Properties

Label 200.2.k.f.107.2
Level $200$
Weight $2$
Character 200.107
Analytic conductor $1.597$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(43,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 107.2
Root \(1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 200.107
Dual form 200.2.k.f.43.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +(0.224745 - 0.224745i) q^{3} +2.00000i q^{4} +0.449490 q^{6} +(-2.00000 + 2.00000i) q^{8} +2.89898i q^{9} +5.44949 q^{11} +(0.449490 + 0.449490i) q^{12} -4.00000 q^{16} +(-5.67423 - 5.67423i) q^{17} +(-2.89898 + 2.89898i) q^{18} -6.34847i q^{19} +(5.44949 + 5.44949i) q^{22} +0.898979i q^{24} +(1.32577 + 1.32577i) q^{27} +(-4.00000 - 4.00000i) q^{32} +(1.22474 - 1.22474i) q^{33} -11.3485i q^{34} -5.79796 q^{36} +(6.34847 - 6.34847i) q^{38} -6.79796 q^{41} +(6.00000 - 6.00000i) q^{43} +10.8990i q^{44} +(-0.898979 + 0.898979i) q^{48} +7.00000i q^{49} -2.55051 q^{51} +2.65153i q^{54} +(-1.42679 - 1.42679i) q^{57} -6.00000i q^{59} -8.00000i q^{64} +2.44949 q^{66} +(11.5732 + 11.5732i) q^{67} +(11.3485 - 11.3485i) q^{68} +(-5.79796 - 5.79796i) q^{72} +(-4.77526 + 4.77526i) q^{73} +12.6969 q^{76} -8.10102 q^{81} +(-6.79796 - 6.79796i) q^{82} +(-12.0227 + 12.0227i) q^{83} +12.0000 q^{86} +(-10.8990 + 10.8990i) q^{88} -4.10102i q^{89} -1.79796 q^{96} +(12.0000 + 12.0000i) q^{97} +(-7.00000 + 7.00000i) q^{98} +15.7980i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{3} - 8 q^{6} - 8 q^{8} + 12 q^{11} - 8 q^{12} - 16 q^{16} - 8 q^{17} + 8 q^{18} + 12 q^{22} + 20 q^{27} - 16 q^{32} + 16 q^{36} - 4 q^{38} + 12 q^{41} + 24 q^{43} + 16 q^{48} - 20 q^{51}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) 0.224745 0.224745i 0.129757 0.129757i −0.639246 0.769002i \(-0.720753\pi\)
0.769002 + 0.639246i \(0.220753\pi\)
\(4\) 2.00000i 1.00000i
\(5\) 0 0
\(6\) 0.449490 0.183503
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 2.89898i 0.966326i
\(10\) 0 0
\(11\) 5.44949 1.64308 0.821541 0.570149i \(-0.193114\pi\)
0.821541 + 0.570149i \(0.193114\pi\)
\(12\) 0.449490 + 0.449490i 0.129757 + 0.129757i
\(13\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −5.67423 5.67423i −1.37620 1.37620i −0.850938 0.525266i \(-0.823966\pi\)
−0.525266 0.850938i \(-0.676034\pi\)
\(18\) −2.89898 + 2.89898i −0.683296 + 0.683296i
\(19\) 6.34847i 1.45644i −0.685344 0.728219i \(-0.740348\pi\)
0.685344 0.728219i \(-0.259652\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 5.44949 + 5.44949i 1.16184 + 1.16184i
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0.898979i 0.183503i
\(25\) 0 0
\(26\) 0 0
\(27\) 1.32577 + 1.32577i 0.255144 + 0.255144i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 1.22474 1.22474i 0.213201 0.213201i
\(34\) 11.3485i 1.94625i
\(35\) 0 0
\(36\) −5.79796 −0.966326
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 6.34847 6.34847i 1.02986 1.02986i
\(39\) 0 0
\(40\) 0 0
\(41\) −6.79796 −1.06166 −0.530831 0.847477i \(-0.678120\pi\)
−0.530831 + 0.847477i \(0.678120\pi\)
\(42\) 0 0
\(43\) 6.00000 6.00000i 0.914991 0.914991i −0.0816682 0.996660i \(-0.526025\pi\)
0.996660 + 0.0816682i \(0.0260248\pi\)
\(44\) 10.8990i 1.64308i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) −0.898979 + 0.898979i −0.129757 + 0.129757i
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) −2.55051 −0.357143
\(52\) 0 0
\(53\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(54\) 2.65153i 0.360828i
\(55\) 0 0
\(56\) 0 0
\(57\) −1.42679 1.42679i −0.188982 0.188982i
\(58\) 0 0
\(59\) 6.00000i 0.781133i −0.920575 0.390567i \(-0.872279\pi\)
