i 1.33725 + 0.971570i
\(857\) 17.8328 17.8328i 0.609157 0.609157i −0.333568 0.942726i \(-0.608253\pi\)
0.942726 + 0.333568i \(0.108253\pi\)
\(858\) 15.5124 + 7.90398i 0.529586 + 0.269837i
\(859\) 7.52786i 0.256847i 0.991719 + 0.128424i \(0.0409917\pi\)
−0.991719 + 0.128424i \(0.959008\pi\)
\(860\) 0 0
\(861\) 29.3238i 0.999351i
\(862\) 7.54763 14.8131i 0.257073 0.504535i
\(863\) 6.22088 6.22088i 0.211761 0.211761i −0.593254 0.805015i \(-0.702157\pi\)
0.805015 + 0.593254i \(0.202157\pi\)
\(864\) 9.88854i 0.336415i
\(865\) 0 0
\(866\) 14.3262 + 44.0916i 0.486825 + 1.49829i
\(867\) −24.2705 + 24.2705i −0.824270 + 0.824270i
\(868\) 17.2654 + 2.73457i 0.586027 + 0.0928175i
\(869\) 15.2169 0.516198
\(870\) 0 0
\(871\) 14.6619i 0.496799i
\(872\) 2.96911 + 18.7462i 0.100547 + 0.634826i
\(873\) 0.527864 + 0.527864i 0.0178655 + 0.0178655i
\(874\) −3.24920 10.0000i −0.109906 0.338255i
\(875\) 0 0
\(876\) 45.5967 33.1280i 1.54057 1.11929i
\(877\) −5.08580 5.08580i −0.171735 0.171735i 0.616006 0.787741i \(-0.288750\pi\)
−0.787741 + 0.616006i \(0.788750\pi\)
\(878\) 14.1137 + 7.19128i 0.476313 + 0.242694i
\(879\) 2.35114 0.0793020
\(880\) 0 0
\(881\) 47.1246 1.58767 0.793834 0.608134i \(-0.208082\pi\)
0.793834 + 0.608134i \(0.208082\pi\)
\(882\) −11.9356 6.08149i −0.401892 0.204774i
\(883\) −21.7984 21.7984i −0.733574 0.733574i 0.237752 0.971326i \(-0.423589\pi\)
−0.971326 + 0.237752i \(0.923589\pi\)
\(884\) −9.95959 + 7.23607i −0.334977 + 0.243375i
\(885\) 0 0
\(886\) 6.23607 + 19.1926i 0.209505 + 0.644789i
\(887\) −28.1482 28.1482i −0.945123 0.945123i 0.0534473 0.998571i \(-0.482979\pi\)
−0.998571 + 0.0534473i \(0.982979\pi\)
\(888\) 27.8232 4.40676i 0.933684 0.147881i
\(889\) 20.6525i 0.692662i
\(890\) 0 0
\(891\) 13.2361 0.443425
\(892\) 4.83461 + 0.765727i 0.161875 + 0.0256384i
\(893\) 14.6619 14.6619i 0.490641 0.490641i
\(894\) 13.2088 + 40.6525i 0.441768 + 1.35962i
\(895\) 0 0
\(896\) 11.0557 + 15.2169i 0.369346 + 0.508361i
\(897\) −26.1803 + 26.1803i −0.874136 + 0.874136i
\(898\) 20.2864 39.8142i 0.676965 1.32862i
\(899\) 7.63932i 0.254786i
\(900\) 0 0
\(901\) 1.45309i 0.0484093i
\(902\) 12.0058 + 6.11727i 0.399750 + 0.203683i
\(903\) 9.06154 9.06154i 0.301549 0.301549i
\(904\) 11.0697 15.2361i 0.368171 0.506744i
\(905\) 0 0
\(906\) 45.1246 14.6619i 1.49916 0.487108i
\(907\) 23.3262 23.3262i 0.774535 0.774535i −0.204361 0.978896i \(-0.565512\pi\)
0.978896 + 0.204361i \(0.0655115\pi\)
\(908\) 32.4562 + 5.14056i 1.07710 + 0.170595i
\(909\) 27.5276 0.913034
\(910\) 0 0
\(911\) 25.1765i 0.834135i 0.908876 + 0.417067i \(0.136942\pi\)
−0.908876 + 0.417067i \(0.863058\pi\)
\(912\) −8.31073 16.3107i −0.275196 0.540102i
\(913\) 5.41641 + 5.41641i 0.179257 + 0.179257i
\(914\) −41.1855 + 13.3820i −1.36229 + 0.442636i
\(915\) 0 0
\(916\) −25.1246 34.5811i −0.830141 1.14259i
\(917\) 0.343027 + 0.343027i 0.0113277 + 0.0113277i
\(918\) −1.58721 + 3.11507i −0.0523857 + 0.102813i
