Properties

Label 200.2.k.h.107.3
Level $200$
Weight $2$
Character 200.107
Analytic conductor $1.597$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(43,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 107.3
Root \(-0.587785 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 200.107
Dual form 200.2.k.h.43.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.642040 - 1.26007i) q^{2} +(1.61803 - 1.61803i) q^{3} +(-1.17557 - 1.61803i) q^{4} +(-1.00000 - 3.07768i) q^{6} +(-1.17557 + 1.17557i) q^{7} +(-2.79360 + 0.442463i) q^{8} -2.23607i q^{9} +1.23607 q^{11} +(-4.52015 - 0.715921i) q^{12} +(3.07768 + 3.07768i) q^{13} +(0.726543 + 2.23607i) q^{14} +(-1.23607 + 3.80423i) q^{16} +(1.00000 + 1.00000i) q^{17} +(-2.81761 - 1.43564i) q^{18} -2.00000i q^{19} +3.80423i q^{21} +(0.793604 - 1.55754i) q^{22} +(-2.62866 - 2.62866i) q^{23} +(-3.80423 + 5.23607i) q^{24} +(5.85410 - 1.90211i) q^{26} +(1.23607 + 1.23607i) q^{27} +(3.28408 + 0.520147i) q^{28} -1.45309 q^{29} -5.25731i q^{31} +(4.00000 + 4.00000i) q^{32} +(2.00000 - 2.00000i) q^{33} +(1.90211 - 0.618034i) q^{34} +(-3.61803 + 2.62866i) q^{36} +(-3.07768 + 3.07768i) q^{37} +(-2.52015 - 1.28408i) q^{38} +9.95959 q^{39} -7.70820 q^{41} +(4.79360 + 2.44246i) q^{42} +(-2.38197 + 2.38197i) q^{43} +(-1.45309 - 2.00000i) q^{44} +(-5.00000 + 1.62460i) q^{46} +(7.33094 - 7.33094i) q^{47} +(4.15537 + 8.15537i) q^{48} +4.23607i q^{49} +3.23607 q^{51} +(1.36176 - 8.59783i) q^{52} +(0.726543 + 0.726543i) q^{53} +(2.35114 - 0.763932i) q^{54} +(2.76393 - 3.80423i) q^{56} +(-3.23607 - 3.23607i) q^{57} +(-0.932938 + 1.83099i) q^{58} +8.47214i q^{59} +9.95959i q^{61} +(-6.62460 - 3.37540i) q^{62} +(2.62866 + 2.62866i) q^{63} +(7.60845 - 2.47214i) q^{64} +(-1.23607 - 3.80423i) q^{66} +(2.38197 + 2.38197i) q^{67} +(0.442463 - 2.79360i) q^{68} -8.50651 q^{69} -7.05342i q^{71} +(0.989378 + 6.24669i) q^{72} +(-8.70820 + 8.70820i) q^{73} +(1.90211 + 5.85410i) q^{74} +(-3.23607 + 2.35114i) q^{76} +(-1.45309 + 1.45309i) q^{77} +(6.39445 - 12.5498i) q^{78} -12.3107 q^{79} +10.7082 q^{81} +(-4.94897 + 9.71290i) q^{82} +(4.38197 - 4.38197i) q^{83} +(6.15537 - 4.47214i) q^{84} +(1.47214 + 4.53077i) q^{86} +(-2.35114 + 2.35114i) q^{87} +(-3.45309 + 0.546915i) q^{88} -6.47214i q^{89} -7.23607 q^{91} +(-1.16308 + 7.34342i) q^{92} +(-8.50651 - 8.50651i) q^{93} +(-4.53077 - 13.9443i) q^{94} +12.9443 q^{96} +(0.236068 + 0.236068i) q^{97} +(5.33776 + 2.71972i) q^{98} -2.76393i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 4 q^{3} - 8 q^{6} - 4 q^{8} - 8 q^{11} - 12 q^{12} + 8 q^{16} + 8 q^{17} - 10 q^{18} - 12 q^{22} + 20 q^{26} - 8 q^{27} + 20 q^{28} + 32 q^{32} + 16 q^{33} - 20 q^{36} + 4 q^{38} - 8 q^{41}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.642040 1.26007i 0.453990 0.891007i
\(3\) 1.61803 1.61803i 0.934172 0.934172i −0.0637909 0.997963i \(-0.520319\pi\)
0.997963 + 0.0637909i \(0.0203191\pi\)
\(4\) −1.17557 1.61803i −0.587785 0.809017i
\(5\) 0 0
\(6\) −1.00000 3.07768i −0.408248 1.25646i
\(7\) −1.17557 + 1.17557i −0.444324 + 0.444324i −0.893462 0.449138i \(-0.851731\pi\)
0.449138 + 0.893462i \(0.351731\pi\)
\(8\) −2.79360 + 0.442463i −0.987688 + 0.156434i
\(9\) 2.23607i 0.745356i
\(10\) 0 0
\(11\) 1.23607 0.372689 0.186344 0.982485i \(-0.440336\pi\)
0.186344 + 0.982485i \(0.440336\pi\)
\(12\) −4.52015 0.715921i −1.30485 0.206669i
\(13\) 3.07768 + 3.07768i 0.853596 + 0.853596i 0.990574 0.136978i \(-0.0437390\pi\)
−0.136978 + 0.990574i \(0.543739\pi\)
\(14\) 0.726543 + 2.23607i 0.194177 + 0.597614i
\(15\) 0 0
\(16\) −1.23607 + 3.80423i −0.309017 + 0.951057i
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) −2.81761 1.43564i −0.664117 0.338385i
\(19\) 2.00000i 0.458831i −0.973329 0.229416i \(-0.926318\pi\)
0.973329 0.229416i \(-0.0736815\pi\)
\(20\) 0 0
\(21\) 3.80423i 0.830150i
\(22\) 0.793604 1.55754i 0.169197 0.332068i
\(23\) −2.62866 2.62866i −0.548113 0.548113i 0.377782 0.925895i \(-0.376687\pi\)
−0.925895 + 0.377782i \(0.876687\pi\)
\(24\) −3.80423 + 5.23607i −0.776534 + 1.06881i
\(25\) 0 0
\(26\) 5.85410 1.90211i 1.14808 0.373035i
\(27\) 1.23607 + 1.23607i 0.237881 + 0.237881i
\(28\) 3.28408 + 0.520147i 0.620633 + 0.0982985i
\(29\) −1.45309 −0.269831 −0.134916 0.990857i \(-0.543076\pi\)
−0.134916 + 0.990857i \(0.543076\pi\)
\(30\) 0 0
\(31\) 5.25731i 0.944241i −0.881534 0.472120i \(-0.843489\pi\)
0.881534 0.472120i \(-0.156511\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 2.00000 2.00000i 0.348155 0.348155i
\(34\) 1.90211 0.618034i 0.326210 0.105992i
\(35\) 0 0
\(36\) −3.61803 + 2.62866i −0.603006 + 0.438109i
\(37\) −3.07768 + 3.07768i −0.505968 + 0.505968i −0.913286 0.407318i \(-0.866464\pi\)
0.407318 + 0.913286i \(0.366464\pi\)
\(38\) −2.52015 1.28408i −0.408822 0.208305i
\(39\) 9.95959 1.59481
\(40\) 0 0
\(41\) −7.70820 −1.20382 −0.601910 0.798564i \(-0.705593\pi\)
−0.601910 + 0.798564i \(0.705593\pi\)
\(42\) 4.79360 + 2.44246i 0.739669 + 0.376880i
\(43\) −2.38197 + 2.38197i −0.363246 + 0.363246i −0.865007 0.501760i \(-0.832686\pi\)
0.501760 + 0.865007i \(0.332686\pi\)
\(44\) −1.45309 2.00000i −0.219061 0.301511i
\(45\) 0 0
\(46\) −5.00000 + 1.62460i −0.737210 + 0.239534i
\(47\) 7.33094 7.33094i 1.06933 1.06933i 0.0719165 0.997411i \(-0.477088\pi\)
0.997411 0.0719165i \(-0.0229115\pi\)
\(48\) 4.15537 + 8.15537i 0.599776 + 1.17713i
\(49\) 4.23607i 0.605153i
\(50\) 0 0
\(51\) 3.23607 0.453140
\(52\) 1.36176 8.59783i 0.188842 1.19230i
\(53\) 0.726543 + 0.726543i 0.0997983 + 0.0997983i 0.755243 0.655445i \(-0.227519\pi\)
−0.655445 + 0.755243i \(0.727519\pi\)
\(54\) 2.35114 0.763932i 0.319950 0.103958i
\(55\) 0 0
\(56\) 2.76393 3.80423i 0.369346 0.508361i
\(57\) −3.23607 3.23607i −0.428628 0.428628i
\(58\) −0.932938 + 1.83099i −0.122501 + 0.240421i
\(59\) 8.47214i 1.10298i 0.834182 + 0.551489i \(0.185940\pi\)
−0.834182 + 0.551489i \(0.814060\pi\)
\(60\) 0 0
\(61\) 9.95959i 1.27520i 0.770370 + 0.637598i \(0.220072\pi\)
−0.770370 + 0.637598i \(0.779928\pi\)
\(62\) −6.62460 3.37540i −0.841325 0.428676i
\(63\) 2.62866 + 2.62866i 0.331179 + 0.331179i
\(64\) 7.60845 2.47214i 0.951057 0.309017i
\(65\) 0 0
\(66\) −1.23607 3.80423i −0.152149 0.468268i
\(67\) 2.38197 + 2.38197i 0.291003 + 0.291003i 0.837477 0.546473i \(-0.184030\pi\)
−0.546473 + 0.837477i \(0.684030\pi\)
\(68\) 0.442463 2.79360i 0.0536566 0.338774i
\(69\) −8.50651 −1.02406
\(70\) 0 0
\(71\) 7.05342i 0.837087i −0.908197 0.418544i \(-0.862541\pi\)
0.908197 0.418544i \(-0.137459\pi\)
\(72\) 0.989378 + 6.24669i 0.116599 + 0.736179i
\(73\) −8.70820 + 8.70820i −1.01922 + 1.01922i −0.0194065 + 0.999812i \(0.506178\pi\)
−0.999812 + 0.0194065i \(0.993822\pi\)