0.920575 0.390567i \(-0.127721\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 2.44949 0.301511
\(67\) 11.5732 + 11.5732i 1.41389 + 1.41389i 0.721998 + 0.691895i \(0.243224\pi\)
0.691895 + 0.721998i \(0.256776\pi\)
\(68\) 11.3485 11.3485i 1.37620 1.37620i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −5.79796 5.79796i −0.683296 0.683296i
\(73\) −4.77526 + 4.77526i −0.558901 + 0.558901i −0.928995 0.370093i \(-0.879326\pi\)
0.370093 + 0.928995i \(0.379326\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 12.6969 1.45644
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −8.10102 −0.900113
\(82\) −6.79796 6.79796i −0.750709 0.750709i
\(83\) −12.0227 + 12.0227i −1.31966 + 1.31966i −0.405622 + 0.914041i \(0.632945\pi\)
−0.914041 + 0.405622i \(0.867055\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 12.0000 1.29399
\(87\) 0 0
\(88\) −10.8990 + 10.8990i −1.16184 + 1.16184i
\(89\) 4.10102i 0.434707i −0.976093 0.217354i \(-0.930258\pi\)
0.976093 0.217354i \(-0.0697425\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −1.79796 −0.183503
\(97\) 12.0000 + 12.0000i 1.21842 + 1.21842i 0.968187 + 0.250229i \(0.0805058\pi\)
0.250229 + 0.968187i \(0.419494\pi\)
\(98\) −7.00000 + 7.00000i −0.707107 + 0.707107i
\(99\) 15.7980i 1.58775i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −2.55051 2.55051i −0.252538 0.252538i
\(103\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.6742 10.6742i −1.03192 1.03192i −0.999474 0.0324436i \(-0.989671\pi\)
−0.0324436 0.999474i \(-0.510329\pi\)
\(108\) −2.65153 + 2.65153i −0.255144 + 0.255144i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.02270 + 7.02270i −0.660640 + 0.660640i −0.955531 0.294891i \(-0.904717\pi\)
0.294891 + 0.955531i \(0.404717\pi\)
\(114\) 2.85357i 0.267261i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 6.00000 6.00000i 0.552345 0.552345i
\(119\) 0 0
\(120\) 0 0
\(121\) 18.6969 1.69972
\(122\) 0 0
\(123\) −1.52781 + 1.52781i −0.137758 + 0.137758i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) 2.69694i 0.237452i
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 2.44949 + 2.44949i 0.213201 + 0.213201i
\(133\) 0 0
\(134\) 23.1464i 1.99955i
\(135\) 0 0
\(136\) 22.6969 1.94625
\(137\) 4.32577 + 4.32577i 0.369575 + 0.369575i 0.867322 0.497747i \(-0.165839\pi\)
−0.497747 + 0.867322i \(0.665839\pi\)
\(138\) 0 0
\(139\) 3.65153i 0.309719i 0.987937 + 0.154859i \(0.0494925\pi\)
−0.987937 + 0.154859i \(0.950508\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 11.5959i 0.966326i
\(145\) 0 0
\(146\) −9.55051 −0.790406
\(147\) 1.57321 + 1.57321i 0.129757 + 0.129757i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 12.6969 + 12.6969i 1.02986 + 1.02986i
\(153\) 16.4495 16.4495i 1.32986 1.32986i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −8.10102 8.10102i −0.636476 0.636476i
\(163\) 10.2247 10.2247i 0.800864 0.800864i −0.182367 0.983231i \(-0.558376\pi\)
0.983231 + 0.182367i \(0.0583758\pi\)
\(164\) 13.5959i 1.06166i
\(165\) 0 0
\(166\) −24.0454 −1.86629
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 18.4041 1.40740
\(172\) 12.0000 + 12.0000i 0.914991 + 0.914991i
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −21.7980 −1.64308
\(177\) −1.34847 1.34847i −0.101357 0.101357i
\(178\) 4.10102 4.10102i 0.307384 0.307384i
\(179\) 8.14643i 0.608893i 0.952529 + 0.304446i \(0.0984714\pi\)
−0.952529 + 0.304446i \(0.901529\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −30.9217 30.9217i −2.26122 2.26122i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −1.79796 1.79796i −0.129757 0.129757i