\(919\) 21.7153 0.716322 0.358161 0.933660i \(-0.383404\pi\)
0.358161 + 0.933660i \(0.383404\pi\)
\(920\) 0 0
\(921\) −21.2361 −0.699752
\(922\) 4.17223 8.18845i 0.137405 0.269672i
\(923\) 21.7082 + 21.7082i 0.714534 + 0.714534i
\(924\) −7.60845 + 5.52786i −0.250300 + 0.181853i
\(925\) 0 0
\(926\) 32.8885 10.6861i 1.08078 0.351168i
\(927\) 16.3925 + 16.3925i 0.538400 + 0.538400i
\(928\) 5.81234 5.81234i 0.190799 0.190799i
\(929\) 5.34752i 0.175447i 0.996145 + 0.0877233i \(0.0279591\pi\)
−0.996145 + 0.0877233i \(0.972041\pi\)
\(930\) 0 0
\(931\) 8.47214 0.277663
\(932\) −1.53629 + 9.69977i −0.0503230 + 0.317727i
\(933\) 13.2088 13.2088i 0.432436 0.432436i
\(934\) −5.08580 + 1.65248i −0.166412 + 0.0540707i
\(935\) 0 0
\(936\) −16.1803 + 22.2703i −0.528871 + 0.727928i
\(937\) −20.3050 + 20.3050i −0.663334 + 0.663334i −0.956164 0.292831i \(-0.905403\pi\)
0.292831 + 0.956164i \(0.405403\pi\)
\(938\) −7.05684 3.59564i −0.230414 0.117402i
\(939\) 20.1803i 0.658561i
\(940\) 0 0
\(941\) 60.8676i 1.98423i 0.125340 + 0.992114i \(0.459998\pi\)
−0.125340 + 0.992114i \(0.540002\pi\)
\(942\) −20.3365 + 39.9127i −0.662600 + 1.30043i
\(943\) −20.2622 + 20.2622i −0.659828 + 0.659828i
\(944\) 32.2299 + 10.4721i 1.04899 + 0.340839i
\(945\) 0 0
\(946\) 1.81966 + 5.60034i 0.0591623 + 0.182083i
\(947\) 8.85410 8.85410i 0.287720 0.287720i −0.548458 0.836178i \(-0.684785\pi\)
0.836178 + 0.548458i \(0.184785\pi\)
\(948\) −8.81351 + 55.6463i −0.286250 + 1.80731i
\(949\) 53.6022 1.74000
\(950\) 0 0
\(951\) 34.5811i 1.12137i
\(952\) −1.04029 6.56816i −0.0337161 0.212875i
\(953\) 6.81966 + 6.81966i 0.220910 + 0.220910i 0.808882 0.587971i \(-0.200073\pi\)
−0.587971 + 0.808882i \(0.700073\pi\)
\(954\) 1.00406 + 3.09017i 0.0325075 + 0.100048i
\(955\) 0 0
\(956\) −34.4721 47.4468i −1.11491 1.53454i
\(957\) 2.90617 + 2.90617i 0.0939431 + 0.0939431i
\(958\) −9.58721 4.88493i −0.309749 0.157825i
\(959\) −8.16348 −0.263613
\(960\) 0 0
\(961\) 3.36068 0.108409
\(962\) 23.8712 + 12.1630i 0.769638 + 0.392150i
\(963\) −27.0344 27.0344i −0.871173 0.871173i
\(964\) 7.95148 + 10.9443i 0.256100 + 0.352491i
\(965\) 0 0
\(966\) −6.18034 19.0211i −0.198849 0.611995i
\(967\) −12.0332 12.0332i −0.386962 0.386962i 0.486640 0.873602i \(-0.338222\pi\)
−0.873602 + 0.486640i \(0.838222\pi\)
\(968\) 4.19107 + 26.4614i 0.134706 + 0.850502i
\(969\) 6.47214i 0.207915i
\(970\) 0 0
\(971\) 33.5967 1.07817 0.539085 0.842251i \(-0.318770\pi\)
0.539085 + 0.842251i \(0.318770\pi\)
\(972\) −6.02548 + 38.0434i −0.193267 + 1.22024i
\(973\) −6.36737 + 6.36737i −0.204128 + 0.204128i
\(974\) 5.77185 + 17.7639i 0.184942 + 0.569193i
\(975\) 0 0
\(976\) −37.8885 12.3107i −1.21278 0.394057i
\(977\) 28.2361 28.2361i 0.903352 0.903352i −0.0923727 0.995725i \(-0.529445\pi\)
0.995725 + 0.0923727i \(0.0294451\pi\)
\(978\) 14.8469 29.1387i 0.474752 0.931753i
\(979\) 8.00000i 0.255681i
\(980\) 0 0
\(981\) 15.0049i 0.479070i
\(982\) 13.5633 + 6.91087i 0.432824 + 0.220535i
