Properties

Label 20.4.c
Level $20$
Weight $4$
Character orbit 20.c
Rep. character $\chi_{20}(9,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 20.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(20, [\chi])\).

Total New Old
Modular forms 12 2 10
Cusp forms 6 2 4
Eisenstein series 6 0 6

Trace form

\( 2 q + 14 q^{5} - 98 q^{9} + O(q^{10}) \) \( 2 q + 14 q^{5} - 98 q^{9} + 40 q^{11} + 152 q^{15} - 168 q^{19} + 152 q^{21} - 54 q^{25} + 12 q^{29} - 448 q^{31} - 152 q^{35} + 912 q^{39} + 532 q^{41} - 686 q^{45} + 534 q^{49} - 1216 q^{51} + 280 q^{55} - 56 q^{59} + 364 q^{61} - 912 q^{65} - 1064 q^{69} + 816 q^{71} + 2128 q^{75} + 96 q^{79} + 698 q^{81} + 1216 q^{85} - 3052 q^{89} - 912 q^{91} - 1176 q^{95} - 1960 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(20, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
20.4.c.a 20.c 5.b $2$ $1.180$ \(\Q(\sqrt{-19}) \) None 20.4.c.a \(0\) \(0\) \(14\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{3}+(7+\beta )q^{5}+\beta q^{7}-7^{2}q^{9}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(20, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(20, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)