\(193\) 7.47219 7.47219i 0.537860 0.537860i −0.385040 0.922900i \(-0.625812\pi\)
0.922900 + 0.385040i \(0.125812\pi\)
\(194\) 24.0000i 1.72310i
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) −15.7980 + 15.7980i −1.12271 + 1.12271i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 5.20204 0.366924
\(202\) 0 0
\(203\) 0 0
\(204\) 5.10102i 0.357143i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 34.5959i 2.39305i
\(210\) 0 0
\(211\) −29.0454 −1.99957 −0.999784 0.0207756i \(-0.993386\pi\)
−0.999784 + 0.0207756i \(0.993386\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 21.3485i 1.45935i
\(215\) 0 0
\(216\) −5.30306 −0.360828
\(217\) 0 0
\(218\) 0 0
\(219\) 2.14643i 0.145042i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −14.0454 −0.934287
\(227\) 2.00000 + 2.00000i 0.132745 + 0.132745i 0.770357 0.637613i \(-0.220078\pi\)
−0.637613 + 0.770357i \(0.720078\pi\)
\(228\) 2.85357 2.85357i 0.188982 0.188982i
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.00000 + 4.00000i −0.262049 + 0.262049i −0.825886 0.563837i \(-0.809325\pi\)
0.563837 + 0.825886i \(0.309325\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 12.0000 0.781133
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 27.6969 1.78412 0.892058 0.451920i \(-0.149261\pi\)
0.892058 + 0.451920i \(0.149261\pi\)
\(242\) 18.6969 + 18.6969i 1.20188 + 1.20188i
\(243\) −5.79796 + 5.79796i −0.371939 + 0.371939i
\(244\) 0 0
\(245\) 0 0
\(246\) −3.05561 −0.194819
\(247\) 0 0
\(248\) 0 0
\(249\) 5.40408i 0.342470i
\(250\) 0 0
\(251\) 29.9444 1.89007 0.945036 0.326965i \(-0.106026\pi\)
0.945036 + 0.326965i \(0.106026\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −8.00000 8.00000i −0.499026 0.499026i 0.412108 0.911135i \(-0.364792\pi\)
−0.911135 + 0.412108i \(0.864792\pi\)
\(258\) 2.69694 2.69694i 0.167904 0.167904i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −18.0000 18.0000i −1.11204 1.11204i
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 4.89898i 0.301511i
\(265\) 0 0
\(266\) 0 0
\(267\) −0.921683 0.921683i −0.0564061 0.0564061i
\(268\) −23.1464 + 23.1464i −1.41389 + 1.41389i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 22.6969 + 22.6969i 1.37620 + 1.37620i
\(273\) 0 0
\(274\) 8.65153i 0.522658i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) −3.65153 + 3.65153i −0.219004 + 0.219004i
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 22.4722 22.4722i 1.33583 1.33583i 0.435780 0.900053i \(-0.356473\pi\)
0.900053 0.435780i \(-0.143527\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 11.5959 11.5959i 0.683296 0.683296i
\(289\) 47.3939i 2.78788i
\(290\) 0 0
\(291\) 5.39388 0.316195
\(292\) −9.55051 9.55051i −0.558901 0.558901i
\(293\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) 3.14643i 0.183503i
\(295\) 0 0
\(296\) 0 0
\(297\) 7.22474 + 7.22474i 0.419222 + 0.419222i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 25.3939i 1.45644i
\(305\) 0 0
\(306\) 32.8990 1.88071
\(307\) 23.8207 + 23.8207i 1.35952 + 1.35952i 0.874511 + 0.485006i \(0.161183\pi\)
0.485006 + 0.874511i \(0.338817\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −24.0000 + 24.0000i −1.35656 + 1.35656i −0.478440 + 0.878120i \(0.658798\pi\)
−0.878120 + 0.478440i \(0.841202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −4.79796 −0.267796
\(322\) 0 0
\(323\) −36.0227 + 36.0227i −2.00436 + 2.00436i
\(324\) 16.2020i 0.900113i
\(325\) 0 0
\(326\) 20.4495 1.13259
\(327\) 0 0
\(328\) 13.5959 13.5959i 0.750709 0.750709i
\(329\) 0 0
\(330\) 0 0
\(331\) −9.04541 −0.497181 −0.248590 0.968609i \(-0.579967\pi\)
−0.248590 + 0.968609i \(0.579967\pi\)