\(74\) 1.90211 + 5.85410i 0.221116 + 0.680526i
\(75\) 0 0
\(76\) −3.23607 + 2.35114i −0.371202 + 0.269694i
\(77\) −1.45309 + 1.45309i −0.165594 + 0.165594i
\(78\) 6.39445 12.5498i 0.724029 1.42099i
\(79\) −12.3107 −1.38507 −0.692533 0.721386i \(-0.743505\pi\)
−0.692533 + 0.721386i \(0.743505\pi\)
\(80\) 0 0
\(81\) 10.7082 1.18980
\(82\) −4.94897 + 9.71290i −0.546522 + 1.07261i
\(83\) 4.38197 4.38197i 0.480983 0.480983i −0.424462 0.905446i \(-0.639537\pi\)
0.905446 + 0.424462i \(0.139537\pi\)
\(84\) 6.15537 4.47214i 0.671606 0.487950i
\(85\) 0 0
\(86\) 1.47214 + 4.53077i 0.158745 + 0.488565i
\(87\) −2.35114 + 2.35114i −0.252069 + 0.252069i
\(88\) −3.45309 + 0.546915i −0.368100 + 0.0583013i
\(89\) 6.47214i 0.686045i −0.939327 0.343023i \(-0.888549\pi\)
0.939327 0.343023i \(-0.111451\pi\)
\(90\) 0 0
\(91\) −7.23607 −0.758546
\(92\) −1.16308 + 7.34342i −0.121260 + 0.765605i
\(93\) −8.50651 8.50651i −0.882084 0.882084i
\(94\) −4.53077 13.9443i −0.467313 1.43824i
\(95\) 0 0
\(96\) 12.9443 1.32112
\(97\) 0.236068 + 0.236068i 0.0239691 + 0.0239691i 0.718990 0.695021i \(-0.244605\pi\)
−0.695021 + 0.718990i \(0.744605\pi\)
\(98\) 5.33776 + 2.71972i 0.539195 + 0.274734i
\(99\) 2.76393i 0.277786i
\(100\) 0 0
\(101\) 12.3107i 1.22496i −0.790485 0.612482i \(-0.790171\pi\)
0.790485 0.612482i \(-0.209829\pi\)
\(102\) 2.07768 4.07768i 0.205721 0.403751i
\(103\) −7.33094 7.33094i −0.722339 0.722339i 0.246742 0.969081i \(-0.420640\pi\)
−0.969081 + 0.246742i \(0.920640\pi\)
\(104\) −9.95959 7.23607i −0.976618 0.709555i
\(105\) 0 0
\(106\) 1.38197 0.449028i 0.134228 0.0436135i
\(107\) −12.0902 12.0902i −1.16880 1.16880i −0.982491 0.186310i \(-0.940347\pi\)
−0.186310 0.982491i \(-0.559653\pi\)
\(108\) 0.546915 3.45309i 0.0526269 0.332273i
\(109\) 6.71040 0.642739 0.321370 0.946954i \(-0.395857\pi\)
0.321370 + 0.946954i \(0.395857\pi\)
\(110\) 0 0
\(111\) 9.95959i 0.945323i
\(112\) −3.01905 5.92522i −0.285273 0.559881i
\(113\) 4.70820 4.70820i 0.442911 0.442911i −0.450078 0.892989i \(-0.648604\pi\)
0.892989 + 0.450078i \(0.148604\pi\)
\(114\) −6.15537 + 2.00000i −0.576503 + 0.187317i
\(115\) 0 0
\(116\) 1.70820 + 2.35114i 0.158603 + 0.218298i
\(117\) 6.88191 6.88191i 0.636233 0.636233i
\(118\) 10.6755 + 5.43945i 0.982761 + 0.500742i
\(119\) −2.35114 −0.215529
\(120\) 0 0
\(121\) −9.47214 −0.861103
\(122\) 12.5498 + 6.39445i 1.13621 + 0.578927i
\(123\) −12.4721 + 12.4721i −1.12457 + 1.12457i
\(124\) −8.50651 + 6.18034i −0.763907 + 0.555011i
\(125\) 0 0
\(126\) 5.00000 1.62460i 0.445435 0.144731i
\(127\) −8.78402 + 8.78402i −0.779456 + 0.779456i −0.979738 0.200282i \(-0.935814\pi\)
0.200282 + 0.979738i \(0.435814\pi\)
\(128\) 1.76985 11.1744i 0.156434 0.987688i
\(129\) 7.70820i 0.678670i
\(130\) 0 0
\(131\) 0.291796 0.0254943 0.0127472 0.999919i \(-0.495942\pi\)
0.0127472 + 0.999919i \(0.495942\pi\)
\(132\) −5.58721 0.884927i −0.486304 0.0770230i
\(133\) 2.35114 + 2.35114i 0.203870 + 0.203870i
\(134\) 4.53077 1.47214i 0.391399 0.127173i
\(135\) 0 0
\(136\) −3.23607 2.35114i −0.277491 0.201609i
\(137\) −3.47214 3.47214i −0.296645 0.296645i 0.543054 0.839698i \(-0.317268\pi\)
−0.839698 + 0.543054i \(0.817268\pi\)
\(138\) −5.46151 + 10.7188i −0.464915 + 0.912447i
\(139\) 5.41641i 0.459414i −0.973260 0.229707i \(-0.926223\pi\)
0.973260 0.229707i \(-0.0737767\pi\)
\(140\) 0 0
\(141\) 23.7234i 1.99787i
\(142\) −8.88783 4.52858i −0.745850 0.380030i
\(143\) 3.80423 + 3.80423i 0.318125 + 0.318125i
\(144\) 8.50651 + 2.76393i 0.708876 + 0.230328i
\(145\) 0 0
\(146\) 5.38197 + 16.5640i 0.445415 + 1.37085i
\(147\) 6.85410 + 6.85410i 0.565317 + 0.565317i
\(148\) 8.59783 + 1.36176i 0.706737 + 0.111936i
\(149\) 13.2088 1.08211 0.541053 0.840988i \(-0.318026\pi\)
0.541053 + 0.840988i \(0.318026\pi\)
\(150\) 0 0
\(151\) 14.6619i 1.19317i 0.802551 + 0.596583i \(0.203475\pi\)
−0.802551 + 0.596583i \(0.796525\pi\)
\(152\) 0.884927 + 5.58721i 0.0717771 + 0.453182i
\(153\) 2.23607 2.23607i 0.180775 0.180775i
\(154\) 0.898056 + 2.76393i 0.0723674 + 0.222724i
\(155\) 0 0
\(156\) −11.7082 16.1150i −0.937407 1.29023i
\(157\) 9.78808 9.78808i 0.781174 0.781174i −0.198855 0.980029i \(-0.563722\pi\)
0.980029 + 0.198855i \(0.0637223\pi\)
\(158\) −7.90398 + 15.5124i −0.628807 + 1.23410i
\(159\) 2.35114 0.186458
\(160\) 0 0
\(161\) 6.18034 0.487079
\(162\) 6.87509 13.4931i 0.540158 1.06012i
\(163\) 7.14590 7.14590i 0.559710 0.559710i −0.369515 0.929225i \(-0.620476\pi\)
0.929225 + 0.369515i \(0.120476\pi\)
\(164\) 9.06154 + 12.4721i 0.707587 + 0.973910i
\(165\) 0 0
\(166\) −2.70820 8.33499i −0.210197 0.646921i
\(167\) −0.277515 + 0.277515i −0.0214747 + 0.0214747i −0.717763 0.696288i \(-0.754834\pi\)
0.696288 + 0.717763i \(0.254834\pi\)
\(168\) −1.68323 10.6275i −0.129864 0.819930i
\(169\) 5.94427i 0.457252i
\(170\) 0 0
\(171\) −4.47214 −0.341993
\(172\) 6.65427 + 1.05393i 0.507383 + 0.0803616i
\(173\) 6.32688 + 6.32688i 0.481024 + 0.481024i 0.905459 0.424435i \(-0.139527\pi\)
−0.424435 + 0.905459i \(0.639527\pi\)
\(174\) 1.45309 + 4.47214i 0.110158 + 0.339032i
\(175\) 0 0
\(176\) −1.52786 + 4.70228i −0.115167 + 0.354448i
\(177\) 13.7082 + 13.7082i 1.03037 + 1.03037i
\(178\) −8.15537 4.15537i −0.611271 0.311458i
\(179\) 16.4721i 1.23119i −0.788065 0.615593i \(-0.788917\pi\)
0.788065 0.615593i \(-0.211083\pi\)
\(180\) 0 0
\(181\) 9.40456i 0.699036i 0.936930 + 0.349518i \(0.113655\pi\)
−0.936930 + 0.349518i \(0.886345\pi\)
\(182\) −4.64584 + 9.11798i −0.344373 + 0.675869i
\(183\) 16.1150 + 16.1150i 1.19125 + 1.19125i
\(184\) 8.50651 + 6.18034i 0.627108 + 0.455621i
\(185\) 0 0
\(186\) −16.1803 + 5.25731i −1.18640 + 0.385485i
\(187\) 1.23607 + 1.23607i 0.0903902 + 0.0903902i
\(188\) −20.4797 3.24367i −1.49364 0.236569i
\(189\) −2.90617 −0.211393
\(190\) 0 0
\(191\) 12.8658i 0.930934i 0.885065 + 0.465467i \(0.154114\pi\)
−0.885065 + 0.465467i \(0.845886\pi\)
\(192\) 8.31073 16.3107i 0.599776 1.17713i
\(193\) 7.47214 7.47214i 0.537856 0.537856i −0.385043 0.922899i \(-0.625813\pi\)
0.922899 + 0.385043i \(0.125813\pi\)
\(194\) 0.449028 0.145898i 0.0322383 0.0104749i
\(195\) 0 0
\(196\) 6.85410 4.97980i 0.489579 0.355700i
\(197\) −2.17963 + 2.17963i −0.155292 + 0.155292i −0.780477 0.625185i \(-0.785024\pi\)
0.625185 + 0.780477i \(0.285024\pi\)
\(198\) −3.48276 1.77455i −0.247509 0.126112i
\(199\) −18.1231 −1.28471 −0.642355 0.766407i \(-0.722043\pi\)
−0.642355 + 0.766407i \(0.722043\pi\)
\(200\) 0 0
\(201\) 7.70820 0.543695
\(202\) −15.5124 7.90398i −1.09145 0.556122i
\(203\) 1.70820 1.70820i 0.119892 0.119892i
\(204\) −3.80423 5.23607i −0.266349 0.366598i
\(205\) 0 0
\(206\) −13.9443 + 4.53077i −0.971543 + 0.315674i
