Properties

Label 20.5
Level 20
Weight 5
Dimension 22
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 120
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(120\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(20))\).

Total New Old
Modular forms 58 26 32
Cusp forms 38 22 16
Eisenstein series 20 4 16

Trace form

\( 22 q + 6 q^{2} - 10 q^{3} - 36 q^{4} + 4 q^{5} + 32 q^{6} + 110 q^{7} + 216 q^{8} - 170 q^{9} - 210 q^{10} - 300 q^{11} - 200 q^{12} - 8 q^{13} - 184 q^{14} + 542 q^{15} - 592 q^{16} + 912 q^{17} + 286 q^{18}+ \cdots - 21474 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(20))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
20.5.b \(\chi_{20}(11, \cdot)\) 20.5.b.a 8 1
20.5.d \(\chi_{20}(19, \cdot)\) 20.5.d.a 1 1
20.5.d.b 1
20.5.d.c 8
20.5.f \(\chi_{20}(13, \cdot)\) 20.5.f.a 4 2

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(20))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(20)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)