\(332\) −24.0454 24.0454i −1.31966 1.31966i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.42679 3.42679i −0.186669 0.186669i 0.607585 0.794254i \(-0.292138\pi\)
−0.794254 + 0.607585i \(0.792138\pi\)
\(338\) 13.0000 13.0000i 0.707107 0.707107i
\(339\) 3.15663i 0.171445i
\(340\) 0 0
\(341\) 0 0
\(342\) 18.4041 + 18.4041i 0.995179 + 0.995179i
\(343\) 0 0
\(344\) 24.0000i 1.29399i
\(345\) 0 0
\(346\) 0 0
\(347\) 9.32577 + 9.32577i 0.500633 + 0.500633i 0.911635 0.411001i \(-0.134821\pi\)
−0.411001 + 0.911635i \(0.634821\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −21.7980 21.7980i −1.16184 1.16184i
\(353\) 16.0000 16.0000i 0.851594 0.851594i −0.138735 0.990329i \(-0.544304\pi\)
0.990329 + 0.138735i \(0.0443038\pi\)
\(354\) 2.69694i 0.143341i
\(355\) 0 0
\(356\) 8.20204 0.434707
\(357\) 0 0
\(358\) −8.14643 + 8.14643i −0.430552 + 0.430552i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −21.3031 −1.12121
\(362\) 0 0
\(363\) 4.20204 4.20204i 0.220550 0.220550i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) 0 0
\(369\) 19.7071i 1.02591i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 61.8434i 3.19784i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 26.3485i 1.35343i −0.736245 0.676715i \(-0.763403\pi\)
0.736245 0.676715i \(-0.236597\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(384\) 3.59592i 0.183503i
\(385\) 0 0
\(386\) 14.9444 0.760649
\(387\) 17.3939 + 17.3939i 0.884180 + 0.884180i
\(388\) −24.0000 + 24.0000i −1.21842 + 1.21842i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −14.0000 14.0000i −0.707107 0.707107i
\(393\) −4.04541 + 4.04541i −0.204064 + 0.204064i
\(394\) 0 0
\(395\) 0 0
\(396\) −31.5959 −1.58775
\(397\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −31.2929 −1.56269 −0.781345 0.624099i \(-0.785466\pi\)
−0.781345 + 0.624099i \(0.785466\pi\)
\(402\) 5.20204 + 5.20204i 0.259454 + 0.259454i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 5.10102 5.10102i 0.252538 0.252538i
\(409\) 40.3939i 1.99735i 0.0514740 + 0.998674i \(0.483608\pi\)
−0.0514740 + 0.998674i \(0.516392\pi\)
\(410\) 0 0
\(411\) 1.94439 0.0959095
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.820663 + 0.820663i 0.0401880 + 0.0401880i
\(418\) 34.5959 34.5959i 1.69214 1.69214i
\(419\) 40.8434i 1.99533i −0.0683046 0.997665i \(-0.521759\pi\)
0.0683046 0.997665i \(-0.478241\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) −29.0454 29.0454i −1.41391 1.41391i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 21.3485 21.3485i 1.03192 1.03192i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −5.30306 5.30306i −0.255144 0.255144i
\(433\) −29.2702 + 29.2702i −1.40663 + 1.40663i −0.630205 + 0.776429i \(0.717029\pi\)
−0.776429 + 0.630205i \(0.782971\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −2.14643 + 2.14643i −0.102560 + 0.102560i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −20.2929 −0.966326
\(442\) 0 0
\(443\) 24.7196 24.7196i 1.17447 1.17447i 0.193332 0.981133i \(-0.438070\pi\)
0.981133 0.193332i \(-0.0619295\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 25.8990i 1.22225i 0.791535 + 0.611124i \(0.209282\pi\)
−0.791535 + 0.611124i \(0.790718\pi\)
\(450\) 0 0
\(451\) −37.0454 −1.74440
\(452\) −14.0454 14.0454i −0.660640 0.660640i
\(453\) 0 0
\(454\) 4.00000i 0.187729i
\(455\) 0 0
\(456\) 5.70714 0.267261
\(457\) −27.9217 27.9217i −1.30612 1.30612i −0.924191 0.381930i \(-0.875260\pi\)
−0.381930 0.924191i \(-0.624740\pi\)
\(458\) 0 0
\(459\) 15.0454i 0.702259i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −8.00000 −0.370593
