Properties

Label 20.9
Level 20
Weight 9
Dimension 46
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 216
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(216\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(20))\).

Total New Old
Modular forms 106 50 56
Cusp forms 86 46 40
Eisenstein series 20 4 16

Trace form

\( 46 q + 6 q^{2} - 70 q^{3} - 292 q^{4} + 724 q^{5} + 2720 q^{6} - 2030 q^{7} - 14184 q^{8} + 562 q^{9} + 4590 q^{10} - 420 q^{11} - 64040 q^{12} + 84572 q^{13} + 138824 q^{14} - 48478 q^{15} - 9552 q^{16}+ \cdots - 285387714 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(20))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
20.9.b \(\chi_{20}(11, \cdot)\) 20.9.b.a 16 1
20.9.d \(\chi_{20}(19, \cdot)\) 20.9.d.a 1 1
20.9.d.b 1
20.9.d.c 20
20.9.f \(\chi_{20}(13, \cdot)\) 20.9.f.a 8 2

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(20))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(20)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)