\(983\) 0.620541 0.620541i 0.0197922 0.0197922i −0.697141 0.716934i \(-0.745545\pi\)
0.716934 + 0.697141i \(0.245545\pi\)
\(984\) −29.3238 + 40.3607i −0.934807 + 1.28665i
\(985\) 0 0
\(986\) −2.76393 + 0.898056i −0.0880215 + 0.0285999i
\(987\) 27.8885 27.8885i 0.887702 0.887702i
\(988\) 2.72353 17.1957i 0.0866469 0.547067i
\(989\) −12.5227 −0.398200
\(990\) 0 0
\(991\) 19.3642i 0.615123i −0.951528 0.307561i \(-0.900487\pi\)
0.951528 0.307561i \(-0.0995129\pi\)
\(992\) −21.0292 21.0292i −0.667679 0.667679i
\(993\) 45.4164 + 45.4164i 1.44125 + 1.44125i
\(994\) −15.7719 + 5.12461i −0.500255 + 0.162543i
\(995\) 0 0
\(996\) −22.9443 + 16.6700i −0.727017 + 0.528209i
\(997\) 35.6506 + 35.6506i 1.12907 + 1.12907i 0.990329 + 0.138738i \(0.0443045\pi\)
0.138738 + 0.990329i \(0.455696\pi\)
\(998\) 15.3374 30.1013i 0.485497 0.952841i
\(999\) 7.60845 0.240721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.2.k.h.43.1 8
4.3 odd 2 800.2.o.g.143.1 8
5.2 odd 4 inner 200.2.k.h.107.3 8
5.3 odd 4 40.2.k.a.27.2 yes 8
5.4 even 2 40.2.k.a.3.4 yes 8
8.3 odd 2 inner 200.2.k.h.43.3 8
8.5 even 2 800.2.o.g.143.2 8
15.8 even 4 360.2.w.c.307.3 8
15.14 odd 2 360.2.w.c.163.1 8
20.3 even 4 160.2.o.a.47.4 8
20.7 even 4 800.2.o.g.207.2 8
20.19 odd 2 160.2.o.a.143.3 8
40.3 even 4 40.2.k.a.27.4 yes 8
40.13 odd 4 160.2.o.a.47.3 8
40.19 odd 2 40.2.k.a.3.2 8
40.27 even 4 inner 200.2.k.h.107.1 8
40.29 even 2 160.2.o.a.143.4 8
40.37 odd 4 800.2.o.g.207.1 8
60.23 odd 4 1440.2.bi.c.847.1 8
60.59 even 2 1440.2.bi.c.1423.4 8
80.3 even 4 1280.2.n.q.767.4 8
80.13 odd 4 1280.2.n.m.767.2 8
80.19 odd 4 1280.2.n.m.1023.2 8
80.29 even 4 1280.2.n.q.1023.4 8
80.43 even 4 1280.2.n.m.767.1 8
80.53 odd 4 1280.2.n.q.767.3 8
80.59 odd 4 1280.2.n.q.1023.3 8
80.69 even 4 1280.2.n.m.1023.1 8
120.29 odd 2 1440.2.bi.c.1423.1 8
120.53 even 4 1440.2.bi.c.847.4 8
120.59 even 2 360.2.w.c.163.3 8
120.83 odd 4 360.2.w.c.307.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.k.a.3.2 8 40.19 odd 2
40.2.k.a.3.4 yes 8 5.4 even 2
40.2.k.a.27.2 yes 8 5.3 odd 4
40.2.k.a.27.4 yes 8 40.3 even 4
160.2.o.a.47.3 8 40.13 odd 4
160.2.o.a.47.4 8 20.3 even 4
160.2.o.a.143.3 8 20.19 odd 2
160.2.o.a.143.4 8 40.29 even 2
200.2.k.h.43.1 8 1.1 even 1 trivial
200.2.k.h.43.3 8 8.3 odd 2 inner
200.2.k.h.107.1 8 40.27 even 4 inner
200.2.k.h.107.3 8 5.2 odd 4 inner
360.2.w.c.163.1 8 15.14 odd 2
360.2.w.c.163.3 8 120.59 even 2
360.2.w.c.307.1 8 120.83 odd 4
360.2.w.c.307.3 8 15.8 even 4
800.2.o.g.143.1 8 4.3 odd 2
800.2.o.g.143.2 8 8.5 even 2
800.2.o.g.207.1 8 40.37 odd 4
800.2.o.g.207.2 8 20.7 even 4
1280.2.n.m.767.1 8 80.43 even 4
1280.2.n.m.767.2 8 80.13 odd 4
1280.2.n.m.1023.1 8 80.69 even 4
1280.2.n.m.1023.2 8 80.19 odd 4
1280.2.n.q.767.3 8 80.53 odd 4
1280.2.n.q.767.4 8 80.3 even 4
1280.2.n.q.1023.3 8 80.59 odd 4
1280.2.n.q.1023.4 8 80.29 even 4
1440.2.bi.c.847.1 8 60.23 odd 4
1440.2.bi.c.847.4 8 120.53 even 4
1440.2.bi.c.1423.1 8 120.29 odd 2
1440.2.bi.c.1423.4 8 60.59 even 2