\(467\) 22.0000 + 22.0000i 1.01804 + 1.01804i 0.999834 + 0.0182043i \(0.00579493\pi\)
0.0182043 + 0.999834i \(0.494205\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 12.0000 + 12.0000i 0.552345 + 0.552345i
\(473\) 32.6969 32.6969i 1.50341 1.50341i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 27.6969 + 27.6969i 1.26156 + 1.26156i
\(483\) 0 0
\(484\) 37.3939i 1.69972i
\(485\) 0 0
\(486\) −11.5959 −0.526002
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 0 0
\(489\) 4.59592i 0.207835i
\(490\) 0 0
\(491\) 42.0000 1.89543 0.947717 0.319113i \(-0.103385\pi\)
0.947717 + 0.319113i \(0.103385\pi\)
\(492\) −3.05561 3.05561i −0.137758 0.137758i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −5.40408 + 5.40408i −0.242163 + 0.242163i
\(499\) 14.0000i 0.626726i 0.949633 + 0.313363i \(0.101456\pi\)
−0.949633 + 0.313363i \(0.898544\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 29.9444 + 29.9444i 1.33648 + 1.33648i
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2.92168 2.92168i −0.129757 0.129757i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 8.41658 8.41658i 0.371601 0.371601i
\(514\) 16.0000i 0.705730i
\(515\) 0 0
\(516\) 5.39388 0.237452
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 42.1918 1.84846 0.924229 0.381839i \(-0.124709\pi\)
0.924229 + 0.381839i \(0.124709\pi\)
\(522\) 0 0
\(523\) −14.2702 + 14.2702i −0.623990 + 0.623990i −0.946549 0.322559i \(-0.895457\pi\)
0.322559 + 0.946549i \(0.395457\pi\)
\(524\) 36.0000i 1.57267i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −4.89898 + 4.89898i −0.213201 + 0.213201i
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) 17.3939 0.754830
\(532\) 0 0
\(533\) 0 0
\(534\) 1.84337i 0.0797703i
\(535\) 0 0
\(536\) −46.2929 −1.99955
\(537\) 1.83087 + 1.83087i 0.0790078 + 0.0790078i
\(538\) 0 0
\(539\) 38.1464i 1.64308i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 45.3939i 1.94625i
\(545\) 0 0
\(546\) 0 0
\(547\) −25.1691 25.1691i −1.07615 1.07615i −0.996850 0.0793039i \(-0.974730\pi\)
−0.0793039 0.996850i \(-0.525270\pi\)
\(548\) −8.65153 + 8.65153i −0.369575 + 0.369575i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −7.30306 −0.309719
\(557\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −13.8990 −0.586815
\(562\) −18.0000 18.0000i −0.759284 0.759284i
\(563\) 26.0000 26.0000i 1.09577 1.09577i 0.100870 0.994900i \(-0.467837\pi\)
0.994900 0.100870i \(-0.0321625\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 44.9444 1.88915
\(567\) 0 0
\(568\) 0 0
\(569\) 1.40408i 0.0588622i 0.999567 + 0.0294311i \(0.00936956\pi\)
−0.999567 + 0.0294311i \(0.990630\pi\)
\(570\) 0 0
\(571\) 22.0000 0.920671 0.460336 0.887745i \(-0.347729\pi\)
0.460336 + 0.887745i \(0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 23.1918 0.966326
\(577\) 8.82066 + 8.82066i 0.367209 + 0.367209i 0.866458 0.499249i \(-0.166391\pi\)
−0.499249 + 0.866458i \(0.666391\pi\)
\(578\) −47.3939 + 47.3939i −1.97133 + 1.97133i
\(579\) 3.35867i 0.139582i
\(580\) 0 0
\(581\) 0 0
\(582\) 5.39388 + 5.39388i 0.223583 + 0.223583i
\(583\) 0 0
\(584\) 19.1010i 0.790406i
\(585\) 0 0
\(586\) 0 0
\(587\) −20.6742 20.6742i −0.853317 0.853317i 0.137223 0.990540i \(-0.456182\pi\)
−0.990540 + 0.137223i \(0.956182\pi\)
\(588\) −3.14643 + 3.14643i −0.129757 + 0.129757i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −27.0227 + 27.0227i −1.10969 + 1.10969i −0.116499 + 0.993191i \(0.537167\pi\)
−0.993191 + 0.116499i \(0.962833\pi\)
\(594\) 14.4495i 0.592870i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 37.6969 1.53769 0.768845 0.639435i \(-0.220832\pi\)