\(207\) −5.87785 + 5.87785i −0.408539 + 0.408539i
\(208\) −15.5124 + 7.90398i −1.07559 + 0.548042i
\(209\) 2.47214i 0.171001i
\(210\) 0 0
\(211\) 15.7082 1.08140 0.540699 0.841216i \(-0.318160\pi\)
0.540699 + 0.841216i \(0.318160\pi\)
\(212\) 0.321469 2.02967i 0.0220785 0.139398i
\(213\) −11.4127 11.4127i −0.781984 0.781984i
\(214\) −22.9969 + 7.47214i −1.57203 + 0.510785i
\(215\) 0 0
\(216\) −4.00000 2.90617i −0.272166 0.197740i
\(217\) 6.18034 + 6.18034i 0.419549 + 0.419549i
\(218\) 4.30834 8.45559i 0.291798 0.572685i
\(219\) 28.1803i 1.90425i
\(220\) 0 0
\(221\) 6.15537i 0.414055i
\(222\) 12.5498 + 6.39445i 0.842289 + 0.429168i
\(223\) −1.73060 1.73060i −0.115890 0.115890i 0.646784 0.762673i \(-0.276114\pi\)
−0.762673 + 0.646784i \(0.776114\pi\)
\(224\) −9.40456 −0.628369
\(225\) 0 0
\(226\) −2.90983 8.95554i −0.193559 0.595713i
\(227\) 11.6180 + 11.6180i 0.771116 + 0.771116i 0.978302 0.207186i \(-0.0664304\pi\)
−0.207186 + 0.978302i \(0.566430\pi\)
\(228\) −1.43184 + 9.04029i −0.0948260 + 0.598708i
\(229\) 21.3723 1.41232 0.706160 0.708053i \(-0.250426\pi\)
0.706160 + 0.708053i \(0.250426\pi\)
\(230\) 0 0
\(231\) 4.70228i 0.309387i
\(232\) 4.05934 0.642937i 0.266509 0.0422109i
\(233\) 3.47214 3.47214i 0.227467 0.227467i −0.584167 0.811634i \(-0.698579\pi\)
0.811634 + 0.584167i \(0.198579\pi\)
\(234\) −4.25325 13.0902i −0.278044 0.855731i
\(235\) 0 0
\(236\) 13.7082 9.95959i 0.892328 0.648314i
\(237\) −19.9192 + 19.9192i −1.29389 + 1.29389i
\(238\) −1.50953 + 2.96261i −0.0978480 + 0.192038i
\(239\) 29.3238 1.89680 0.948398 0.317083i \(-0.102703\pi\)
0.948398 + 0.317083i \(0.102703\pi\)
\(240\) 0 0
\(241\) 6.76393 0.435703 0.217852 0.975982i \(-0.430095\pi\)
0.217852 + 0.975982i \(0.430095\pi\)
\(242\) −6.08149 + 11.9356i −0.390933 + 0.767249i
\(243\) 13.6180 13.6180i 0.873597 0.873597i
\(244\) 16.1150 11.7082i 1.03165 0.749541i
\(245\) 0 0
\(246\) 7.70820 + 23.7234i 0.491457 + 1.51255i
\(247\) 6.15537 6.15537i 0.391657 0.391657i
\(248\) 2.32617 + 14.6868i 0.147712 + 0.932616i
\(249\) 14.1803i 0.898643i
\(250\) 0 0
\(251\) −22.1803 −1.40001 −0.700005 0.714138i \(-0.746819\pi\)
−0.700005 + 0.714138i \(0.746819\pi\)
\(252\) 1.16308 7.34342i 0.0732674 0.462592i
\(253\) −3.24920 3.24920i −0.204275 0.204275i
\(254\) 5.42882 + 16.7082i 0.340635 + 1.04837i
\(255\) 0 0
\(256\) −12.9443 9.40456i −0.809017 0.587785i
\(257\) −18.7082 18.7082i −1.16699 1.16699i −0.982913 0.184073i \(-0.941072\pi\)
−0.184073 0.982913i \(-0.558928\pi\)
\(258\) 9.71290 + 4.94897i 0.604699 + 0.308110i
\(259\) 7.23607i 0.449627i
\(260\) 0 0
\(261\) 3.24920i 0.201120i
\(262\) 0.187345 0.367684i 0.0115742 0.0227156i
\(263\) 16.3925 + 16.3925i 1.01080 + 1.01080i 0.999941 + 0.0108623i \(0.00345764\pi\)
0.0108623 + 0.999941i \(0.496542\pi\)
\(264\) −4.70228 + 6.47214i −0.289405 + 0.398332i
\(265\) 0 0
\(266\) 4.47214 1.45309i 0.274204 0.0890944i
\(267\) −10.4721 10.4721i −0.640884 0.640884i
\(268\) 1.05393 6.65427i 0.0643792 0.406474i
\(269\) −17.9111 −1.09206 −0.546029 0.837766i \(-0.683861\pi\)
−0.546029 + 0.837766i \(0.683861\pi\)
\(270\) 0 0
\(271\) 31.6749i 1.92411i −0.272851 0.962056i \(-0.587967\pi\)
0.272851 0.962056i \(-0.412033\pi\)
\(272\) −5.04029 + 2.56816i −0.305613 + 0.155717i
\(273\) −11.7082 + 11.7082i −0.708613 + 0.708613i
\(274\) −6.60440 + 2.14590i −0.398986 + 0.129638i
\(275\) 0 0
\(276\) 10.0000 + 13.7638i 0.601929 + 0.828485i
\(277\) 2.17963 2.17963i 0.130961 0.130961i −0.638588 0.769549i \(-0.720481\pi\)
0.769549 + 0.638588i \(0.220481\pi\)
\(278\) −6.82507 3.47755i −0.409341 0.208569i
\(279\) −11.7557 −0.703796
\(280\) 0 0
\(281\) 3.70820 0.221213 0.110606 0.993864i \(-0.464721\pi\)
0.110606 + 0.993864i \(0.464721\pi\)
\(282\) −29.8932 15.2314i −1.78012 0.907015i
\(283\) −15.6180 + 15.6180i −0.928396 + 0.928396i −0.997602 0.0692066i \(-0.977953\pi\)
0.0692066 + 0.997602i \(0.477953\pi\)
\(284\) −11.4127 + 8.29180i −0.677218 + 0.492028i
\(285\) 0 0
\(286\) 7.23607 2.35114i 0.427878 0.139026i
\(287\) 9.06154 9.06154i 0.534886 0.534886i
\(288\) 8.94427 8.94427i 0.527046 0.527046i
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 0.763932 0.0447825
\(292\) 24.3273 + 3.85306i 1.42365 + 0.225483i
\(293\) −0.726543 0.726543i −0.0424451 0.0424451i 0.685566 0.728011i \(-0.259555\pi\)
−0.728011 + 0.685566i \(0.759555\pi\)
\(294\) 13.0373 4.23607i 0.760349 0.247053i
\(295\) 0 0
\(296\) 7.23607 9.95959i 0.420588 0.578890i
\(297\) 1.52786 + 1.52786i 0.0886557 + 0.0886557i
\(298\) 8.48057 16.6440i 0.491266 0.964164i
\(299\) 16.1803i 0.935733i
\(300\) 0 0
\(301\) 5.60034i 0.322798i
\(302\) 18.4750 + 9.41350i 1.06312 + 0.541686i
\(303\) −19.9192 19.9192i −1.14433 1.14433i
\(304\) 7.60845 + 2.47214i 0.436375 + 0.141787i
\(305\) 0 0
\(306\) −1.38197 4.25325i −0.0790017 0.243142i
\(307\) −6.56231 6.56231i −0.374531 0.374531i 0.494594 0.869124i \(-0.335317\pi\)
−0.869124 + 0.494594i \(0.835317\pi\)
\(308\) 4.05934 + 0.642937i 0.231303 + 0.0366347i
\(309\) −23.7234 −1.34958
\(310\) 0 0
\(311\) 8.16348i 0.462909i −0.972846 0.231454i \(-0.925652\pi\)
0.972846 0.231454i \(-0.0743484\pi\)
\(312\) −27.8232 + 4.40676i −1.57518 + 0.249483i
\(313\) 6.23607 6.23607i 0.352483 0.352483i −0.508549 0.861033i \(-0.669818\pi\)
0.861033 + 0.508549i \(0.169818\pi\)
\(314\) −6.04937 18.6180i −0.341385 1.05068i
\(315\) 0 0
\(316\) 14.4721 + 19.9192i 0.814121 + 1.12054i
\(317\) 10.6861 10.6861i 0.600193 0.600193i −0.340171 0.940364i \(-0.610485\pi\)
0.940364 + 0.340171i \(0.110485\pi\)
\(318\) 1.50953 2.96261i 0.0846500 0.166135i
\(319\) −1.79611 −0.100563
\(320\) 0 0
\(321\) −39.1246 −2.18372
\(322\) 3.96802 7.78768i 0.221129 0.433991i
\(323\) 2.00000 2.00000i 0.111283 0.111283i
\(324\) −12.5882 17.3262i −0.699347 0.962569i
\(325\) 0 0
\(326\) −4.41641 13.5923i −0.244602 0.752808i
\(327\) 10.8576 10.8576i 0.600429 0.600429i
\(328\) 21.5337 3.41060i 1.18900 0.188319i
\(329\) 17.2361i 0.950255i
\(330\) 0 0
\(331\) 28.0689 1.54281 0.771403 0.636347i \(-0.219555\pi\)
0.771403 + 0.636347i \(0.219555\pi\)
\(332\) −12.2415 1.93886i −0.671838 0.106409i
\(333\) 6.88191 + 6.88191i 0.377126 + 0.377126i
\(334\) 0.171513 + 0.527864i 0.00938480 + 0.0288834i
\(335\) 0 0
\(336\) −14.4721 4.70228i −0.789520 0.256531i
\(337\) 2.05573 + 2.05573i 0.111983 + 0.111983i 0.760878 0.648895i \(-0.224769\pi\)
−0.648895 + 0.760878i \(0.724769\pi\)
\(338\) 7.49022 + 3.81646i 0.407414 + 0.207588i
\(339\) 15.2361i 0.827510i
\(340\) 0 0
\(341\) 6.49839i 0.351908i
\(342\) −2.87129 + 5.63522i −0.155261 + 0.304718i
\(343\) −13.2088 13.2088i −0.713208 0.713208i
\(344\) 5.60034 7.70820i 0.301950 0.415599i
\(345\) 0 0
\(346\) 12.0344 3.91023i 0.646976 0.210215i
