Properties

Label 200.2.f
Level $200$
Weight $2$
Character orbit 200.f
Rep. character $\chi_{200}(149,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $5$
Sturm bound $60$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(60\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(200, [\chi])\).

Total New Old
Modular forms 36 20 16
Cusp forms 24 16 8
Eisenstein series 12 4 8

Trace form

\( 16 q + 6 q^{4} - 2 q^{6} + 16 q^{9} - 8 q^{14} + 2 q^{16} - 38 q^{24} - 32 q^{31} + 42 q^{34} - 24 q^{36} - 24 q^{39} - 8 q^{41} + 10 q^{44} + 32 q^{46} - 50 q^{54} - 40 q^{56} - 18 q^{64} + 2 q^{66} + 56 q^{71}+ \cdots + 62 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(200, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
200.2.f.a 200.f 40.f $2$ $1.597$ \(\Q(\sqrt{-1}) \) None 200.2.d.a \(-2\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-1)q^{2}-q^{3}-2 i q^{4}+(-i+1)q^{6}+\cdots\)
200.2.f.b 200.f 40.f $2$ $1.597$ \(\Q(\sqrt{-1}) \) None 200.2.d.a \(2\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+1)q^{2}+q^{3}+2 i q^{4}+(i+1)q^{6}+\cdots\)
200.2.f.c 200.f 40.f $4$ $1.597$ \(\Q(\zeta_{12})\) None 40.2.d.a \(-2\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}-\beta_1)q^{2}+(-\beta_{3}+\beta_{2}-\beta_1+1)q^{3}+\cdots\)
200.2.f.d 200.f 40.f $4$ $1.597$ \(\Q(i, \sqrt{7})\) None 200.2.d.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-2\beta _{1}+\beta _{3})q^{3}+(1+\beta _{2}+\cdots)q^{4}+\cdots\)
200.2.f.e 200.f 40.f $4$ $1.597$ \(\Q(\zeta_{12})\) None 40.2.d.a \(2\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{2}+(\beta_{3}-\beta_{2}+\beta_1-1)q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(200, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)