0.768845 + 0.639435i \(0.220832\pi\)
\(602\) 0 0
\(603\) −33.5505 + 33.5505i −1.36628 + 1.36628i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) −25.3939 + 25.3939i −1.02986 + 1.02986i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 32.8990 + 32.8990i 1.32986 + 1.32986i
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 47.6413i 1.92265i
\(615\) 0 0
\(616\) 0 0
\(617\) −28.0000 28.0000i −1.12724 1.12724i −0.990624 0.136613i \(-0.956378\pi\)
−0.136613 0.990624i \(-0.543622\pi\)
\(618\) 0 0
\(619\) 26.0000i 1.04503i −0.852631 0.522514i \(-0.824994\pi\)
0.852631 0.522514i \(-0.175006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) −48.0000 −1.91847
\(627\) −7.77526 7.77526i −0.310514 0.310514i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −6.52781 + 6.52781i −0.259457 + 0.259457i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 42.0000 1.65890 0.829450 0.558581i \(-0.188654\pi\)
0.829450 + 0.558581i \(0.188654\pi\)
\(642\) −4.79796 4.79796i −0.189360 0.189360i
\(643\) 6.00000 6.00000i 0.236617 0.236617i −0.578831 0.815448i \(-0.696491\pi\)
0.815448 + 0.578831i \(0.196491\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −72.0454 −2.83459
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 16.2020 16.2020i 0.636476 0.636476i
\(649\) 32.6969i 1.28347i
\(650\) 0 0
\(651\) 0 0
\(652\) 20.4495 + 20.4495i 0.800864 + 0.800864i
\(653\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 27.1918 1.06166
\(657\) −13.8434 13.8434i −0.540081 0.540081i
\(658\) 0 0
\(659\) 32.6413i 1.27153i 0.771885 + 0.635763i \(0.219314\pi\)
−0.771885 + 0.635763i \(0.780686\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) −9.04541 9.04541i −0.351560 0.351560i
\(663\) 0 0
\(664\) 48.0908i 1.86629i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 36.0000 36.0000i 1.38770 1.38770i 0.557564 0.830134i \(-0.311736\pi\)
0.830134 0.557564i \(-0.188264\pi\)
\(674\) 6.85357i 0.263990i
\(675\) 0 0
\(676\) 26.0000 1.00000
\(677\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(678\) −3.15663 + 3.15663i −0.121230 + 0.121230i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.898979 0.0344490
\(682\) 0 0
\(683\) 14.7196 14.7196i 0.563231 0.563231i −0.366992 0.930224i \(-0.619613\pi\)
0.930224 + 0.366992i \(0.119613\pi\)
\(684\) 36.8082i 1.40740i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −24.0000 + 24.0000i −0.914991 + 0.914991i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.954592 0.0363144 0.0181572 0.999835i \(-0.494220\pi\)
0.0181572 + 0.999835i \(0.494220\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 18.6515i 0.708002i
\(695\) 0 0
\(696\) 0 0
\(697\) 38.5732 + 38.5732i 1.46106 + 1.46106i
\(698\) 0 0
\(699\) 1.79796i 0.0680051i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 43.5959i 1.64308i
\(705\) 0 0
\(706\) 32.0000 1.20434
\(707\) 0 0
\(708\) 2.69694 2.69694i 0.101357 0.101357i
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 8.20204 + 8.20204i 0.307384 + 0.307384i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −16.2929 −0.608893
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −21.3031 21.3031i −0.792818 0.792818i
\(723\) 6.22474 6.22474i 0.231501 0.231501i
\(724\) 0 0
\(725\) 0 0
\(726\) 8.40408 0.311905
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) 21.6969i 0.803590i
\(730\) 0 0
\(731\) −68.0908 −2.51843
\(732\) 0 0
\(733\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 63.0681 + 63.0681i 2.32314 + 2.32314i
\(738\) 19.7071 19.7071i 0.725430 0.725430i
\(739\) 34.0000i 1.25071i 0.780340 + 0.625355i \(0.215046\pi\)
