Properties

Label 20.8
Level 20
Weight 8
Dimension 45
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 192
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(192\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(20))\).

Total New Old
Modular forms 94 53 41
Cusp forms 74 45 29
Eisenstein series 20 8 12

Trace form

\( 45 q - 2 q^{2} - 26 q^{3} - 35 q^{5} + 104 q^{6} + 954 q^{7} - 1004 q^{8} + 671 q^{9} - 3594 q^{10} - 2880 q^{11} + 10960 q^{12} + 2568 q^{13} + 3802 q^{15} - 44872 q^{16} + 13584 q^{17} + 60306 q^{18}+ \cdots + 48327200 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(20))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
20.8.a \(\chi_{20}(1, \cdot)\) 20.8.a.a 1 1
20.8.a.b 2
20.8.c \(\chi_{20}(9, \cdot)\) 20.8.c.a 4 1
20.8.e \(\chi_{20}(3, \cdot)\) 20.8.e.a 2 2
20.8.e.b 36

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(20))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(20)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)