\(347\) 3.03444 + 3.03444i 0.162897 + 0.162897i 0.783849 0.620952i \(-0.213254\pi\)
−0.620952 + 0.783849i \(0.713254\pi\)
\(348\) 6.56816 + 1.04029i 0.352090 + 0.0557656i
\(349\) 15.5599 0.832904 0.416452 0.909158i \(-0.363273\pi\)
0.416452 + 0.909158i \(0.363273\pi\)
\(350\) 0 0
\(351\) 7.60845i 0.406109i
\(352\) 4.94427 + 4.94427i 0.263531 + 0.263531i
\(353\) −4.41641 + 4.41641i −0.235062 + 0.235062i −0.814802 0.579740i \(-0.803154\pi\)
0.579740 + 0.814802i \(0.303154\pi\)
\(354\) 26.0746 8.47214i 1.38585 0.450289i
\(355\) 0 0
\(356\) −10.4721 + 7.60845i −0.555022 + 0.403247i
\(357\) −3.80423 + 3.80423i −0.201341 + 0.201341i
\(358\) −20.7561 10.5758i −1.09699 0.558946i
\(359\) −1.79611 −0.0947952 −0.0473976 0.998876i \(-0.515093\pi\)
−0.0473976 + 0.998876i \(0.515093\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 11.8504 + 6.03810i 0.622845 + 0.317356i
\(363\) −15.3262 + 15.3262i −0.804419 + 0.804419i
\(364\) 8.50651 + 11.7082i 0.445862 + 0.613677i
\(365\) 0 0
\(366\) 30.6525 9.95959i 1.60223 0.520596i
\(367\) −24.0009 + 24.0009i −1.25284 + 1.25284i −0.298396 + 0.954442i \(0.596452\pi\)
−0.954442 + 0.298396i \(0.903548\pi\)
\(368\) 13.2492 6.75080i 0.690662 0.351910i
\(369\) 17.2361i 0.897274i
\(370\) 0 0
\(371\) −1.70820 −0.0886855
\(372\) −3.76382 + 23.7638i −0.195145 + 1.23210i
\(373\) 15.0454 + 15.0454i 0.779021 + 0.779021i 0.979664 0.200644i \(-0.0643033\pi\)
−0.200644 + 0.979664i \(0.564303\pi\)
\(374\) 2.35114 0.763932i 0.121575 0.0395020i
\(375\) 0 0
\(376\) −17.2361 + 23.7234i −0.888882 + 1.22344i
\(377\) −4.47214 4.47214i −0.230327 0.230327i
\(378\) −1.86588 + 3.66199i −0.0959703 + 0.188352i
\(379\) 35.8885i 1.84347i 0.387820 + 0.921735i \(0.373228\pi\)
−0.387820 + 0.921735i \(0.626772\pi\)
\(380\) 0 0
\(381\) 28.4257i 1.45629i
\(382\) 16.2118 + 8.26033i 0.829468 + 0.422635i
\(383\) −11.1352 11.1352i −0.568980 0.568980i 0.362862 0.931843i \(-0.381799\pi\)
−0.931843 + 0.362862i \(0.881799\pi\)
\(384\) −15.2169 20.9443i −0.776534 1.06881i
\(385\) 0 0
\(386\) −4.61803 14.2128i −0.235052 0.723415i
\(387\) 5.32624 + 5.32624i 0.270748 + 0.270748i
\(388\) 0.104451 0.659481i 0.00530272 0.0334801i
\(389\) −23.7234 −1.20282 −0.601412 0.798939i \(-0.705395\pi\)
−0.601412 + 0.798939i \(0.705395\pi\)
\(390\) 0 0
\(391\) 5.25731i 0.265874i
\(392\) −1.87431 11.8339i −0.0946667 0.597702i
\(393\) 0.472136 0.472136i 0.0238161 0.0238161i
\(394\) 1.34708 + 4.14590i 0.0678651 + 0.208867i
\(395\) 0 0
\(396\) −4.47214 + 3.24920i −0.224733 + 0.163278i
\(397\) 7.22494 7.22494i 0.362609 0.362609i −0.502164 0.864773i \(-0.667462\pi\)
0.864773 + 0.502164i \(0.167462\pi\)
\(398\) −11.6357 + 22.8364i −0.583246 + 1.14469i
\(399\) 7.60845 0.380899
\(400\) 0 0
\(401\) −3.88854 −0.194185 −0.0970923 0.995275i \(-0.530954\pi\)
−0.0970923 + 0.995275i \(0.530954\pi\)
\(402\) 4.94897 9.71290i 0.246832 0.484436i
\(403\) 16.1803 16.1803i 0.806000 0.806000i
\(404\) −19.9192 + 14.4721i −0.991017 + 0.720016i
\(405\) 0 0
\(406\) −1.05573 3.24920i −0.0523949 0.161255i
\(407\) −3.80423 + 3.80423i −0.188568 + 0.188568i
\(408\) −9.04029 + 1.43184i −0.447561 + 0.0708867i
\(409\) 27.5967i 1.36457i 0.731086 + 0.682286i \(0.239014\pi\)
−0.731086 + 0.682286i \(0.760986\pi\)
\(410\) 0 0
\(411\) −11.2361 −0.554234
\(412\) −3.24367 + 20.4797i −0.159804 + 1.00896i
\(413\) −9.95959 9.95959i −0.490080 0.490080i
\(414\) 3.63271 + 11.1803i 0.178538 + 0.549484i
\(415\) 0 0
\(416\) 24.6215i 1.20717i
\(417\) −8.76393 8.76393i −0.429172 0.429172i
\(418\) −3.11507 1.58721i −0.152363 0.0776329i
\(419\) 24.8328i 1.21316i 0.795022 + 0.606581i \(0.207460\pi\)
−0.795022 + 0.606581i \(0.792540\pi\)
\(420\) 0 0
\(421\) 3.46120i 0.168689i 0.996437 + 0.0843443i \(0.0268795\pi\)
−0.996437 + 0.0843443i \(0.973120\pi\)
\(422\) 10.0853 19.7935i 0.490944 0.963532i
\(423\) −16.3925 16.3925i −0.797029 0.797029i
\(424\) −2.35114 1.70820i −0.114182 0.0829577i
\(425\) 0 0
\(426\) −21.7082 + 7.05342i −1.05177 + 0.341739i
\(427\) −11.7082 11.7082i −0.566600 0.566600i
\(428\) −5.34946 + 33.7752i −0.258576 + 1.63258i
\(429\) 12.3107 0.594368
\(430\) 0 0
\(431\) 11.7557i 0.566252i 0.959083 + 0.283126i \(0.0913715\pi\)
−0.959083 + 0.283126i \(0.908628\pi\)
\(432\) −6.23015 + 3.17442i −0.299748 + 0.152729i
\(433\) −23.1803 + 23.1803i −1.11398 + 1.11398i −0.121369 + 0.992608i \(0.538728\pi\)
−0.992608 + 0.121369i \(0.961272\pi\)
\(434\) 11.7557 3.81966i 0.564292 0.183350i
\(435\) 0 0
\(436\) −7.88854 10.8576i −0.377793 0.519987i
\(437\) −5.25731 + 5.25731i −0.251491 + 0.251491i
\(438\) 35.5093 + 18.0929i 1.69670 + 0.864512i
\(439\) 11.2007 0.534579 0.267290 0.963616i \(-0.413872\pi\)
0.267290 + 0.963616i \(0.413872\pi\)
\(440\) 0 0
\(441\) 9.47214 0.451054
\(442\) 7.75621 + 3.95199i 0.368926 + 0.187977i
\(443\) −10.0902 + 10.0902i −0.479398 + 0.479398i −0.904939 0.425541i \(-0.860084\pi\)
0.425541 + 0.904939i \(0.360084\pi\)
\(444\) 16.1150 11.7082i 0.764782 0.555647i
\(445\) 0 0
\(446\) −3.29180 + 1.06957i −0.155871 + 0.0506456i
\(447\) 21.3723 21.3723i 1.01087 1.01087i
\(448\) −6.03810 + 11.8504i −0.285273 + 0.559881i
\(449\) 31.5967i 1.49114i −0.666426 0.745571i \(-0.732177\pi\)
0.666426 0.745571i \(-0.267823\pi\)
\(450\) 0 0
\(451\) −9.52786 −0.448650
\(452\) −13.1529 2.08321i −0.618658 0.0979859i
\(453\) 23.7234 + 23.7234i 1.11462 + 1.11462i
\(454\) 22.0988 7.18034i 1.03715 0.336990i
\(455\) 0 0
\(456\) 10.4721 + 7.60845i 0.490403 + 0.356298i
\(457\) 21.6525 + 21.6525i 1.01286 + 1.01286i 0.999916 + 0.0129439i \(0.00412028\pi\)
0.0129439 + 0.999916i \(0.495880\pi\)
\(458\) 13.7218 26.9306i 0.641180 1.25839i
\(459\) 2.47214i 0.115389i
\(460\) 0 0
\(461\) 6.49839i 0.302660i 0.988483 + 0.151330i \(0.0483557\pi\)
−0.988483 + 0.151330i \(0.951644\pi\)
\(462\) 5.92522 + 3.01905i 0.275666 + 0.140459i
\(463\) 17.2905 + 17.2905i 0.803559 + 0.803559i 0.983650 0.180091i \(-0.0576392\pi\)
−0.180091 + 0.983650i \(0.557639\pi\)
\(464\) 1.79611 5.52786i 0.0833824 0.256625i
\(465\) 0 0
\(466\) −2.14590 6.60440i −0.0994068 0.305943i
\(467\) 2.67376 + 2.67376i 0.123727 + 0.123727i 0.766259 0.642532i \(-0.222116\pi\)
−0.642532 + 0.766259i \(0.722116\pi\)
\(468\) −19.2253 3.04499i −0.888691 0.140755i
\(469\) −5.60034 −0.258600
\(470\) 0 0
\(471\) 31.6749i 1.45950i
\(472\) −3.74861 23.6678i −0.172544 1.08940i
\(473\) −2.94427 + 2.94427i −0.135378 + 0.135378i
\(474\) 12.3107 + 37.8885i 0.565451 + 1.74028i
\(475\) 0 0
\(476\) 2.76393 + 3.80423i 0.126685 + 0.174366i
\(477\) 1.62460 1.62460i 0.0743853 0.0743853i
\(478\) 18.8270 36.9501i 0.861127 1.69006i
\(479\) −7.60845 −0.347639 −0.173820 0.984778i \(-0.555611\pi\)
−0.173820 + 0.984778i \(0.555611\pi\)