−0.780340 + 0.625355i \(0.784954\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −34.8536 34.8536i −1.27523 1.27523i
\(748\) 61.8434 61.8434i 2.26122 2.26122i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 6.72985 6.72985i 0.245249 0.245249i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 26.3485 26.3485i 0.957019 0.957019i
\(759\) 0 0
\(760\) 0 0
\(761\) −36.7980 −1.33392 −0.666962 0.745091i \(-0.732406\pi\)
−0.666962 + 0.745091i \(0.732406\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 3.59592 3.59592i 0.129757 0.129757i
\(769\) 33.0908i 1.19329i −0.802507 0.596643i \(-0.796501\pi\)
0.802507 0.596643i \(-0.203499\pi\)
\(770\) 0 0
\(771\) −3.59592 −0.129504
\(772\) 14.9444 + 14.9444i 0.537860 + 0.537860i
\(773\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) 34.7878i 1.25042i
\(775\) 0 0
\(776\) −48.0000 −1.72310
\(777\) 0 0
\(778\) 0 0
\(779\) 43.1566i 1.54625i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000i 1.00000i
\(785\) 0 0
\(786\) −8.09082 −0.288590
\(787\) −18.0000 18.0000i −0.641631 0.641631i 0.309326 0.950956i \(-0.399897\pi\)
−0.950956 + 0.309326i \(0.899897\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −31.5959 31.5959i −1.12271 1.12271i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 11.8888 0.420069
\(802\) −31.2929 31.2929i −1.10499 1.10499i
\(803\) −26.0227 + 26.0227i −0.918321 + 0.918321i
\(804\) 10.4041i 0.366924i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000i 0.210949i −0.994422 0.105474i \(-0.966364\pi\)
0.994422 0.105474i \(-0.0336361\pi\)
\(810\) 0 0
\(811\) −38.0000 −1.33436 −0.667180 0.744896i \(-0.732499\pi\)
−0.667180 + 0.744896i \(0.732499\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 10.2020 0.357143
\(817\) −38.0908 38.0908i −1.33263 1.33263i
\(818\) −40.3939 + 40.3939i −1.41234 + 1.41234i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 1.94439 + 1.94439i 0.0678183 + 0.0678183i
\(823\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.0681 + 26.0681i 0.906477 + 0.906477i 0.995986 0.0895090i \(-0.0285298\pi\)
−0.0895090 + 0.995986i \(0.528530\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 39.7196 39.7196i 1.37620 1.37620i
\(834\) 1.64133i 0.0568345i
\(835\) 0 0
\(836\) 69.1918 2.39305
\(837\) 0 0
\(838\) 40.8434 40.8434i 1.41091 1.41091i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) −4.04541 + 4.04541i −0.139331 + 0.139331i
\(844\) 58.0908i 1.99957i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 10.1010i 0.346666i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 42.6969 1.45935
\(857\) 41.0681 + 41.0681i 1.40286 + 1.40286i 0.790850 + 0.612010i \(0.209639\pi\)
0.612010 + 0.790850i \(0.290361\pi\)
\(858\) 0 0
\(859\) 36.3485i 1.24019i −0.784525 0.620097i \(-0.787093\pi\)
0.784525 0.620097i \(-0.212907\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 10.6061i 0.360828i
\(865\) 0 0
\(866\) −58.5403 −1.98928
\(867\) 10.6515 + 10.6515i 0.361745 + 0.361745i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −34.7878 + 34.7878i −1.17739 + 1.17739i
\(874\) 0 0
\(875\) 0 0
\(876\) −4.29286 −0.145042
\(877\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) −20.2929 20.2929i −0.683296 0.683296i
\(883\) −19.7753 + 19.7753i −0.665490 + 0.665490i −0.956669 0.291178i \(-0.905953\pi\)
0.291178 + 0.956669i \(0.405953\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 49.4393 1.66095
\(887\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −44.1464 −1.47896
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −25.8990 + 25.8990i −0.864260 + 0.864260i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) −37.0454 37.0454i −1.23348 1.23348i
