Defining parameters
Level: | \( N \) | \(=\) | \( 200 = 2^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 200.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 22 | 14 |
Cusp forms | 24 | 16 | 8 |
Eisenstein series | 12 | 6 | 6 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(200, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
200.2.d.a | $2$ | $1.597$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(0\) | \(-4\) | \(q+(i-1)q^{2}-i q^{3}-2 i q^{4}+(i+1)q^{6}+\cdots\) |
200.2.d.b | $2$ | $1.597$ | \(\Q(\sqrt{-7}) \) | None | \(-1\) | \(0\) | \(0\) | \(-8\) | \(q-\beta q^{2}+(1-2\beta )q^{3}+(-2+\beta )q^{4}+\cdots\) |
200.2.d.c | $2$ | $1.597$ | \(\Q(\sqrt{-7}) \) | None | \(1\) | \(0\) | \(0\) | \(8\) | \(q+\beta q^{2}+(-1+2\beta )q^{3}+(-2+\beta )q^{4}+\cdots\) |
200.2.d.d | $2$ | $1.597$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(0\) | \(4\) | \(q+(i+1)q^{2}-i q^{3}+2 i q^{4}+(-i+1)q^{6}+\cdots\) |
200.2.d.e | $4$ | $1.597$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{2}q^{3}+(1+\beta _{3})q^{4}+(-1+\cdots)q^{6}+\cdots\) |
200.2.d.f | $4$ | $1.597$ | \(\Q(\zeta_{12})\) | None | \(2\) | \(0\) | \(0\) | \(4\) | \(q+(-\beta_{2}+\beta_1)q^{2}+(\beta_{3}-\beta_{2}-\beta_1+1)q^{3}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(200, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)