\(480\) 0 0
\(481\) −18.9443 −0.863784
\(482\) 4.34271 8.52305i 0.197805 0.388214i
\(483\) 10.0000 10.0000i 0.455016 0.455016i
\(484\) 11.1352 + 15.3262i 0.506144 + 0.696647i
\(485\) 0 0
\(486\) −8.41641 25.9030i −0.381776 1.17499i
\(487\) 9.33905 9.33905i 0.423193 0.423193i −0.463109 0.886302i \(-0.653266\pi\)
0.886302 + 0.463109i \(0.153266\pi\)
\(488\) −4.40676 27.8232i −0.199484 1.25950i
\(489\) 23.1246i 1.04573i
\(490\) 0 0
\(491\) −10.7639 −0.485769 −0.242885 0.970055i \(-0.578094\pi\)
−0.242885 + 0.970055i \(0.578094\pi\)
\(492\) 34.8422 + 5.51846i 1.57081 + 0.248792i
\(493\) −1.45309 1.45309i −0.0654437 0.0654437i
\(494\) −3.80423 11.7082i −0.171160 0.526777i
\(495\) 0 0
\(496\) 20.0000 + 6.49839i 0.898027 + 0.291787i
\(497\) 8.29180 + 8.29180i 0.371938 + 0.371938i
\(498\) −17.8683 9.10434i −0.800696 0.407975i
\(499\) 23.8885i 1.06940i −0.845043 0.534699i \(-0.820425\pi\)
0.845043 0.534699i \(-0.179575\pi\)
\(500\) 0 0
\(501\) 0.898056i 0.0401222i
\(502\) −14.2407 + 27.9489i −0.635592 + 1.24742i
\(503\) −5.53483 5.53483i −0.246786 0.246786i 0.572864 0.819650i \(-0.305832\pi\)
−0.819650 + 0.572864i \(0.805832\pi\)
\(504\) −8.50651 6.18034i −0.378910 0.275294i
\(505\) 0 0
\(506\) −6.18034 + 2.00811i −0.274750 + 0.0892716i
\(507\) 9.61803 + 9.61803i 0.427152 + 0.427152i
\(508\) 24.5391 + 3.88661i 1.08875 + 0.172440i
\(509\) −9.06154 −0.401646 −0.200823 0.979628i \(-0.564362\pi\)
−0.200823 + 0.979628i \(0.564362\pi\)
\(510\) 0 0
\(511\) 20.4742i 0.905726i
\(512\) −20.1612 + 10.2726i −0.891007 + 0.453990i
\(513\) 2.47214 2.47214i 0.109147 0.109147i
\(514\) −35.5851 + 11.5623i −1.56959 + 0.509991i
\(515\) 0 0
\(516\) 12.4721 9.06154i 0.549055 0.398912i
\(517\) 9.06154 9.06154i 0.398526 0.398526i
\(518\) −9.11798 4.64584i −0.400621 0.204127i
\(519\) 20.4742 0.898718
\(520\) 0 0
\(521\) 8.47214 0.371171 0.185586 0.982628i \(-0.440582\pi\)
0.185586 + 0.982628i \(0.440582\pi\)
\(522\) 4.09423 + 2.08611i 0.179199 + 0.0913067i
\(523\) 16.7426 16.7426i 0.732105 0.732105i −0.238932 0.971036i \(-0.576797\pi\)
0.971036 + 0.238932i \(0.0767972\pi\)
\(524\) −0.343027 0.472136i −0.0149852 0.0206254i
\(525\) 0 0
\(526\) 31.1803 10.1311i 1.35953 0.441737i
\(527\) 5.25731 5.25731i 0.229012 0.229012i
\(528\) 5.13632 + 10.0806i 0.223529 + 0.438701i
\(529\) 9.18034i 0.399145i
\(530\) 0 0
\(531\) 18.9443 0.822111
\(532\) 1.04029 6.56816i 0.0451025 0.284766i
\(533\) −23.7234 23.7234i −1.02758 1.02758i
\(534\) −19.9192 + 6.47214i −0.861987 + 0.280077i
\(535\) 0 0
\(536\) −7.70820 5.60034i −0.332944 0.241898i
\(537\) −26.6525 26.6525i −1.15014 1.15014i
\(538\) −11.4996 + 22.5693i −0.495784 + 0.973030i
\(539\) 5.23607i 0.225533i
\(540\) 0 0
\(541\) 2.90617i 0.124946i 0.998047 + 0.0624730i \(0.0198987\pi\)
−0.998047 + 0.0624730i \(0.980101\pi\)
\(542\) −39.9127 20.3365i −1.71440 0.873529i
\(543\) 15.2169 + 15.2169i 0.653020 + 0.653020i
\(544\) 8.00000i 0.342997i
\(545\) 0 0
\(546\) 7.23607 + 22.2703i 0.309675 + 0.953082i
\(547\) 8.56231 + 8.56231i 0.366098 + 0.366098i 0.866052 0.499954i \(-0.166650\pi\)
−0.499954 + 0.866052i \(0.666650\pi\)
\(548\) −1.53629 + 9.69977i −0.0656272 + 0.414354i
\(549\) 22.2703 0.950474
\(550\) 0 0
\(551\) 2.90617i 0.123807i
\(552\) 23.7638 3.76382i 1.01146 0.160199i
\(553\) 14.4721 14.4721i 0.615418 0.615418i
\(554\) −1.34708 4.14590i −0.0572321 0.176142i
\(555\) 0 0
\(556\) −8.76393 + 6.36737i −0.371674 + 0.270037i
\(557\) −17.1845 + 17.1845i −0.728132 + 0.728132i −0.970247 0.242116i \(-0.922159\pi\)
0.242116 + 0.970247i \(0.422159\pi\)
\(558\) −7.54763 + 14.8131i −0.319517 + 0.627087i
\(559\) −14.6619 −0.620131
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 2.38081 4.67261i 0.100429 0.197102i
\(563\) −11.3262 + 11.3262i −0.477344 + 0.477344i −0.904281 0.426937i \(-0.859593\pi\)
0.426937 + 0.904281i \(0.359593\pi\)
\(564\) −38.3853 + 27.8885i −1.61631 + 1.17432i
\(565\) 0 0
\(566\) 9.65248 + 29.7073i 0.405724 + 1.24869i
\(567\) −12.5882 + 12.5882i −0.528657 + 0.528657i
\(568\) 3.12088 + 19.7045i 0.130949 + 0.826781i
\(569\) 13.1246i 0.550212i 0.961414 + 0.275106i \(0.0887130\pi\)
−0.961414 + 0.275106i \(0.911287\pi\)
\(570\) 0 0
\(571\) −8.65248 −0.362095 −0.181047 0.983474i \(-0.557949\pi\)
−0.181047 + 0.983474i \(0.557949\pi\)
\(572\) 1.68323 10.6275i 0.0703794 0.444358i
\(573\) 20.8172 + 20.8172i 0.869653 + 0.869653i
\(574\) −5.60034 17.2361i −0.233754 0.719420i
\(575\) 0 0
\(576\) −5.52786 17.0130i −0.230328 0.708876i
\(577\) −21.7639 21.7639i −0.906044 0.906044i 0.0899059 0.995950i \(-0.471343\pi\)
−0.995950 + 0.0899059i \(0.971343\pi\)
\(578\) −18.9011 9.63059i −0.786182 0.400580i
\(579\) 24.1803i 1.00490i
\(580\) 0 0
\(581\) 10.3026i 0.427425i
\(582\) 0.490475 0.962611i 0.0203308 0.0399015i
\(583\) 0.898056 + 0.898056i 0.0371937 + 0.0371937i
\(584\) 20.4742 28.1803i 0.847229 1.16611i
\(585\) 0 0
\(586\) −1.38197 + 0.449028i −0.0570885 + 0.0185492i
\(587\) −5.90983 5.90983i −0.243925 0.243925i 0.574547 0.818472i \(-0.305178\pi\)
−0.818472 + 0.574547i \(0.805178\pi\)
\(588\) 3.03269 19.1477i 0.125066 0.789636i
\(589\) −10.5146 −0.433247
\(590\) 0 0
\(591\) 7.05342i 0.290139i
\(592\) −7.90398 15.5124i −0.324851 0.637557i
\(593\) 6.41641 6.41641i 0.263490 0.263490i −0.562980 0.826470i \(-0.690345\pi\)
0.826470 + 0.562980i \(0.190345\pi\)
\(594\) 2.90617 0.944272i 0.119242 0.0387439i
\(595\) 0 0
\(596\) −15.5279 21.3723i −0.636046 0.875442i
\(597\) −29.3238 + 29.3238i −1.20014 + 1.20014i
\(598\) −20.3884 10.3884i −0.833744 0.424814i
\(599\) 27.5276 1.12475 0.562374 0.826883i \(-0.309888\pi\)
0.562374 + 0.826883i \(0.309888\pi\)
\(600\) 0 0
\(601\) −4.29180 −0.175066 −0.0875330 0.996162i \(-0.527898\pi\)
−0.0875330 + 0.996162i \(0.527898\pi\)
\(602\) −7.05684 3.59564i −0.287615 0.146547i
\(603\) 5.32624 5.32624i 0.216901 0.216901i
\(604\) 23.7234 17.2361i 0.965292 0.701326i
\(605\) 0 0
\(606\) −37.8885 + 12.3107i −1.53912 + 0.500089i
\(607\) −6.08985 + 6.08985i −0.247180 + 0.247180i −0.819812 0.572633i \(-0.805922\pi\)
0.572633 + 0.819812i \(0.305922\pi\)
\(608\) 8.00000 8.00000i 0.324443 0.324443i
\(609\) 5.52786i 0.224000i
\(610\) 0 0
\(611\) 45.1246 1.82555
\(612\) −6.24669 0.989378i −0.252507 0.0399933i
\(613\) −27.3561 27.3561i −1.10490 1.10490i −0.993810 0.111094i \(-0.964565\pi\)
−0.111094 0.993810i \(-0.535435\pi\)
\(614\) −12.4822 + 4.05573i −0.503743 + 0.163676i
\(615\) 0 0
\(616\) 3.41641 4.70228i 0.137651 0.189460i
\(617\) 30.8885 + 30.8885i 1.24353 + 1.24353i 0.958528 + 0.284998i \(0.0919929\pi\)
0.284998 + 0.958528i \(0.408007\pi\)
\(618\) −15.2314 + 29.8932i −0.612695 + 1.20248i
\(619\) 27.3050i 1.09748i −0.835994 0.548739i \(-0.815108\pi\)