\(903\) 0 0
\(904\) 28.0908i 0.934287i
\(905\) 0 0
\(906\) 0 0
\(907\) 42.0000 + 42.0000i 1.39459 + 1.39459i 0.814689 + 0.579898i \(0.196908\pi\)
0.579898 + 0.814689i \(0.303092\pi\)
\(908\) −4.00000 + 4.00000i −0.132745 + 0.132745i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 5.70714 + 5.70714i 0.188982 + 0.188982i
\(913\) −65.5176 + 65.5176i −2.16832 + 2.16832i
\(914\) 55.8434i 1.84713i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 15.0454 15.0454i 0.496572 0.496572i
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 10.7071 0.352812
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 54.0000i 1.77168i 0.463988 + 0.885841i \(0.346418\pi\)
−0.463988 + 0.885841i \(0.653582\pi\)
\(930\) 0 0
\(931\) 44.4393 1.45644
\(932\) −8.00000 8.00000i −0.262049 0.262049i
\(933\) 0 0
\(934\) 44.0000i 1.43972i
\(935\) 0 0
\(936\) 0 0
\(937\) 38.8207 + 38.8207i 1.26822 + 1.26822i 0.947009 + 0.321207i \(0.104088\pi\)
0.321207 + 0.947009i \(0.395912\pi\)
\(938\) 0 0
\(939\) 10.7878i 0.352045i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 24.0000i 0.781133i
\(945\) 0 0
\(946\) 65.3939 2.12614
\(947\) −38.0000 38.0000i −1.23483 1.23483i −0.962085 0.272749i \(-0.912067\pi\)
−0.272749 0.962085i \(-0.587933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9.71964 9.71964i 0.314850 0.314850i −0.531935 0.846785i \(-0.678535\pi\)
0.846785 + 0.531935i \(0.178535\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 30.9444 30.9444i 0.997169 0.997169i
\(964\) 55.3939i 1.78412i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) −37.3939 + 37.3939i −1.20188 + 1.20188i
\(969\) 16.1918i 0.520157i
\(970\) 0 0
\(971\) −0.0556128 −0.00178470 −0.000892350 1.00000i \(-0.500284\pi\)
−0.000892350 1.00000i \(0.500284\pi\)
\(972\) −11.5959 11.5959i −0.371939 0.371939i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −25.6742 25.6742i −0.821392 0.821392i 0.164916 0.986308i \(-0.447265\pi\)
−0.986308 + 0.164916i \(0.947265\pi\)
\(978\) 4.59592 4.59592i 0.146961 0.146961i
\(979\) 22.3485i 0.714260i
\(980\) 0 0
\(981\) 0 0
\(982\) 42.0000 + 42.0000i 1.34027 + 1.34027i
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 6.11123i 0.194819i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −2.03291 + 2.03291i −0.0645124 + 0.0645124i
\(994\) 0 0
\(995\) 0 0
\(996\) −10.8082 −0.342470
\(997\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(998\) −14.0000 + 14.0000i −0.443162 + 0.443162i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.2.k.f.107.2 yes 4
4.3 odd 2 800.2.o.f.207.1 4
5.2 odd 4 200.2.k.e.43.1 4
5.3 odd 4 inner 200.2.k.f.43.2 yes 4
5.4 even 2 200.2.k.e.107.1 yes 4
8.3 odd 2 CM 200.2.k.f.107.2 yes 4
8.5 even 2 800.2.o.f.207.1 4
20.3 even 4 800.2.o.f.143.1 4
20.7 even 4 800.2.o.e.143.2 4
20.19 odd 2 800.2.o.e.207.2 4
40.3 even 4 inner 200.2.k.f.43.2 yes 4
40.13 odd 4 800.2.o.f.143.1 4
40.19 odd 2 200.2.k.e.107.1 yes 4
40.27 even 4 200.2.k.e.43.1 4
40.29 even 2 800.2.o.e.207.2 4
40.37 odd 4 800.2.o.e.143.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.k.e.43.1 4 5.2 odd 4
200.2.k.e.43.1 4 40.27 even 4
200.2.k.e.107.1 yes 4 5.4 even 2
200.2.k.e.107.1 yes 4 40.19 odd 2
200.2.k.f.43.2 yes 4 5.3 odd 4 inner
200.2.k.f.43.2 yes 4 40.3 even 4 inner
200.2.k.f.107.2 yes 4 1.1 even 1 trivial
200.2.k.f.107.2 yes 4 8.3 odd 2 CM
800.2.o.e.143.2 4 20.7 even 4
800.2.o.e.143.2 4 40.37 odd 4
800.2.o.e.207.2 4 20.19 odd 2
800.2.o.e.207.2 4 40.29 even 2
800.2.o.f.143.1 4 20.3 even 4
800.2.o.f.143.1 4 40.13 odd 4
800.2.o.f.207.1 4 4.3 odd 2
800.2.o.f.207.1 4 8.5 even 2