Defining parameters
Level: | \( N \) | \(=\) | \( 20 = 2^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 20.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(20, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 18 | 2 | 16 |
Cusp forms | 12 | 2 | 10 |
Eisenstein series | 6 | 0 | 6 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(20, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
20.6.c.a | $2$ | $3.208$ | \(\Q(\sqrt{-31}) \) | None | \(0\) | \(0\) | \(-10\) | \(0\) | \(q-\beta q^{3}+(-5-5\beta )q^{5}-11\beta q^{7}+119q^{9}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(20, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(20, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)