0.835994 0.548739i \(-0.184892\pi\)
\(620\) 0 0
\(621\) 6.49839i 0.260772i
\(622\) −10.2866 5.24128i −0.412455 0.210156i
\(623\) 7.60845 + 7.60845i 0.304826 + 0.304826i
\(624\) −12.3107 + 37.8885i −0.492824 + 1.51676i
\(625\) 0 0
\(626\) −3.85410 11.8617i −0.154041 0.474089i
\(627\) −4.00000 4.00000i −0.159745 0.159745i
\(628\) −27.3440 4.33087i −1.09115 0.172820i
\(629\) −6.15537 −0.245431
\(630\) 0 0
\(631\) 28.0827i 1.11795i 0.829183 + 0.558977i \(0.188806\pi\)
−0.829183 + 0.558977i \(0.811194\pi\)
\(632\) 34.3913 5.44705i 1.36801 0.216672i
\(633\) 25.4164 25.4164i 1.01021 1.01021i
\(634\) −6.60440 20.3262i −0.262294 0.807258i
\(635\) 0 0
\(636\) −2.76393 3.80423i −0.109597 0.150847i
\(637\) −13.0373 + 13.0373i −0.516556 + 0.516556i
\(638\) −1.15317 + 2.26323i −0.0456546 + 0.0896023i
\(639\) −15.7719 −0.623928
\(640\) 0 0
\(641\) −7.34752 −0.290210 −0.145105 0.989416i \(-0.546352\pi\)
−0.145105 + 0.989416i \(0.546352\pi\)
\(642\) −25.1195 + 49.2999i −0.991389 + 1.94571i
\(643\) −8.56231 + 8.56231i −0.337664 + 0.337664i −0.855488 0.517823i \(-0.826742\pi\)
0.517823 + 0.855488i \(0.326742\pi\)
\(644\) −7.26543 10.0000i −0.286298 0.394055i
\(645\) 0 0
\(646\) −1.23607 3.80423i −0.0486324 0.149675i
\(647\) −22.8909 + 22.8909i −0.899933 + 0.899933i −0.995430 0.0954968i \(-0.969556\pi\)
0.0954968 + 0.995430i \(0.469556\pi\)
\(648\) −29.9145 + 4.73799i −1.17515 + 0.186126i
\(649\) 10.4721i 0.411067i
\(650\) 0 0
\(651\) 20.0000 0.783862
\(652\) −19.9628 3.16180i −0.781804 0.123826i
\(653\) 11.2412 + 11.2412i 0.439901 + 0.439901i 0.891979 0.452078i \(-0.149317\pi\)
−0.452078 + 0.891979i \(0.649317\pi\)
\(654\) −6.71040 20.6525i −0.262397 0.807576i
\(655\) 0 0
\(656\) 9.52786 29.3238i 0.372001 1.14490i
\(657\) 19.4721 + 19.4721i 0.759680 + 0.759680i
\(658\) 21.7187 + 11.0662i 0.846684 + 0.431407i
\(659\) 18.0000i 0.701180i 0.936529 + 0.350590i \(0.114019\pi\)
−0.936529 + 0.350590i \(0.885981\pi\)
\(660\) 0 0
\(661\) 2.35114i 0.0914488i 0.998954 + 0.0457244i \(0.0145596\pi\)
−0.998954 + 0.0457244i \(0.985440\pi\)
\(662\) 18.0213 35.3689i 0.700419 1.37465i
\(663\) 9.95959 + 9.95959i 0.386799 + 0.386799i
\(664\) −10.3026 + 14.1803i −0.399819 + 0.550304i
\(665\) 0 0
\(666\) 13.0902 4.25325i 0.507234 0.164810i
\(667\) 3.81966 + 3.81966i 0.147898 + 0.147898i
\(668\) 0.775266 + 0.122790i 0.0299959 + 0.00475089i
\(669\) −5.60034 −0.216522
\(670\) 0 0
\(671\) 12.3107i 0.475251i
\(672\) −15.2169 + 15.2169i −0.587005 + 0.587005i
\(673\) 30.7082 30.7082i 1.18371 1.18371i 0.204940 0.978775i \(-0.434300\pi\)
0.978775 0.204940i \(-0.0656998\pi\)
\(674\) 3.91023 1.27051i 0.150616 0.0489382i
\(675\) 0 0
\(676\) 9.61803 6.98791i 0.369924 0.268766i
\(677\) 8.33499 8.33499i 0.320340 0.320340i −0.528558 0.848897i \(-0.677267\pi\)
0.848897 + 0.528558i \(0.177267\pi\)
\(678\) −19.1986 9.78216i −0.737316 0.375682i
\(679\) −0.555029 −0.0213001
\(680\) 0 0
\(681\) 37.5967 1.44071
\(682\) −8.18845 4.17223i −0.313552 0.159763i
\(683\) −1.79837 + 1.79837i −0.0688129 + 0.0688129i −0.740676 0.671863i \(-0.765494\pi\)
0.671863 + 0.740676i \(0.265494\pi\)
\(684\) 5.25731 + 7.23607i 0.201018 + 0.276678i
\(685\) 0 0
\(686\) −25.1246 + 8.16348i −0.959262 + 0.311683i
\(687\) 34.5811 34.5811i 1.31935 1.31935i
\(688\) −6.11727 12.0058i −0.233219 0.457717i
\(689\) 4.47214i 0.170375i
\(690\) 0 0
\(691\) −31.1246 −1.18404 −0.592018 0.805925i \(-0.701669\pi\)
−0.592018 + 0.805925i \(0.701669\pi\)
\(692\) 2.79941 17.6748i 0.106418 0.671895i
\(693\) 3.24920 + 3.24920i 0.123427 + 0.123427i
\(694\) 5.77185 1.87539i 0.219096 0.0711888i
\(695\) 0 0
\(696\) 5.52786 7.60845i 0.209533 0.288398i
\(697\) −7.70820 7.70820i −0.291969 0.291969i
\(698\) 9.99009 19.6067i 0.378131 0.742123i
\(699\) 11.2361i 0.424987i
\(700\) 0 0
\(701\) 40.3934i 1.52564i −0.646612 0.762819i \(-0.723815\pi\)
0.646612 0.762819i \(-0.276185\pi\)
\(702\) 9.58721 + 4.88493i 0.361846 + 0.184370i
\(703\) 6.15537 + 6.15537i 0.232154 + 0.232154i
\(704\) 9.40456 3.05573i 0.354448 0.115167i
\(705\) 0 0
\(706\) 2.72949 + 8.40051i 0.102726 + 0.316157i
\(707\) 14.4721 + 14.4721i 0.544281 + 0.544281i
\(708\) 6.06538 38.2953i 0.227951 1.43923i
\(709\) 13.7638 0.516911 0.258456 0.966023i \(-0.416786\pi\)
0.258456 + 0.966023i \(0.416786\pi\)
\(710\) 0 0
\(711\) 27.5276i 1.03237i
\(712\) 2.86368 + 18.0806i 0.107321 + 0.677599i
\(713\) −13.8197 + 13.8197i −0.517550 + 0.517550i
\(714\) 2.35114 + 7.23607i 0.0879892 + 0.270803i
\(715\) 0 0
\(716\) −26.6525 + 19.3642i −0.996050 + 0.723673i
\(717\) 47.4468 47.4468i 1.77193 1.77193i
\(718\) −1.15317 + 2.26323i −0.0430361 + 0.0844631i
\(719\) −44.5407 −1.66109 −0.830543 0.556954i \(-0.811970\pi\)
−0.830543 + 0.556954i \(0.811970\pi\)
\(720\) 0 0
\(721\) 17.2361 0.641905
\(722\) 9.63059 18.9011i 0.358414 0.703426i
\(723\) 10.9443 10.9443i 0.407022 0.407022i
\(724\) 15.2169 11.0557i 0.565532 0.410883i
\(725\) 0 0
\(726\) 9.47214 + 29.1522i 0.351544 + 1.08194i
\(727\) −5.87785 + 5.87785i −0.217997 + 0.217997i −0.807654 0.589657i \(-0.799263\pi\)
0.589657 + 0.807654i \(0.299263\pi\)
\(728\) 20.2147 3.20170i 0.749207 0.118663i
\(729\) 11.9443i 0.442380i
\(730\) 0 0
\(731\) −4.76393 −0.176200
\(732\) 7.13028 45.0188i 0.263543 1.66394i
\(733\) −1.28157 1.28157i −0.0473359 0.0473359i 0.683043 0.730379i \(-0.260656\pi\)
−0.730379 + 0.683043i \(0.760656\pi\)
\(734\) 14.8334 + 45.6525i 0.547510 + 1.68506i
\(735\) 0 0
\(736\) 21.0292i 0.775148i
\(737\) 2.94427 + 2.94427i 0.108454 + 0.108454i
\(738\) 21.7187 + 11.0662i 0.799477 + 0.407354i
\(739\) 17.4164i 0.640673i 0.947304 + 0.320336i \(0.103796\pi\)
−0.947304 + 0.320336i \(0.896204\pi\)
\(740\) 0 0
\(741\) 19.9192i 0.731750i
\(742\) −1.09673 + 2.15246i −0.0402624 + 0.0790194i
\(743\) 13.4863 + 13.4863i 0.494765 + 0.494765i 0.909804 0.415039i \(-0.136232\pi\)
−0.415039 + 0.909804i \(0.636232\pi\)
\(744\) 27.5276 + 20.0000i 1.00921 + 0.733236i
\(745\) 0 0
\(746\) 28.6180 9.29856i 1.04778 0.340445i
\(747\) −9.79837 9.79837i −0.358504 0.358504i
\(748\) 0.546915 3.45309i 0.0199972 0.126257i
\(749\) 28.4257 1.03865
\(750\) 0 0
\(751\) 7.05342i 0.257383i 0.991685 + 0.128692i \(0.0410777\pi\)
−0.991685 + 0.128692i \(0.958922\pi\)
\(752\) 18.8270 + 36.9501i 0.686550 + 1.34743i
\(753\) −35.8885 + 35.8885i −1.30785 + 1.30785i
\(754\) −8.50651 + 2.76393i −0.309789 + 0.100656i
\(755\) 0 0
\(756\) 3.41641 + 4.70228i 0.124254 + 0.171020i
\(757\) 38.0018 38.0018i 1.38120 1.38120i 0.538701 0.842497i \(-0.318915\pi\)
0.842497 0.538701i \(-0.181085\pi\)
\(758\) 45.2222 + 23.0419i 1.64254 + 0.836918i
\(759\) −10.5146 −0.381657
\(760\) 0 0
\(761\) −14.9443 −0.541729 −0.270865 0.962617i \(-0.587310\pi\)
−0.270865 + 0.962617i \(0.587310\pi\)
\(762\) 35.8185 + 18.2504i 1.29757 + 0.661143i
\(763\) −7.88854 + 7.88854i −0.285584 + 0.285584i
\(764\) 20.8172 15.1246i 0.753141 0.547189i
\(765\) 0 0
\(766\) −21.1803 + 6.88191i −0.765277 + 0.248654i
\(767\) −26.0746 + 26.0746i −0.941498 + 0.941498i
\(768\) −36.1612 + 5.72737i −1.30485 + 0.206669i
\(769\) 2.47214i 0.0891475i 0.999006 + 0.0445738i \(0.0141930\pi\)
−0.999006 + 0.0445738i \(0.985807\pi\)
\(770\) 0 0
\(771\) −60.5410 −2.18033
\(772\) −20.8742 3.30615i −0.751279 0.118991i
\(773\) 4.18774 + 4.18774i 0.150623 + 0.150623i 0.778396 0.627773i \(-0.216034\pi\)
−0.627773 + 0.778396i \(0.716034\pi\)
\(774\) 10.1311 3.29180i 0.364155 0.118321i
\(775\) 0 0
\(776\) −0.763932 0.555029i −0.0274236 0.0199244i
\(777\) −11.7082 11.7082i −0.420029 0.420029i
\(778\) −15.2314 + 29.8932i −0.546071 + 1.07172i
\(779\) 15.4164i 0.552350i
\(780\) 0 0
\(781\) 8.71851i 0.311973i
\(782\) −6.62460 3.37540i −0.236895 0.120704i
\(783\) −1.79611 1.79611i −0.0641878 0.0641878i
\(784\) −16.1150 5.23607i −0.575534 0.187002i
\(785\) 0 0
\(786\) −0.291796 0.898056i −0.0104080 0.0320326i
\(787\) −11.1459 11.1459i −0.397308 0.397308i 0.479974 0.877283i \(-0.340646\pi\)
−0.877283 + 0.479974i \(0.840646\pi\)
\(788\) 6.08902 + 0.964406i 0.216912 + 0.0343555i
\(789\) 53.0472 1.88853
\(790\) 0 0
\(791\) 11.0697i 0.393591i
\(792\) 1.22294 + 7.72133i 0.0434552 + 0.274366i
\(793\) −30.6525 + 30.6525i −1.08850 + 1.08850i
\(794\) −4.46526 13.7426i −0.158466 0.487708i
\(795\) 0 0
\(796\) 21.3050 + 29.3238i 0.755134 + 1.03935i
\(797\) −19.7477 + 19.7477i −0.699498 + 0.699498i −0.964302 0.264804i \(-0.914693\pi\)
0.264804 + 0.964302i \(0.414693\pi\)
\(798\) 4.88493 9.58721i 0.172925 0.339384i
\(799\) 14.6619 0.518700
\(800\) 0 0
\(801\) −14.4721 −0.511348
\(802\) −2.49660 + 4.89985i −0.0881580 + 0.173020i
\(803\) −10.7639 + 10.7639i −0.379851 + 0.379851i
\(804\) −9.06154 12.4721i −0.319576 0.439858i
\(805\) 0 0
\(806\) −10.0000 30.7768i −0.352235 1.08407i
\(807\) −28.9807 + 28.9807i −1.02017 + 1.02017i
\(808\) 5.44705 + 34.3913i 0.191627 + 1.20988i
\(809\) 12.9443i 0.455096i 0.973767 + 0.227548i \(0.0730709\pi\)
−0.973767 + 0.227548i \(0.926929\pi\)
\(810\) 0 0
\(811\) −32.0689 −1.12609 −0.563045 0.826426i \(-0.690370\pi\)
−0.563045 + 0.826426i \(0.690370\pi\)
\(812\) −4.77205 0.755818i −0.167466 0.0265240i
\(813\) −51.2511 51.2511i −1.79745 1.79745i
\(814\) 2.35114 + 7.23607i 0.0824074 + 0.253624i
\(815\) 0 0
\(816\) −4.00000 + 12.3107i −0.140028 + 0.430962i
\(817\) 4.76393 + 4.76393i 0.166669 + 0.166669i
\(818\) 34.7739 + 17.7182i 1.21584 + 0.619502i
\(819\) 16.1803i 0.565387i
\(820\) 0 0
\(821\) 20.4742i 0.714555i −0.933998 0.357278i \(-0.883705\pi\)
0.933998 0.357278i \(-0.116295\pi\)
\(822\) −7.21400 + 14.1583i −0.251617 + 0.493826i
\(823\) −24.3440 24.3440i −0.848577 0.848577i 0.141379 0.989956i \(-0.454846\pi\)
−0.989956 + 0.141379i \(0.954846\pi\)
\(824\) 23.7234 + 17.2361i 0.826444 + 0.600447i
\(825\) 0 0
\(826\) −18.9443 + 6.15537i −0.659156 + 0.214173i
\(827\) −14.8541 14.8541i −0.516528 0.516528i 0.399991 0.916519i \(-0.369013\pi\)
−0.916519 + 0.399991i \(0.869013\pi\)
\(828\) 16.4204 + 2.60074i 0.570648 + 0.0903818i
\(829\) 3.11817 0.108299 0.0541493 0.998533i \(-0.482755\pi\)
0.0541493 + 0.998533i \(0.482755\pi\)
\(830\) 0 0
\(831\) 7.05342i 0.244681i
\(832\) 31.0249 + 15.8080i 1.07559 + 0.548042i
\(833\) −4.23607 + 4.23607i −0.146771 + 0.146771i
\(834\) −16.6700 + 5.41641i −0.577235 + 0.187555i
\(835\) 0 0
\(836\) −4.00000 + 2.90617i −0.138343 + 0.100512i
\(837\) 6.49839 6.49839i 0.224617 0.224617i
\(838\) 31.2912 + 15.9436i 1.08094 + 0.550764i
\(839\) −9.40456 −0.324682 −0.162341 0.986735i \(-0.551904\pi\)
−0.162341 + 0.986735i \(0.551904\pi\)
\(840\) 0 0
\(841\) −26.8885 −0.927191
\(842\) 4.36137 + 2.22223i 0.150303 + 0.0765830i
\(843\) 6.00000 6.00000i 0.206651 0.206651i
\(844\) −18.4661 25.4164i −0.635629 0.874869i
\(845\) 0 0
\(846\) −31.1803 + 10.1311i −1.07200 + 0.348315i
\(847\) 11.1352 11.1352i 0.382609 0.382609i
\(848\) −3.66199 + 1.86588i −0.125753 + 0.0640744i
\(849\) 50.5410i 1.73456i
\(850\) 0 0
\(851\) 16.1803 0.554655
\(852\) −5.04969 + 31.8825i −0.173000 + 1.09228i
\(853\) 24.7930 + 24.7930i 0.848896 + 0.848896i 0.989995 0.141100i \(-0.0450639\pi\)
−0.141100 + 0.989995i \(0.545064\pi\)
\(854\) −22.2703 + 7.23607i −0.762075 + 0.247613i
\(855\) 0 0
\(856\) 39.1246 + 28.4257i 1.33725 + 0.971570i
\(857\) 17.8328 + 17.8328i 0.609157 + 0.609157i 0.942726 0.333568i \(-0.108253\pi\)
−0.333568 + 0.942726i \(0.608253\pi\)
\(858\) 7.90398 15.5124i 0.269837 0.529586i
\(859\) 7.52786i 0.256847i −0.991719 0.128424i \(-0.959008\pi\)
0.991719 0.128424i \(-0.0409917\pi\)
\(860\) 0 0
\(861\) 29.3238i 0.999351i
\(862\) 14.8131 + 7.54763i 0.504535 + 0.257073i
\(863\) −6.22088 6.22088i −0.211761 0.211761i 0.593254 0.805015i \(-0.297843\pi\)
−0.805015 + 0.593254i \(0.797843\pi\)
\(864\) 9.88854i 0.336415i
\(865\) 0 0
\(866\) 14.3262 + 44.0916i 0.486825 + 1.49829i
\(867\) −24.2705 24.2705i −0.824270 0.824270i
\(868\) 2.73457 17.2654i 0.0928175 0.586027i
\(869\) −15.2169 −0.516198
\(870\) 0 0
\(871\) 14.6619i 0.496799i
\(872\) −18.7462 + 2.96911i −0.634826 + 0.100547i
\(873\) 0.527864 0.527864i 0.0178655 0.0178655i
\(874\) 3.24920 + 10.0000i 0.109906 + 0.338255i
\(875\) 0 0
\(876\) 45.5967 33.1280i 1.54057 1.11929i
\(877\) 5.08580 5.08580i 0.171735 0.171735i −0.616006 0.787741i \(-0.711250\pi\)
0.787741 + 0.616006i \(0.211250\pi\)
\(878\) 7.19128 14.1137i 0.242694 0.476313i
\(879\) −2.35114 −0.0793020
\(880\) 0 0
\(881\) 47.1246 1.58767 0.793834 0.608134i \(-0.208082\pi\)
0.793834 + 0.608134i \(0.208082\pi\)
\(882\) 6.08149 11.9356i 0.204774 0.401892i
\(883\) −21.7984 + 21.7984i −0.733574 + 0.733574i −0.971326 0.237752i \(-0.923589\pi\)
0.237752 + 0.971326i \(0.423589\pi\)
\(884\) 9.95959 7.23607i 0.334977 0.243375i
\(885\) 0 0
\(886\) 6.23607 + 19.1926i 0.209505 + 0.644789i
\(887\) 28.1482 28.1482i 0.945123 0.945123i −0.0534473 0.998571i \(-0.517021\pi\)
0.998571 + 0.0534473i \(0.0170209\pi\)
\(888\) −4.40676 27.8232i −0.147881 0.933684i
\(889\) 20.6525i 0.692662i
\(890\) 0 0
\(891\) 13.2361 0.443425
\(892\) −0.765727 + 4.83461i −0.0256384 + 0.161875i
\(893\) −14.6619 14.6619i −0.490641 0.490641i
\(894\) −13.2088 40.6525i −0.441768 1.35962i
\(895\) 0 0
\(896\) 11.0557 + 15.2169i 0.369346 + 0.508361i
\(897\) −26.1803 26.1803i −0.874136 0.874136i
\(898\) −39.8142 20.2864i −1.32862 0.676965i
\(899\) 7.63932i 0.254786i
\(900\) 0 0
\(901\) 1.45309i 0.0484093i
\(902\) −6.11727 + 12.0058i −0.203683 + 0.399750i
\(903\) −9.06154 9.06154i −0.301549 0.301549i
\(904\) −11.0697 + 15.2361i −0.368171 + 0.506744i
\(905\) 0 0
\(906\) 45.1246 14.6619i 1.49916 0.487108i
\(907\) 23.3262 + 23.3262i 0.774535 + 0.774535i 0.978896 0.204361i \(-0.0655115\pi\)
−0.204361 + 0.978896i \(0.565512\pi\)
\(908\) 5.14056 32.4562i 0.170595 1.07710i
\(909\) −27.5276 −0.913034
\(910\) 0 0
\(911\) 25.1765i 0.834135i 0.908876 + 0.417067i \(0.136942\pi\)
−0.908876 + 0.417067i \(0.863058\pi\)
\(912\) 16.3107 8.31073i 0.540102 0.275196i
\(913\) 5.41641 5.41641i 0.179257 0.179257i
\(914\) 41.1855 13.3820i 1.36229 0.442636i
\(915\) 0 0
\(916\) −25.1246 34.5811i −0.830141 1.14259i
\(917\) −0.343027 + 0.343027i −0.0113277 + 0.0113277i
\(918\) 3.11507 + 1.58721i 0.102813 + 0.0523857i
\(919\) −21.7153 −0.716322 −0.358161 0.933660i \(-0.616596\pi\)
−0.358161 + 0.933660i \(0.616596\pi\)
\(920\) 0 0
\(921\) −21.2361 −0.699752
\(922\) 8.18845 + 4.17223i 0.269672 + 0.137405i
\(923\) 21.7082 21.7082i 0.714534 0.714534i
\(924\) 7.60845 5.52786i 0.250300 0.181853i
\(925\) 0 0
\(926\) 32.8885 10.6861i 1.08078 0.351168i
\(927\) −16.3925 + 16.3925i −0.538400 + 0.538400i
\(928\) −5.81234 5.81234i −0.190799 0.190799i
\(929\) 5.34752i 0.175447i −0.996145 0.0877233i \(-0.972041\pi\)
0.996145 0.0877233i \(-0.0279591\pi\)
\(930\) 0 0
\(931\) 8.47214 0.277663
\(932\) −9.69977 1.53629i −0.317727 0.0503230i
\(933\) −13.2088 13.2088i −0.432436 0.432436i
\(934\) 5.08580 1.65248i 0.166412 0.0540707i
\(935\) 0 0
\(936\) −16.1803 + 22.2703i −0.528871 + 0.727928i
\(937\) −20.3050 20.3050i −0.663334 0.663334i 0.292831 0.956164i \(-0.405403\pi\)
−0.956164 + 0.292831i \(0.905403\pi\)
\(938\) −3.59564 + 7.05684i −0.117402 + 0.230414i
\(939\) 20.1803i 0.658561i
\(940\) 0 0
\(941\) 60.8676i 1.98423i 0.125340 + 0.992114i \(0.459998\pi\)
−0.125340 + 0.992114i \(0.540002\pi\)
\(942\) −39.9127 20.3365i −1.30043 0.662600i
\(943\) 20.2622 + 20.2622i 0.659828 + 0.659828i
\(944\) −32.2299 10.4721i −1.04899 0.340839i
\(945\) 0 0
\(946\) 1.81966 + 5.60034i 0.0591623 + 0.182083i
\(947\) 8.85410 + 8.85410i 0.287720 + 0.287720i 0.836178 0.548458i \(-0.184785\pi\)
−0.548458 + 0.836178i \(0.684785\pi\)
\(948\) 55.6463 + 8.81351i 1.80731 + 0.286250i
\(949\) −53.6022 −1.74000
\(950\) 0 0
\(951\) 34.5811i 1.12137i
\(952\) 6.56816 1.04029i 0.212875 0.0337161i
\(953\) 6.81966 6.81966i 0.220910 0.220910i −0.587971 0.808882i \(-0.700073\pi\)
0.808882 + 0.587971i \(0.200073\pi\)
\(954\) −1.00406 3.09017i −0.0325075 0.100048i
\(955\) 0 0
\(956\) −34.4721 47.4468i −1.11491 1.53454i
\(957\) −2.90617 + 2.90617i −0.0939431 + 0.0939431i
\(958\) −4.88493 + 9.58721i −0.157825 + 0.309749i
\(959\) 8.16348 0.263613
\(960\) 0 0
\(961\) 3.36068 0.108409
\(962\) −12.1630 + 23.8712i −0.392150 + 0.769638i
\(963\) −27.0344 + 27.0344i −0.871173 + 0.871173i
\(964\) −7.95148 10.9443i −0.256100 0.352491i
\(965\) 0 0
\(966\) −6.18034 19.0211i −0.198849 0.611995i
\(967\) 12.0332 12.0332i 0.386962 0.386962i −0.486640 0.873602i \(-0.661778\pi\)
0.873602 + 0.486640i \(0.161778\pi\)
\(968\) 26.4614 4.19107i 0.850502 0.134706i
\(969\) 6.47214i 0.207915i
\(970\) 0 0
\(971\) 33.5967 1.07817 0.539085 0.842251i \(-0.318770\pi\)
0.539085 + 0.842251i \(0.318770\pi\)
\(972\) −38.0434 6.02548i −1.22024 0.193267i
\(973\) 6.36737 + 6.36737i 0.204128 + 0.204128i
\(974\) −5.77185 17.7639i −0.184942 0.569193i
\(975\) 0 0
\(976\) −37.8885 12.3107i −1.21278 0.394057i
\(977\) 28.2361 + 28.2361i 0.903352 + 0.903352i 0.995725 0.0923727i \(-0.0294451\pi\)
−0.0923727 + 0.995725i \(0.529445\pi\)
\(978\) −29.1387 14.8469i −0.931753 0.474752i
\(979\) 8.00000i 0.255681i
\(980\) 0 0
\(981\) 15.0049i 0.479070i
\(982\) −6.91087 + 13.5633i −0.220535 + 0.432824i
\(983\) −0.620541 0.620541i −0.0197922 0.0197922i 0.697141 0.716934i \(-0.254455\pi\)
−0.716934 + 0.697141i \(0.754455\pi\)
\(984\) 29.3238 40.3607i 0.934807 1.28665i
\(985\) 0 0
\(986\) −2.76393 + 0.898056i −0.0880215 + 0.0285999i
\(987\) 27.8885 + 27.8885i 0.887702 + 0.887702i
\(988\) −17.1957 2.72353i −0.547067 0.0866469i
\(989\) 12.5227 0.398200
\(990\) 0 0
\(991\) 19.3642i 0.615123i −0.951528 0.307561i \(-0.900487\pi\)
0.951528 0.307561i \(-0.0995129\pi\)
\(992\) 21.0292 21.0292i 0.667679 0.667679i
\(993\) 45.4164 45.4164i 1.44125 1.44125i
\(994\) 15.7719 5.12461i 0.500255 0.162543i
\(995\) 0 0
\(996\) −22.9443 + 16.6700i −0.727017 + 0.528209i
\(997\) −35.6506 + 35.6506i −1.12907 + 1.12907i −0.138738 + 0.990329i \(0.544304\pi\)
−0.990329 + 0.138738i \(0.955696\pi\)
\(998\) −30.1013 15.3374i −0.952841 0.485497i
\(999\) −7.60845 −0.240721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.2.k.h.107.3 8
4.3 odd 2 800.2.o.g.207.2 8
5.2 odd 4 40.2.k.a.3.4 yes 8
5.3 odd 4 inner 200.2.k.h.43.1 8
5.4 even 2 40.2.k.a.27.2 yes 8
8.3 odd 2 inner 200.2.k.h.107.1 8
8.5 even 2 800.2.o.g.207.1 8
15.2 even 4 360.2.w.c.163.1 8
15.14 odd 2 360.2.w.c.307.3 8
20.3 even 4 800.2.o.g.143.1 8
20.7 even 4 160.2.o.a.143.3 8
20.19 odd 2 160.2.o.a.47.4 8
40.3 even 4 inner 200.2.k.h.43.3 8
40.13 odd 4 800.2.o.g.143.2 8
40.19 odd 2 40.2.k.a.27.4 yes 8
40.27 even 4 40.2.k.a.3.2 8
40.29 even 2 160.2.o.a.47.3 8
40.37 odd 4 160.2.o.a.143.4 8
60.47 odd 4 1440.2.bi.c.1423.4 8
60.59 even 2 1440.2.bi.c.847.1 8
80.19 odd 4 1280.2.n.q.767.4 8
80.27 even 4 1280.2.n.q.1023.3 8
80.29 even 4 1280.2.n.m.767.2 8
80.37 odd 4 1280.2.n.m.1023.1 8
80.59 odd 4 1280.2.n.m.767.1 8
80.67 even 4 1280.2.n.m.1023.2 8
80.69 even 4 1280.2.n.q.767.3 8
80.77 odd 4 1280.2.n.q.1023.4 8
120.29 odd 2 1440.2.bi.c.847.4 8
120.59 even 2 360.2.w.c.307.1 8
120.77 even 4 1440.2.bi.c.1423.1 8
120.107 odd 4 360.2.w.c.163.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.k.a.3.2 8 40.27 even 4
40.2.k.a.3.4 yes 8 5.2 odd 4
40.2.k.a.27.2 yes 8 5.4 even 2
40.2.k.a.27.4 yes 8 40.19 odd 2
160.2.o.a.47.3 8 40.29 even 2
160.2.o.a.47.4 8 20.19 odd 2
160.2.o.a.143.3 8 20.7 even 4
160.2.o.a.143.4 8 40.37 odd 4
200.2.k.h.43.1 8 5.3 odd 4 inner
200.2.k.h.43.3 8 40.3 even 4 inner
200.2.k.h.107.1 8 8.3 odd 2 inner
200.2.k.h.107.3 8 1.1 even 1 trivial
360.2.w.c.163.1 8 15.2 even 4
360.2.w.c.163.3 8 120.107 odd 4
360.2.w.c.307.1 8 120.59 even 2
360.2.w.c.307.3 8 15.14 odd 2
800.2.o.g.143.1 8 20.3 even 4
800.2.o.g.143.2 8 40.13 odd 4
800.2.o.g.207.1 8 8.5 even 2
800.2.o.g.207.2 8 4.3 odd 2
1280.2.n.m.767.1 8 80.59 odd 4
1280.2.n.m.767.2 8 80.29 even 4
1280.2.n.m.1023.1 8 80.37 odd 4
1280.2.n.m.1023.2 8 80.67 even 4
1280.2.n.q.767.3 8 80.69 even 4
1280.2.n.q.767.4 8 80.19 odd 4
1280.2.n.q.1023.3 8 80.27 even 4
1280.2.n.q.1023.4 8 80.77 odd 4
1440.2.bi.c.847.1 8 60.59 even 2
1440.2.bi.c.847.4 8 120.29 odd 2
1440.2.bi.c.1423.1 8 120.77 even 4
1440.2.bi.c.1423.4 8 60.47 odd 4